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Abstract

In this paper, we investigate the Hyers-Ulam stability of additive functional equations of two forms: of
“Jensen” and “Jensen type” in the framework of multi-normed spaces. We therefore provide a link between
multi-normed spaces and functional equations. More precisely, we establish the Hyers-Ulam stability of
functional equations of these types for mappings from Abelian groups into multi-normed spaces. We also
prove the stability on a restricted domain and discuss an asymptotic behavior of functional equations of
these types in the framework of multi-normed spaces. (©2015 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations was raised by Ulam [22] in 1940. He posed the following
problem: under what conditions does there exist an additive mapping near an approximately additive map-
ping? In the next year, this problem was solved by Hyers [I1] in the case of Banach space. Later, Hyers’
result was generalized by Aoki [4] for additive mappings and by Rassias [20] for linear mappings by con-
sidering an unbounded Cauchy difference. Gavruta [10] provided a further generalization of Rassias’ result.
During the last decades several stability problems for various functional equations have been investigated by
many authors for mappings with more general domains and ranges [2, 5, 6], 9, 12}, T3], 14 15| 18, 19} 23]. These
results have many applications in information theory, physics, economic theory and social and behavioral

sciences [, [3].
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Rassias et al. [2I] introduced the following additive functional equations of two forms: of “Jensen” and
“Jensen type”

flz+y)+ flxz—y)=2f(z), (1.1)
flx+y) = flz—y)=2f(y). (1.2)

Equations and are also called additive functional equations of the first and second form, respec-
tively. In [21], they solved the Hyers-Ulam stability of equations and for mappings from real
normed space into real Banach space, and discussed the stability on a restricted(unbounded) domain, and
these results were applied to the study of an interesting asymptotic behavior of functional equations of these
types.

The notion of multi-normed space was introduced by Dales and Polyakov [§] (or see [7, 16, 17]). This
concept is somewhat similar to operator sequence space and has some connections with operator spaces and
Banach lattices. Motivations for the study of multi-normed spaces and many examples were given in [7,[§]. In
2007, stability of mappings on multi-normed spaces was given in [7], and asymptotic aspect of the quadratic
functional equation in multi-normed spaces was investigated in [I7]. More precisely, Moslehian, Nikodem
and Popa [I7] established the Hyers-Ulam stability of the quadratic functional equation for mappings from
Abelian groups into multi-normed spaces. They also proved the stability on a restricted domain and applied
these results to a study of an asymptotic behavior of the quadratic functional equation in the framework of
multi-normed spaces.

In this paper, using some ideas from [7,[17, [21], we achieve the Hyers-Ulam stability of equations and
for mappings from Abelian groups into multi-normed spaces. Furthermore, we also study the stability
on balls under certain assumptions and discuss an asymptotic behavior of functional equations of these
types in the framework of multi-normed spaces. Our results generalize those results of [2I] to multi-normes
spaces. We therefore provide a link between two various discipline: multi-normed spaces and functional
equations. These circumstances can be applied to other significant functional equations. Throughout the
paper F denotes a Banach space.

Following [7, 8, [17], we recall some basic facts concerning multi-normed spaces and some preliminary
results.

Let (&,] - ||) be a complex normed space, and let k¥ € N. We denote by £¥ the linear space £ @
.-+ @ & consisting of k-tuples (z1,---,xy), where x1,---,2, € £ The linear operations ¥ are defined
coordinatewise. The zero element of either £ or £F is denoted by 0. We denote by Nj, the set {1,2,--- ,k}
and by & the group of permutations on k£ symbols.

Definition 1.1 ([7, 8, 17]). A multi-norm on {£* : k € N} is a sequence (|| - [[x) = (|| - ||+ : ¥ € N) such that
| - |lx is a norm on &£F for each k € N, ||z||; = ||z|| for each x € &£, and the following axioms are satisfied for
each k e Nwith k> 2:

(ND) (o), s Zo@)) Ik = (@1, -+ s 2k) ||k, for o € Gy, z1,- -+ 2% € &
(N2) [[(enay, -+ o) | < (?Elgflail)ll(ﬂfla @) ||k, for an, -+ € C,
T1, Tk € E;

(N3) H(l‘l, ,xk,1,0)||k = H(.%'l, ,xk,l)Hk,l, for T1,  ,Th—1 € 8;
(N4) H(a:l, ,xk_l,mk_l)Hk = H(a:l, 7xk—1)||k—1) for X1, " ,Tk—1 € E.
In this case, we say that ((£¥,| - ||») : k£ € N) is a multi-normed space.

