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Abstract

In this paper, we prove some fixed point results for a-admissible mappings which satisfy Suzuki type con-
tractive condition in the setup of b-metric spaces. Finally, examples are presented to verify the effectiveness
and applicability of our main results. (©2015 All rights reserved.
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1. Introduction

Banach contractive principle or Banach fixed point theorem is the most celebrated result in fixed point
theory which illustrates that in a complete metric space, each contractive mapping has a unique fixed
point. There is a great number of generalizations of Banach contraction principle by using different forms of
contractive conditions in various spaces. Some of such generalizations are obtained by contraction conditions
described by rational expressions, (see, [14] 18] 20, 25]).

Ran and Reurings initiated the studying of fixed point results on partially ordered sets in [21], where
they gave many useful results in matrix equations. Recently, many researchers have focused on different
contractive conditions in complete metric spaces endowed with a partial order or a graph and obtained many
fixed point results in such spaces. For more details on fixed point results, their applications, comparison
of different contractive conditions and related results in ordered metric spaces and spaces endowed with a
graph we refer the reader to [5] and [19].
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Czerwik in [§] introduced the concept of a b-metric space. Since then, several papers dealt with fixed
point theory for single-valued and multi-valued operators in b-metric spaces (see, [7, 9, 16l 22]).

Definition 1.1. Let X be a (nonempty) set and s > 1 be a given real number. A function d: X x X — R™
is a b-metric if, for all z,y, 2 € X, the following conditions are satisfied:

(b2) d(fL‘, y) = d(y7 .T),
In this case, the pair (X, d) is called a b-metric space.

Definition 1.2 ([6]). Let (X, d) be a b-metric space.
(a) A sequence {x,} in X is called b-convergent if and only if there exists x € X such that d(x,,x) — 0,

as n — o0o. In this case, we write lim z, = x.
n—oo

(b) {z,} in X is said to be b-Cauchy if and only if d(zy,, z,,) — 0, as n,m — co.
(c) The b-metric space (X, d) is b-complete if every b-Cauchy sequence in X is b-converges.

Note that a b-metric need not to be a continuous function. The following example (corrected from [13])
illustrates this fact.

Example 1.3. Let X = NU {oco} and let d: X x X — R be defined by

0, if m =n,

d(m,n) = ‘% - % , if one of m,n is even and the other is even or oo,
5, if one of m,n is odd and the other is odd (and m # n) or co,
2, otherwise.

It can be checked that for all m,n,p € X, we have
)
Thus, (X, d) is a b-metric space (with s =5/2). Let x, = 2n for each n € N. Then

1
d(2n,oo):2—%0 as n — 09,
n

that is, x,, — 0o, but d(zp,1) =2 4 5 = d(c0,1) as n — .

Lemma 1.4 ([I]). Let (X, d) be a b-metric space with s > 1, and suppose that {x,} and {y,} are b-convergent
to x and y, respectively. Then we have

1 . .
S—Qd(m‘,y) < liminf d(z,,y,) < limsup d(zn, yn) < s?d(z,y).

n—oo n—o00

In particular, if v =y, then we have lim d(zy,y,) = 0. Moreover, for each z € X, we have,
n—oo

1
—d(z, z) <liminf d(xy,, 2z) < limsupd(z,, z) < sd(z, z).
s

n—o00 n—00
Let & denotes the class of all real functions 3 : [0,4+00) — [0, 1) satisfying the condition
B(tn) — 1 implies that ¢, — 0, as n — oc.

In order to generalize the Banach contraction principle, in 1973, Geraghty proved the following.
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Theorem 1.5 ([12]). Let (X,d) be a complete metric space, and let f : X — X be a self-map. Suppose that
there exists f € & such that

d(fx, fy) < Bd(x,y))d(z,y)

holds for all x,y € X. Then f has a unique fized point z € X and for each x € X the Picard sequence {f"x}
converges to z.

In [10], some fixed point theorems for Geraghty-type contractive mappings in various generalized metric
spaces are proved. As in [10], we will consider the class of functions F, where g € F if 5: [0,00) — [0,1/s)
has the property

1
B(t,) — — implies that ¢, — 0, as n — oo.
s

Theorem 1.6 ([10]). Let s > 1, and let (X, D, s) be a complete metric type space. Suppose that a mapping
f: X — X satisfies the condition

D(fx, fy) < B(D(z,y))D(x,y)

for all x,y € X and some B € F. Then f has a unique fired point z € X, and for each x € X the Picard
sequence { f"x} converges to z in (X, D, s).