Suppose that ((EF, ]| - ||x) : k € N) is a multi-normed space, and take k € N. We need the following two
properties of multi-norms. They can be found in [§].

(a) [[(z,- -, 2)||x = [|z|, for z € &,
k
(b) max ||z;]| < |[(z1,--- ,2p) |k < X |loi]| < kmax ||ay]|, for z1,--- 21 € E.
iENy, i=1 i€ENy,

It follows from (b) that, if (£, -||) is a Banach space, then (£¥, || - ||x) is a Banach space for each k € N;
in this case (€%, - ||x) : k € N) is a multi-Banach space.
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Lemma 1.2 ([7, 8, 17]). Suppose that k € N and (w1, ,x1) € EF. Foreachj € {1,--- ,k}, let (:n%)nzl,g,...

be a sequence in £ such that lim x}, = x;. Then
n—oo

lm (v} —y1,- 2k —y) = (21— Y1, Tk — Yk)
n—oo

holds for all (y1,--- ,yx) € EF.

Definition 1.3 ([7, 8, 17]). Let ((€%,] - ||x) : ¥ € N) be a multi-normed space. A sequence (x,) in & is a
multi-null sequence if for each € > 0, there exists ng € N such that

sup |[(zn, -+ Tngr—1)|lx <€ (0> ng).
keN

Let z € £, we say that the sequence (z,,) is multi-convergent to = in £ and write lim z, = z if (z, — )
n—oo

is a multi-null sequence.

2. Hyers-Ulam stability of Jensen and Jensen type functional equations

In this section, we start our work with the stability results of equations (1.1) and (1.2) for mappings
from Abelian groups into multi-Banach spaces.

Theorem 2.1. Let § > 0, £ be an Abelian group and ((F",|-||») : n € N) be a multi-Banach space. Suppose
that f : £ — F is a mapping satisfying

sup [(f(z1 +y1) + flor —y1) = 2f(z1), -, flow +yx) + floe —yp) — 2f () llx <0 (2.1)

forall z1, -+ ,xp,y1,- - ,yr € E. Then there exists a unique additive mapping A : £ — F of the first form
such that

sup 1(f(z1) = A(z1) + f(0), -+, flax) — Alzr) + f(0) |k <6 (2.2)

forall xy, -+ ,x € E

Proof. Let x1,--- ,x; € £. Putting y; = x1, -+ ,yx = x in , we get
sup [|(f(2z1) + f(0) — 2f(@1), -+, f (2zk) + f(0) — 2f (x)) [k < 6. (2.3)

keN
Replacing 21, - - - , 2 by 2"y, --- ,2"x;, and dividing by 2"*! in (2.3)), we obtain
fEHa)  f@) | f0) @) f@w) | fO), 8

22§H< on+1 on on+1’ ’ on+1 o on +_2n+l)Hk‘— on+1" (24)
It follows from ([2.4)) that
fErmay)  f(2ta) 1 1 f@Ermay)
swp | o T HOGE ) T
f(2™zy) 1 1
1
This shows that {Jc (g:x)} is a Cauchy sequence for each fixed z € £. Since F is the complete multi-norm,
the sequence {%} converges. Define A : &€ — F by A(z) := li_>m % Hence for each £ > 0 there
n o0

exists ng such that

ny n+k*1x
IO Ay LETTD @yl <o
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for all n > ng. By property (b) of multi-norm, we obtain

Tim | / (5:“:) — A(z)|| =0, Vzec&. (2.6)
Setting n =0 in , we have
sup (50 = o)+ 70 o2 SO pa) 4 p0) Y2l <0302
=1 =1 =1

Letting m tend to infinity and using Lemma and ([2.6) we obtain
sup 1(f(z1) = A(z1) + £(0), -+, f(@r) — Alzg) + f(0) |k < 6.
€

Let z,y € £. Putting 1 = -+ = xp, = 2"z, y1 = -+ = y = 2"y in (2.1) and divide both sides by 2", we
obtain

127" f2"(x +y)) + 27" f(2"(x —y)) —2- 27" f(2"z)|| < 2779,

taking the limit as n — oo we get A(z +y) + A(x —y) = 2A(x). Hence A is an additive mapping of the first
form.