Unification of the recent results of Zabihi and Razani [28] yield the following result.

Theorem 1.7. Let (X, <) be a partially ordered set and suppose that there exists a b-metric d on X such
that (X, d) is a b-complete b-metric space (with parameter s > 1). Let f : X — X be an increasing mapping
with respect to X such that there exists an element xy € X with o X f(xg). Suppose that there exists § € F
such that,

sd(fz, fy) < B(d(z,y))M (z,y) + LN (z,y) (1.1)

for all comparable elements x,y € X, where L > 0,

M) = max (o, ), ST

L+d(fz, fy)
and

N(z,y) = min{d(z, fz),d(z, fy),d(y, fx),d(y, fy)}.

If f is continuous, or, whenever {x,} is a nondecreasing sequence in X such that x, — u € X, one has
Ty 2 u for allm € N, then f has a fived point. Moreover, the set of fixed points of f is well ordered if and
only if f has one and only one fixed point.

One of the interesting results which generalizes the Banach contraction principle was given by Samet et
al. [23] by defining a-1-contractive mappings.

Definition 1.8 ([23]). Let T be a self-mapping on X and let o : X x X — [0,00) be a function. We say
that T" is an a-admissible mapping if

r,ye X, alr,y)>1 = oTz,Ty) >1.

Denote with ¥’ the family of all nondecreasing functions ¢ : [0,00) — [0, 00) such that Y 07 | ™ (t) < oo
for all ¢ > 0, where ¥" is the n-th iterate of .

Theorem 1.9 ([23]). Let (X, d) be a complete metric space and let T' be an a-admissible mapping. Assume
that

a(z,y)d(Tz, Ty) < P(d(z,y)) (1.2)
where 1 € W', Also, suppose that the following assertions hold:
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(i) there exists xy € X such that a(xo, Txo) > 1;

(ii) either T is continuous, or, for any sequence {xy} in X with a(xy, xny1) > 1 for alln € NU{0} such
that x, — = as n — oo, we have a(xy,x) > 1 for alln € NU{0}.

Then T has a fized point.
Definition 1.10 ([I7]). Let f : X — X and a : X x X — [0,400). We say that f is a triangular
a-admissible mapping if

(T1) afz,y) >1 implies affz, fy)>1, z,yeX,

alr,z)>1 .
> .
(T2) { olzy) > 1 implies a(z,y) >1, xz,y,z€ X
Example 1.11 ([I7]). Let X = R, fx = ¢z and a(z,y) = €Y, then f is a triangular a-admissible
mapping. Indeed, if a(z,y) = ¢*7¥ > 1, then > y which implies that fz > fy, that is, a(fz, fy) =

fo-fy > ) a(r,z) > 1 z—2z>0, . s Y
e > 1. Also, if { oz >1 then ey >0, that is, x — y > 0 and so, a(z,y) =e*7Y > 1.

Lemma 1.12 ([I7]). Let f be a triangular a-admissible mapping. Assume that there exists xog € X such
that oz, fxo) > 1. Define sequence {x,} by x, = f"xg. Then
a(Tm, Tn) > 1 for all m,n € N with m < n.
We now recall the concept of (c)-comparison function which was introduced by Berinde [4].

Definition 1.13 ([4]). A function ¢ : [0,00) — [0, 00) is said to be a (¢)-comparison function if

(c1) ¢ is increasing,
oo
(c2) there exists kg € N, a € (0,1) and a convergent series of nonnegative terms Z vy, such that @*+1(t) <
k=1
a@®(t) 4+ vy, for k > ko and any ¢ € [0, 00).

Later, Berinde [3] introduced the notion of a (b)-comparison function as a generalization of the concept
of (¢)-comparison function.

Definition 1.14 ([3]). Let s > 1 be a real number. A mapping ¢ : [0,00) — [0, 00) is called a (b)-comparison
function if the following conditions are fulfilled

(1) ¢ is monotone increasing;

o0
(2) thereexist kg € N, a € (0,1) and a convergent series of nonnegative terms Z vy, such that sFH1ph+1(¢) <
k=1
ash ok (t) + v for any k > ko and any ¢ € [0, 00).

Let ¥}, be the class of all (b)-comparison functions ¢ : [0,00) — [0,00). It is clear that the notion of
(b)-comparison function coincide with (¢)-comparison function for s = 1.
We now recall the following lemma which will simplify the proofs.

Lemma 1.15 ([2]). If ¢ : [0,00) — [0,00) is a (b)-comparison function, then we have the following.
oo
(1) the series Z sFoF(t) converges for any t € Ry ;
k=0

(2) the function bs : [0,00) — [0,00) defined by bs(t) = Z sFoR(t), t € [0,00), is increasing and continuous

k=0
at 0.
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2. Main Results

In 1962, Edelstein [I1] proved an interesting version of Banach contraction principle. In 2009, Suzuki
[27] proved certain remarkable results to improve the results of Banach and Edelstein (see also [24] 26]).
Now, we are ready to prove the following Suzuki type theorems for nonlinear contractions.

Theorem 2.1. Let (X,d) be a b-complete b-metric space (with parameter s > 1) and let f be a triangular
a-admissible mapping. Suppose that there exists € F such that,

o-d(r, £2) < d(z,y) = sa(e,y)d(fz, fy) < BOM(z,))M(r,) (21)
for all x,y € X, where
_ d(z, fx)d(z, fy) + d(y, fy)d(y, fz)
M) = s {do), C R
d(z, fx)d(z, fy) + d(y, fy)d(y, fz) }
L+d(z, fy) + d(y, fz) '

Also, suppose that the following assertions hold:

(i) there exists xo € X such that a(xo, fxo) > 1;

(ii) for any sequence {x,} in X with a(xy,xnt1) > 1 for alln € NU{0} such that x,, — x as n — oo, we
have o(zp,x) > 1 for alln € NU{0}.

Then, T has a fixed point.

Proof. Let zp € X be such that a(xg, fxrg) > 1. Define a sequence {x,} by z, = f"xo for all n € N. Since
f is an a-admissible mapping and «a(xg, 1) = a(zg, fro) > 1, we deduce that a(x1,x2) = a(fxo, fr1) > 1.
Continuing this process, we get that a(zp,zp+1) > 1 for all n € NU {0}. We will do the proof in the
following steps.

Step I: We will show that lim d(xy,,z,4+1) = 0. Since oy, Xpt1) > 1 foreachn € N, and %Sd(:z:n_l, fan_1) <

n—oo
d(xp—1,xy) then by (2.1) we have
d(l'm xn-&-l) = d(fxn—la fxn)
< Sa($n_1, :L'n)d(fxn—l» fxn)
< B(M (21, 2n)) M (2n—1, T7) (2.2)
< ﬁ(d(l‘n—laxn))d($n—17xn) ’
< %d(xn_l,xn)
S d(l'n—l, xn))

because

M(zp—1,2,) = max{d(zp_1,Zn),
d(xp-1, frn—1)d(Xn-1, frn) + d(zpn, frn)d(xn, fTa—1)
1+ s[d(@n—1,2n) + d(fTn_1, fTn)]
d(xp—1, frn—1)d(xn-1, frn) + d(zy, fz,) (:L"n,fsvn,l)}
1+ d(zp-1, fzn) + d(zp, frp—1)
=max{d(xp_1,Ty),
d(xp—1,2n)d(Tp—1,Tnt1) +
1+ s[d(xp—1,2n) +
d(Tn—1,Tp)d(Tn—1,Tny1) +
1+ d(:l?n,l, Tn+41
=d(zp—1,%n).

)

~—
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Therefore, {d(zn,xn+1)} is decreasing. Then there exists » > 0 such that li_>m d(xp, Tpe1) = r. We will
n o
prove that » = 0. Suppose on contrary that » > 0. Then, letting n — oo, from ([2.2]) we have

1 .
gr < nh_)I{)lo B(d(zp—1,2n))r

which implies that d(x,,—1,x,) — 0. Hence, r = 0, a contradiction. So,

lim d(xp—1,2,) =0 (2.3)
n—oo
holds true.
Step II: Now, we prove that the sequence {z,} is a b-Cauchy sequence. Suppose the contrary, i.e., that
{zy} is not a b-Cauchy sequence. Then there exists € > 0 for which we can find two subsequences {z,, }
and {x,, } of {x,} such that n; is the smallest index for which

n; > m; > 1 and d(zy,,, Tn,) > €. (2.4)

This means that
d(Tm,, Tn,—1) < €. (2.5)

From ((2.4)) and using the triangular inequality, we get
€< d(xmwxm) < Sd(xmmxmri-l) + Sd(xmﬁ-lv xm)
Taking the upper limit as i — oo, we get