To prove the uniqueness of A, assume that there is another additive mapping A’ : £ — F of the first
form which satisfies (2.1]), then

[A"(z) — A(z)| < 27"[|A'(2"2) — A(2"2)|
< 27 A'(2") - f(2"2) + f(O)]| + 277 f(2"x) — A(2"z) + f(0)]]
< 276 +9).
Hence A’ = A. This proves the uniqueness of A. This completes the proof of the theorem. O

Corollary 2.2. Let § > 0, £ be an Abelian group, and let ((F™,| - ||n) : n € N) be a multi-Banach space.
Suppose that f : £ — F is a mapping satisfying

sup 1(f (@1 +y1) + fler — 1) =2 (@), ok +yw) + f(@r —ye) — 2f (@)l <0

forall x1,- - ,xk,y1,- - ,yx € E. Then there exists a unique additive mapping A : € — F of the first form
such that

sup 1(f (z1) = Alzn), -+ f (k) = Alze)) e < 6+ [ £O)]

forall x1,--- ,x € E.

Theorem 2.3. Let § > 0, € be an Abelian group and ((F™,||-||n) : n € N) be a multi-Banach space. Suppose
that f : £ — F is a mapping satisfying

Sup [(f(z1+ 1) = fler—y1) =2f (), flaw +ye) — flae —yk) = 2f ()l <0 (2.7)
€
for all z1, -+ Jxp,y1,- - ,yr € E. Then there exists a unique additive mapping A : € — F of the second
form such that
sup 1(f(21) = A1) = £(0), -+, flak) — Alzk) — fO) |k <6 (2.8)
€

forallxy, -+ ,x € E.

Proof. The proof is similar to the proof of Theorem O
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Corollary 2.4. Let § > 0, £ be an Abelian group, and let ((F",| - ||n) : n € N) be a multi-Banach space.
Suppose that f : &€ — F is a mapping satisfying

sup [(f(x14+y1) = flor —y1) = 2f (1), flor +ur) = floe — k) — 2f ()l < 6

for all z1, -+ Jxp,y1,- - ,yr € E. Then there exists a unique additive mapping A : € — F of the second
form such that

sup (£ () — AGer), -+, f(x) — A e < 50

keN
forall xy,--- ,x € E.
Proof. Settingz;1=---=xp=y1=---=yr=01in " we have
o
IF O = sup [[(£(0), -, FO))llk < 5-
keN

According to Theorem there exists a unique additive mapping A : £ — F of the second form such that
(2.8) is satisfied. We obtain

sup || (fz1) — A(x),- -, f ) — Alzr)) |
keN

< sup 1(f(z1) = A(z1) = £(0), -+, far) = Alzr) — FO) e + 1(£0), -, f(O) Ik
< d+ |0
for x1,--- ,xr € £. Hence, we get
sup [|(f(z1) — A(z1), -+, flar) — Alzg)) e < 25-
keN
This completes the proof of the corollary. O

3. Stability on a restricted(bounded) domain

Throughout this section, we denote by B,(£¥) the closed ball in £* of radius r around the origin. we
study the stability results of equations (|1.1)) and ([1.2]) on balls under certain assumptions.

Theorem 3.1. Let ((E™,] - ||n) : n € N) be a multi-normed space, and let (F™, | - ||n) : n € N) be a multi-
Banach space, p > 1,7 >0, ¢, : E2F — [0,00)(k € N) be a family of functions such that supyey ¢r (X, X) < 00
and (3, %) < Q%Qbk(x,y) for all x,y € B.(E¥) and k € N. Suppose that f : £ — F is a mapping satisfying
f(0) =0 and

[(f(z1r4+y1) + flor —y1) = 2f(w1), - flar +ye) + flar —ye) = 2f (@) lle < du(x,y)  (3.1)

for all k € N and all x = (z1, - , 1),y = (Y1, ,yx) € Br(EX) with x 'y € B.(EF). Then there exists a
unique additive mapping A : € — F of the first form such that

ilelg |(f(z1) — A(xy),-- -, flap) — Alzp))||x < Sug];;ﬂ(bi(;x) (3.2)

where x = (x1,--- ,x3) € B.(EF).
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Proof. Let x = (z1,--- ,x1) € B-(EF). Replacing x,y in 1} by ¥, we obtain