= < limsup d(xmﬂrb xnz) (2'6)
S

i—00
Remember that, from we get,
d(Tp, Tpi1) < d(Tp—1,Tn) (2.7)
for all n € N. Suppose that there exists 79 € N such that,

1
?Sd(xmio ) fxmio) > d(wmio ; xnio—l)

and )
%d(xmio-f—la fxmio-l-l) > d(xmio—l-l: xnio—l)'

Then from (2.7)) we have,
d(xmi()?xmio-l—l) < S[d<wmi0 ’ xmo—l) + d(xmio-l—l? xnio—l)]

1 1
< S[%d<xml0 ) fwmlo) + %d(xmio"‘la fxmio-f—l)]
1
= 5 [A@miy Ty 1) + @15 T 12)]
1
< §[d(xmi0 ’ xmi0+1) + d(xmio ) xmiOJrl)] = d(l‘mio R xmiOJrl)

which is a contradiction. Hence, either,

1
— ) ) < ) _
2Sd($mz7 fxmz) — d(me, xnz 1)

or
1
?Sd('rmrklv f$m1+1) S d($m¢+1a xnl'fl)
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holds for all 7 € N.

First suppose that
1
Zd(l’m,a fIml) S d(xmiaxni—l)-

As from Lemma a(Tm,, Tn;—1) > 1, we obtain that

€
s-— <s-limsup d(@m,+1,Tn,) < limsup S(M (zm,, Tn,—1)) imsup M (p,,, Tn,—1)
S i—00 i—00 i—00

< elimsup (M (zm,, Tn;—1))
1—00
because, from the definition of M (z,y) and the above limits,

lim sup M (@, Tn,—1) = lim sup max{d(zm,, Tn,—1),
1—00 1—00

d(xmz" fl'mi)d(mmw fxmfl) + d(l‘nz‘*la fxnifl)d(l‘mfl’ fzmz)
1+ S[d(xmiaxmfl) + d(fxmm fsz )]

d(xmw fqrmi)d(xmw fxm—l) + d(xni—lﬂ fxni—l)d(xm—lv fxmz)

1+ d(@m,, frn,—1) + d(Tn,—1, [Tm,) J
= lim sup max{d(zm,, Tn,~1),
1—>00
d(xmw xmﬂrl)d(xmz'a:vm) + d(xmfla "Eni)d(l’nifl, :L‘m2.+1)
1+ s[d(zmwl'm*l) + d(l‘mﬂrl’ l"m)}

d(xmﬂ mmrf—l)d(zmwxm) + d(xni_17 xni)d(‘rni_17 xmﬁ-l)

1+ d(mmz'v :Cm) + d(xni—lﬂ xmﬁ-l) }

)

)

S,

which implies that % < limsup B(M (2, Tn,—1)). Now, as f € F we conclude that M (x,,,zn,—1) — 0,
1—00

hence, we get that d(z,,Tn,—1) — 0 which implies that d(zm,,zn,) — 0, a contradiction to So, {x,}

is a b-Cauchy sequence. b-Completeness of X yields that {x, } b-converges to a point z* € X.

On the other hand, from ((2.4])) and using the triangular inequality, we get
€
3 < d(l‘mpffm) < Sd(wmm$m¢+2) + Sd($m¢+2a mm)
Taking the upper limit as i — oo, we get

< lim sup d(zpm, +2, Tn, )- (2.8)

IS
S 1—00

Also, from (([2.6))) and using the triangular inequality, we get
A(Tmy41, Tny—1) < SA(Tym;+1, Tn;) + SA(Tn,, Tn;—1).
Taking the upper limit as ¢ — oo, we get
lim sup A(Tmy41, Tny—1) < se. (2.9)
i—00

Now, let
1

%d(wmi—i—l: f$mi+1) < d(xmi—l—ly mni—l)'

From Lemma (T, 41, Tn;—1) > 1, so, we have

€ . . .
s-— < s-limsup d(@m,+2, Tn,) < limsup S(M (Tm,+1, Tn;—1)) im sup M (X, 41, Tn,—1)
S 1—00 1—>00 1—00

< selimsup B(M (zm;+1, Tn;—1))

1—00
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because,

limsup M (@, +1, Tn,—1) = lim sup max{d(zm,+1, Tn;—1),
1—00 1—00

d(xmi+1v f$mi+1)d(xmi+l7 fxnifl) + d(fpmflv f:Eni*l)d(l'ni*l? f$mi+1)
1+ S[d(xmﬂrl? xnifl) + d(f$mi+1, fl'mf )]
d(xmr‘rlv f‘rmi-‘rl)d(wmi-f-l? fmni_l) + d(‘rni_17 fxm—l)d(wni—h fxmi+1)}
1+ d(xmri-la fxm—l) + d(xni_h fxmﬁ-l)

= lim sup max{d(@m,+1, Tn,~1),
1—>00

d($m¢+1v xm¢+2)d($mi+1a xnz) + d(xni*b xni)d(xmflv xmﬂr?)
1+ S[d(‘rmﬂrla $n¢71) + d($m¢+27 :L'nl)}
d(xmi"!‘l’ xmi+2)d(‘rmi+17 xni) + d(xni—lv xni)d(xni—lv xmi+2) }
1+ d(@m,+1,Tn,;) + d(@n,—1, Tm;42)

)

)

< sg,

which implies that % <limsup (M (Zm,;+1,Tn,—1)). Now, as f € F we conclude that M (zy,,+1, Tn,—1) — 0,
1—>00

hence, we get that d(zm,+1,%n,—1) — 0 which implies that d(zm,, zs;) — 0, a contradiction. So, {z,} is a

b-Cauchy sequence. b-Completeness of X yields that {x,} b-converges to a point z* € X.

Remember that, from (2.2)) we get,
d(Tp, Tpy1) < d(Tp—1,Tn) (2.10)

for all n € N. Suppose that there exists ng € N such that,

1 *
%d(xnoa fxno) > d($n0,$ )

and

1 *
%d(xnoJrl»fxnoJrl) > d(Tngt1,2").

Then, from (2.10) we have,

d(xnm xno-l—l) < S[d@:nmx*) + d(xn0+1v HJ*)]

1

1
< S[?Sd(l’nov fmno) + ?Sd(mn(ﬂrla fxn0+1)]

1

= §[d(xn07 ‘/Eno-H) + d(xno-i-l’ xno-i-?)}

1

< i[d(xnov Tng+1) + d(Tpg, xm)-i-l)] = d(ZTng, Tno+1)

which is a contradiction. Hence, either,

1
%d(.Tn,fCCn) < d(zp,z")

or

1
?Sd(xn—l-lv fxn—l—l) < d(l‘n+1, ZC*)

holds for all n € N. First, suppose that,

1
%d(mn,fxn) < d(zp,z")
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holds for all n € N. Then from we have,
d(fa*,2%) < sld(fa", fon) + d(fzn, 27)]
sld(fa®, fzn) + d(@ni1, 27)]
< s[B(M (27, 2n)) M (27, &) + d(@n 41, 27)]
for all n € N. Taking the limit as n — oo in the above inequality we get, d(fz*, 2*) = 0. i.e.,
fx* ="

By a similar method we can deduce fax* = x* when

1 *
§d($n+17f$n+l) < d(xpgr1,x).
Hence, we proved that «* is a fixed point of f. O

Theorem 2.2. Let (X,d) be a b-complete b-metric space and let f be an a-admissible mapping. Suppose
that there exists ¢ € WUy, such that,

o2d(z, £2) < d(x,y) = alw,)d(f2, fy) < Y(M(2,9)) (21)

where,

M(z,y) = max {d(a:,y)

for all x,y € X.
Also, suppose that the following assertions hold:

(i) there exists xog € X such that a(xg, fxg) > 1;

d(z, fr)d(y, fy) d(z, fy)d(z,y) }
"1+ sld(w,y) +d(z, fy)] 1+ sld(x, fx) +d(y, fy)]

(ii) for any sequence {x,} in X with a(xy,nt1) > 1 for alln € NU{0} such that x,, — x as n — oo, we
have a(xy, ) > 1 for alln € NU{0}.

Then, f has a fized point.

Proof. Let zyp € X be such that a(xg, fxrg) > 1. Define a sequence {x,} by z, = f"xo for all n € N. Since
f is an a-admissible mapping and «a(zg, 1) = a(zo, fxo) > 1, we deduce that a(x1,z2) = a(fxo, fz1) > 1.
Continuing this process, we get that a(xy,,zy41) > 1 for all n € NU {0}.

If there exists ng € N such that z,, = xp,+1 then, z,, = fr,, and so we have no thing for prove. Hence,
for all n € N we assume that d(x,, zn+1) > 0.