T x X X 1
1 Gn) =20 G f ) = 2FCoN < 0xCy05) < 5 br(x,%) (33)
Replacing x by 2% € B,(£¥) and multiplying with 2" in , we get
P n x n T n T 1,1
1@"F(G0) =2 f ) 20 (50) = 2 F (o)) e < (55p)" B (%, %)

Using the same reasoning as in the proof of Theorem we conclude that the sequence {2"f(27"x)} is
Cauchy and so is convergent in the complete multi-norm F. In addition, the mapping

Az) == nh_}rrgo 2"f(27"x), x € By(E)

satisfies
; i SUPgen Pk (X, X)
_a _A <
ilelg ”(f(xl) (xl)a ,f(ﬂj’k) ($k))||/€ = 92p—1 _9p
where x = (21, ,x3) € B,(EF).

Let = be an arbitrary fixed element of B,.(£). Because of § € B,.(£), we have

221(2) = lim 2" f(27"l2) = lim 2"f(27"2) = A(a).

n—0o0

Therefore 2"t A(5:2-) = A(z) and so the mapping A : £ — F is given by A(z) := 2"A(27"z), where n is

2n+m
the least non-negative integer such that 27"z € B, (), is well-defined. It is easy to show that

A(z) = nh_}r{)l<J 2"f(27"x) (z€f)

and A|BT(5) =A.
Let z,y € €. There is a large enough n such that 27"z, 27"y, 27" (x + y),2 " (z — y) € B,.(£). Putting

x1 = =xp=2""w,y; = =y = 27" in (3.1) and multiplying both sides with 2", we obtain
I 2"f2 (@ +y) +2" (27 (z —y)) —2- 2" f(27 )|

1 1
< (F)nﬁ(ﬁk(l‘a s Ly Yy 7y)a

whence, by taking the limit as n — oo, we get A(x+y)+ A(x —y) = 2A(x). Hence A is an additive mapping
of the first form. Uniqueness of A can be proved by using the strategy used in the proof of Theorem 2.1} O

Corollary 3.2. Let 6 >0, p> 1,7 <1, (™| - ||n) : n € N) be a multi-normed space and ((F™, || - ||n) :
n € N) be a multi-Banach space. Suppose that f : £ — F is a mapping satisfying f(0) =0 and

I(f (@1 +y1) + fler—w1) — 2f(@),-- flon + k) + f@e —yr) — 2 (zk)) Ik
< Ollzafl2F - flag ]2 [y l[2F - lygll2

for allk € N and all x = (z1,- - ,21),y = (Y1, ,yx) € Br(EX) with x £y € B.(EF). Then there exists a
unique additive mapping A : £ — F of the first form such that

sup () = Alwr).-++  f@) = Aw)li < i

where x = (x1,--- ,x3) € B.(EX).

Proof. In Theoremm let ¢p(x,y) = 0| ||2F - - ||| 27 ||y || 2F - - - | ys | 2E . O
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Theorem 3.3. Let (€™, - ||n) : » € N) be a multi-normed space, and let ((F", || - ||n) : n € N) be a multi-
Banach space, p > 1,7 > 0, ¢, : E28 — [0, 00)(k € N) be a family of functions such that supey (X, X) < 00
and (3, %) < %wk(x,y) for all x,y € B.(EF) and k € N. Suppose that f : £ — F is a mapping satisfying
f(0) =0 and

1(f (@ +u1) = fler—y1) = 2f (W), 5 fak +ue) = Flae —ue) = 2f () lle < er(xy)  (34)

for all k € N and all x = (z1,--- , 1),y = (Y1, ,yx) € Br(EX) with x +y € B.(EF). Then there exists a
unique additive mapping A : € — F of the second form such that

SUPLeN Pk (X, X)
sup [|(f(z1) — A(z1), -+, far) — Alzk)) [k < 2]3?,?1 5 (3.5)
keN -
where x = (x1,--- ,x1) € B.(EX).
Proof. The proof is similar to the proof of Theorem O O

Corollary 3.4. Let 6 >0, p>1,r <1, ("] - |ln) : n € N) be a multi-normed space and ((F*,| - ||n) :
n € N) be a multi-Banach space. Suppose that f : E — F is a mapping satisfying f(0) = 0 and

[(f(z14+y1) = fler—y1) — 2f(w),- 5 f@e +yr) — floe —yr) — 2 () lIx

P P P b
< Ollwall>F - [kl ]2yl 25 - flyel2#

for all k € N and all x = (z1,--- ,21),y = (Y1, ,yr) € Br(EX) with x +y € B.(EF). Then there exists a
unique additive mapping A : £ — F of the second form such that

1

sup (F(e0) = Ale). -+ Flon) = Al < gt
where x = (x1,- -+ ,x1) € B(EF).