On the other hand, we have,

1 1
7d(xn71a fajnfl) = 5(1(1‘”71,.%‘”) < d(xnfla-rn)

2s
and a(xy, Tnt1) > 1, so by (2.11)) we get,
d(fL‘n, xn—i—l) = d(fxn—lv fxn) < a(xn—h mn)d(fxn—la fxn) < 1/1(M($n—1, xn)) (212)
where,

d(l'nfl, fxnfl)d(l‘na f$n)
1+ s[d(zp—1,2n) + d(xpn_1, fr,)]’
d(xnfla fxn)d(xnfly xn) }
1+ s[d(zn—1, frn—1) + d(xn, f2,)]
d(mnflyxn)d($naxn+l)
1+ s[d(xp—1,7n) + d(Tp—1,Tns1)]’
d(xnfla l‘n+1)d(xn717 xn)
1+ s[ld(zp—1,zn) + d(zn, Tnt1)]

= d(Tp-1,%n).

M(xp—1,x,) =max{d(zp—_1,n),

= max{d(xp_1,Zn),
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Hence,
d(xn, Tnt1) < Y(d(xn—1,2n)) < d(Tp_1,Tn). (2.13)

By induction, we get that
d(xnaxn—l-l) < w(d(xn—laxn)) < ¢2(d(wn—2,$n—1)) <--- < ¢n(d($07$1))- (214)
Then, by the triangular inequality and (2.14]), we get

d(xna xm) < Sd(xn; xn—&—l) + 32d(xn+17 xn+2) +---+ Sminild(xm—la wm)

m—2
< Z Sk_n+1¢k(d(x0,x1))
k=n

o0
<> sf pF(d(w, 1)) — 0,
k=n
as n — 00.
Hence, {z,} is a b-Cauchy sequence. b-completeness of X yields that {z,,} converges to a point z* € X,
that is, z, — z* as n — oo.
On the other hand, from we get,

d(zp, xp+1) < d(Tp—1,xp) (2.15)
for all n € N. Suppose that there exists ng € N such that,

1 *
%d(‘rnov fmno) > d(xnoax )

and
1

%d(xno-‘rl, fongt1) > d(@ngt1, 7).

Then from (2.15)) we have,
d(xnm xno-i-l) < S[d(ajno, QZ*) + d(xno-‘rla 55*)]

1 1
< 5[%d<xno7 fxno) + %d(xno‘f'l’ fxn0+1)]

1

= §[d(9€noa Tng+1) + A(Tng 11, Tng+2)]

1
< §[d($novl‘ﬂo+1) + d(xnm xnoJrl)] = d(xnm $n0+1)
which is a contradiction. Hence, either,

1
_ < *
28d(xn7fxn) — d(.%'n,$ )

or
%d(ﬂ?mh fant1) < d(@ny1, 27)

holds for all n € N. First, suppose that,

%d(l‘na frn) < d(xp,x")

holds for all n € N. Then from and hypothesis (ii), we have,

d(Tz*,xz*) < sld(fz*, fon) + d(fon, "))
< sla@®, mn)d(fa", fon) + d(@ngr, 27)]
< s[p(M (2", 20)) + d(zpi1, 77)]
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for all n € N. Taking the limit as n — oo in the above inequality we get, d(fz*,z*) = 0. i.e.,
fx* =a*.
By a similar method we can deduce fz* = z* when

1

§d(93n+1» frni1) < d(zpgr, 7).

Hence, we proved that z* is a fixed point of f. OJ

Example 2.3. Let X = R?. We define o : X x X — [0,00) by
1, z,yeU= {(Oa O)a (47 0)7 (07 4)7 (4a 5)a (57 4)}
a(z,y) =
0, otherwise.

Define metric d on X by d((z1,72), (y1,y2)) = (71 —y1)?+ (2 —y2)?. Clearly, (X, d,2) is a complete b-metric
space. Also, define f: X — X and v : [0,00) — [0,00) by

(@1,0), If 23 <apanday,a0€U
flrr, o) =4 (0,m) I oy >zgand 21,25 €U and 1(t) = 0.99E.
(22%,323) If x1,22 € RA\U
First we assume that d(z, fz) < d(z,y) and a(z,y) > 1. Then,

we {(©00.00). (0.0.00).(0.0.05) (0.0.69)
(4,0),(0,0) ), { (4,0),(0,4) ), ( (4,0),(5,4) |, | (4,0),(4,5) |,
(0,4),(0,0) J, { (0,4),(4,0) ], { (0,4),(5,4) ), { (0,4),(4,5) ),
(4,5),(0,0) ), ((4,5),(4,0) ), ( 4,5),0,4) ), ( (4,5), (5,4)
(5,4),(0,0) ), ( (5.4, (4,0) ), { (5,4),(0,4) ). ( (5,4),(4,5) ) }.