4. Asymptotic behavior of Jensen and Jensen type functional equations

The Hyers-Ulam stability of equations (1.1)) and (1.2)) on restricted(unbounded) domain is investigated,
and the results are applied to the study of an interesting asymptotic behavior of those equations in the
framework of multi-normed spaces.

Lemma 4.1. Let § > 0, ((£",] - |ln) : » € N) be a multi-normed space and ((F",| - ||n) : » € N) be a
multi-Banach space. Suppose that (di) is a sequence of positive numbers and f : € — F is a mapping
satisfying

[(f(z1+y1) + fl@r — 1) = 2f(w1), -, flzr +yp) + flae —yk) — 2f (2n)) ||k <0 (4.1)

for all k € N and all z1,-- ,xp,y1,- -,y € € with |[(x1, - ,z1)|le + [(y1, - ,yk)||k > di. Then there
erists a unique additive mapping A : € — F of the first form such that

50
sup I(F (1) = Alza), -+, flan) — Alze) e < 5 + 1 F(O)] (4.2)
forall xy,--- ,x € E.
Proof. Fix k € Nand x = (z1,--- ,2k),y = (Y1, , yr). Assume [|x[|x + ||y||x < di. If x =y = 0, then we
choose z = (21,---, z) € EF to be an element of £ with ||z||x = dj. Otherwise, let us choose
2= xt B i x> lyles 2=y + 5 i Il <yl
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We note that ||z||x = [|x]|x + dx > di if |x]|x > ¥ ll&, |12l = |yl + de > di if ||x]]x < ||y|lx. Clearly, we see
that

Ix—zllx + Iy + 2zl = di,  lIx =yl + 122[k = di,

I+ zlle+ 1| =y +2l > e [l + izl > di (43)
From and , we get
I 2(f(z1r +y1) + for — 1) —2f (1), flow +yr) + flae —ye) — 2f (@x) [k
< (f(er+y1) + flor —yr —221) = 2f (21 — 21), -+, f(@r + yr)
+  f@e —yk — 221) — 2f (26 — 21)) |1k
+ (f(w1 —y1 —221) + f(@1 —y1 +221) = 2f (w1 — 1), -+, [z — yp — 221)
+  f(@k — yk + 22k) = 2f (26 — yk) Il
+ [[(f(z1 —y1 +221) + f(x1 +y1) = 2f (w1 + 21), -, fog — Y + 228)
+  flor k) = 2f (zr + 21)) ||k
+ 12(f(z1 4+ 21) + f(x1 — 21) = 2f(x1), -, fan + 2)
+  flzr —2) — 2f (k) |k
We get
[(f(z1+y1) + fl@r —v1) —2f(21), -, flzr +ye) + [z —yp) — 2 (@x) Ik < %5
This inequality holds for all £ € N and all xy,--- , 2k, y1, - ,yx € €. Now the result is deduced from
Theorem 2.11 O]

Theorem 4.2. Let ((E™,| - ||n) : n € N) be a multi-normed space, and let (F™,| - |ln) : n € N) be a
multi-Banach space. Suppose that f : & — F is a mapping. Then f is additive mapping of the first form if
and only if for all k € N

1(f (@1 + 1) + ey —y1) = 2f(x1), - floe +ur) + f@r —yk) = 2 (@)l = 0 (4.4)

as |[(z1, - zp) e+ 1y, - we)llke = oo

Proof. On account of (4.4) we can find all n € N a sequence (d,, ) such that
1

n

[(f(x1+y1) + f(x1 — 1) — 2f(21), -+, fl@n +u) + floe — ) — 2f () |lx <
for all k € N and all z1,--- , 2k, y1, -,y € & with

”(xlv T 7$k)||k’ + ||(y17 T 7yk)||k > dnk
By Lemma for all n € N there exists a unique additive mapping of the first form A, such that