Since, d(fz, fy) = d(fy, fx) and d(x,y) = d(y, z), hence without any loss of generality we can reduce the
above set to the following:

we {(©00.0.0). (0.0.00).(0.0.65). (0.0.69)

<(4,0), (0,4)), ((470), (5,4)), ((4, 0), (4, 5)), <(O,4), (5,4)), ((074), (4, 5)) }

Now, we consider the following cases:
o Let (z,y) = <(0,0), (4,0)), then,
d(fx, fy) = d(£(0,0), f(4,0)) = 0 < ¢(d(z,y))
o Let (z,y) = ((0,0), (0,4)), then,

d(fx, fy) = d(f(0,0), £(0,4)) = 0 < ¢ (d(z,y)).
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Let (.9) = ((0.0),(4,5) ). then

d(fz, fy) = d(£(0,0), f(4,5)) = 16 < 40.59 = 0.99 x 41 = (d((0,0), (4,5))).

Let (2.9) = ((0.0,(5.0)). then

d(f, fy) = d(£(0,0), £(5,4)) = 16 < 40.59 = 0.99 x 41 = 1(d((0,0), (4, 5))).

Let (z,y) = <(4, 0), (O,4)>, then,
d(fz, fy) = d(f(4,0), £(0,4)) = 0 < ¥ (d(z,y))-

Let (z,y) = ( > then,

d(fz, fy) = d(f(4,0), f(5,4)) = 16 < 16.83 = 0.99 x 17 = ¢(d((4,0), (5,4))).

Let () = ((4.0),(4.5) ). then,

(f:U fy) (f ) f( )) =16 <1683 =099 x 17 = ¢(d((47 0)7 (47 5)))

Let (2.9) = ((0.4),(5,)). then

d(fx, fy) = d(f(0,4), f(5,4)) = 16 < 24.75 = 0.99 x 25 = ¢(d((0, 4), (5,4)))-

Let (z,y) = < > then,

d(fz, fy) = d(£(0,4), f(4,5)) = 16 < 16.83 = 0.99 x 17 = 1(d((0,4), (4,5))).

That is, 3d(z, fz) < d(z,y) and a(z,y) > 1 implies that d(fz, fy) < (d(z,y)). Let a(z,y) > 1, then
x,y € U. On the other hand, fw € U for all w € U. Then, a(fxz, fy) > 1. That is, f is an a-admissible
mapping. If {x,} be a sequence in X such that a(xy,,zp4+1) > 1 with x,, — = as n — oo, then, x,, € U for
all n € N. Also, U is a closed set. Then, z € [0,400). That is, a(z,,z) > 1 for all n € NU {0}. Clearly,

((0,0), f(0,0)) = 1
Therefore all conditions of Theorem holds and f has a fixed point. Here, x = (0,0) is a fixed point

of f.

3. Contractive mappings on b-metric spaces endowed with a graph

Recently, some results have appeared for a mapping to be a Picard Operator where (X, d) is endowed
with a graph. The first result in this direction was given by Jachymski [15].

Definition 3.1 ([I5]). Let (X, d) be a metric space endowed with a graph G. We say that a self-mapping
f: X — X is a Banach G-contraction or simply a G-contraction if f preserves the edges of G, that is,

(r,y) € E(G) = (fx,fy) € E(G) forallz,yeX
and f decreases the weights of the edges of G in the following way:
Ja € (0,1) such that for all z,y € X, (z,y) € E(G) = d(fz, fy) < ad(z,y).
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Definition 3.2. Let (X,d) be a b-metric space endowed with a graph G. We say that a self-mapping
f X — X is a G-y-Suzuki type rational contraction if 7" preserves the edges of G, that is,

(x,y) € E(G) = (fz, fy) € E(G), forallz,ye X
and f decreases the weights of the edges of G in the following way:
1
25, fz) < d(z,y) = d(fz, fy) < b(M(z,y)) (3.1)

where,

M(z,y) = max {d(w, Y),

and ¢ € ¥y, for all (z,y) € E(G).