[f(2) = An(2)]| < % + 17 (0)] (4.5)

for all 2 € €. Since || f(z) — Ai(2)]| < 5+ [ £(0)] and || f(z) — Au(2)]| < o7 + [FO)] < § + [If(0)[l, by the
uniqueness of A; we conclude that A, = A; for all n. Hence, by letting n — oo in (4.5)), we conclude that
f is additive mapping of the first form. The reverse assertion is trivial. O

Lemma 4.3. Let 0,5 > 0, ((E™, || - ||ln) : » € N) be a multi-normed space and ((F",| - ||n) : n € N) be
a multi-Banach space. Suppose that (dy) is a sequence of positive numbers and f : € — F is a mapping
satisfying

[(f(z14+y1) = flor —y1) —2f (1), flor +ur) — floe —yr) — 2 () lk < 6 (4.6)
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for allk €N and all 1, -+ ,xk,y1,+ ,yx € E with ||(x1,- - ,xp) |k + | (y1, -, ye) ||k > dg, and

1(f(=s1) + f(s1), o f(=sn) + f(sk)|[e < 0 (4.7)
for all s1,--- sk € E with ||(s1,--- ,sk)||k > di. Then there exists a unique additive mapping A : £ — F of
the second form such that

3
sup 10 (1) = Alz1), -, fla) = Alzw)lle < 5(56 +26) (4.8)
€
forall xy,--- ,x € E.
Proof. Fix k € Nand x = (21, -+ ,2%),y = (Y1, -, Yr). Assume [|x||x + [|¥|lx < dx. If x =y = 0, then we
choose z = (21,--- , ;) € EF to be an element of £ with ||z||x = di. Otherwise, let us choose
2= x+ 5 x> Iyl z—y+ B fxl < llylle

We note that ||z||x = [|x]|x + dx > di if |x]|x > ¥ ll&, |12l = |yl + de > di if ||x]]x < ||y|lg. Clearly, we see
that

Ix—zlle +[ly +2le = d, [x =zl +ly — 2l > du,

4.9
Ix = 22+ lzlle > die Izl + e > di, (4.9)

and ||z —y|r > llzllx + [Iyllx = ([¥llx + di) = [¥llk = di, because ||zl = |ly|lx + d»
From , and , we get
| (fler+y) — fler—y1) = 2f (), s e +ye) — e —yr) — 2 (ye) Ik
< (f(@1+y1) = flzr —yr —221) = 2f(y1 +21), -, fzr + k)
f@e =y — 221) — 2 (yx + 21)) |
+ N(f(@1 +y1 —221) = flzr —y1) —2f(y1 — 21), -+, f@n + yr — 22k)
= flee —yk) — 2f (ye — 21) |k
+ N(f(x1 +y1 —221) = flor — v — 221) = 2f (1), -+, [ (@K + Yk — 22k)
— flxe —yr — 22) — 2f (ur)) Ik
+ [2(f(z1 +y1) — f(zr —y1) = 2f(y1), - 5 f (2 + w)
= flze —yk) — 2f (ye))lk
+ N2(f(z1 — 1) + f(=(z1 =), fl2e — yi) + F(— (2 — y) k-

Thus , we get

[(f(z1+y1) = fler —y1) —2f(v), -5 flae +uk) — f(zre —yk) — 2 (yr))|[k < 50 + 26.

This inequality holds for all £ € N and all 2y, , 2k, y1, -,y € €. Now the result is deduced from
Theorem 2.3] O]

Theorem 4.4. Let ((E™,] - ||n) : n € N) be a multi-normed space, and let ((F™, | - ||n) : n € N) be a
multi-Banach space. Suppose that f : & — F is a mapping. Then f is an additive mapping of the second
form if and only if for all k € N

[(f(=s1) + f(s1),- s f(=sk) + f(s£)]lk = 0 (4.10)
and
[(f(z1+y1) = flor —y1) = 2f (1), 5 flow +ur) — f(xr —yr) — 2f(yx))|lk — O (4.11)
as ||(s1, -+, sk) |l = 00 and ||(x1,- -+ s xp)lle + [|[(y1, -, yk) ||k = oo hold, respectively.

Proof. The proof is similar to the proof of Theorem and the result follows from Lemma [4.3 O
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