Theorem 3.3. Let (X,d) be a b-complete b-metric space endowed with a graph G. Assume thatT : X — X
1s a G--Suzuki type rational contraction such that the following conditions hold:

(i) there exists an element xo € X such that (zo, fro) € E(G);

d(z, fz)d(y, fy) d(z, fy)d(x,y) }
L+ s[d(z,y) +d(z, fy)]" 1 + s[d(x, fz) + d(y, fy)]

(ii) for any sequence {xyn} in X with (zy,xn+1) € E(G) for alln € NU{0} such that x,, = x as n — oo,
we have (zn,x) € E(G) for alln € NU{0}.

Then T has a fized point.
Proof. Define a: X x X — [0,400) by

1, if (z,y) € E(G)

a(z,y) =
0, otherwise.

It is easy to see that f is an a-admissible mapping and also, f is an a-¢-Suzuki type rational contraction.
From (i), there exists an zop € X such that (zg, fzo) € E(G), that is, a(zg, fzg) > 1. Hence, all the
conditions of Theorem are satisfied and hence, f has a fixed point. O

Definition 3.4. Let (X,d) be a b-metric space endowed with a graph G. We say that a self-mapping
f: X — X is a G-Suzuki type rational Geraghty contractive mapping if f preserves the edges of G, that is,
(z,y) € E(G) = (fz, fy) € E(G), forallz,yeX

and T decreases the weights of the edges of G in the following way:

Jo(r, 12) < dla,y) = sd(f, fy) < (M (z,y) Mz ) (32)

where,

M(z,y) = max {d(:v, Y),

for all (z,y) € E(G).
Similarly, using Theorem we can prove the following theorem.

d(z, fr)d(y, fy) d(z, fy)d(z,y) }
1+ sld(x,y) + d(z, fy)] 1+ sld(z, fx) + d(y, fy)]

Theorem 3.5. Let (X,d) be a b-complete b-metric space (with parameter s > 1). Let f be a triangular
a-admissible mapping which is a G-Suzuki type rational Geraghty contractive mapping. Also, suppose that
the following assertions hold:

(i) there exists xo € X such that (zo, fzo) € E(G);

(i1) for any sequence {xn} in X with (zpn,znt1) € E(G) for alln € NU{0} such that x,, — x as n — oo,
we have (zn,x) € E(G) for alln € NU{0}.

Then, T has a fized point.
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4. Contractive mappings on ordered b-metric spaces

Definition 4.1. Let (X, d, <) be a partially ordered b-metric space. We say that a self-mapping f : X — X
is an ordered 1-Suzuki type rational contractive mapping if

(e, f2) < d(z,y) = d(fr, Fy) < $(M(z,9)) (11)

where,

M (z,y) = max {d(;(;7 Y), d(z, fz)d(y, fy) d(z, fy)d(z,y) }

1+ sld(x,y) + d(z, fy)]" 1 + sld(z, fx) + d(y, fy)]
for all x,y € X whit z < y.

Theorem 4.2. Let (X,d, =) be an ordered b-complete b-metric space. Assume that f : X — X is an ordered
W-Suzuki type rational contractive mapping such that the following conditions hold:

(i) there exists an element xg € X such that zo < fxo;
(ii) f is an increasing mapping;

(ii) for any sequence {zp} in X with x, <X xpi1 for alln € NU{0} such that z, — x as n — oo, we have
xp 2 for allm € NU{0}.

Then T has a fized point.

Proof. Define a: X x X — [0, +00) by

1, ifz=<y

a(r,y) =
0, otherwise.

Similarly, using Theorem we can prove the following theorem.

Theorem 4.3. Let (X,d, =) be an ordered b-complete b-metric space (with parameter s > 1). Let T be a
non-decreasing ordered Suzuki type rational Geraghty contractive mapping, that is, there exists § € F such
that,

1
25, f2) < d(z.y) = sd(fz, fy) < B(M (2, y)) M(z,y) (4.2)
for all comparable elements x,y € X, where

M(z,y)

= max {d(%y),

d(z, fx)d(z, fy) + dy, fy)d(y, fz) d(z, fz)d(z, fy) + d(y, fy)d(y, fz) }
L+ sld(z,y) +d(fz, fy)] 1+d(z, fy) +d(y, fz) '

Also, suppose that the following assertions hold:
(i) there exists xog € X such that zg < fxo;

(ii) for any sequence {x,} in X with x, < xny1 for alln € NU{0} such that x, — © as n — 0o, we have
xp 2 x for alln € NU{0}.

Then, T has a fized point.
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