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Abstract

In this paper, we introduce the concepts of cyclic weakly (ψ, φ)-contractive mappings and cyclic weakly
(C,ψ, ϕ)-contractive mappings, and prove some fixed point theorems for such two types of mappings in
complete partially ordered Menger PM-spaces. Some new results are obtained, which extend and generalize
some fixed point results in metric and probabilistic metric spaces. Some examples are given to support our
results. c©2015 All rights reserved.
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1. Introduction and Preliminaries

The study of fixed points of mappings satisfying cyclic contractive condition and weakly contractive
condition has been at center of vigorous research activity in last years. In 2003, Kirk and Srinvasan [13]
proved fixed point theorems for mappings satisfying cyclical contractive conditions in metric spaces. In
2009, Harjani and Sadarangani [8] obtained some fixed point theorems for weakly contractive mappings
in complete metric spaces endowed with a partial order. In 2011, Karapinar [11] presented a fixed point
theorem for cyclic weak φ-contraction in metric spaces. Harjani et al. [7] proved some fixed point theorems
for nonlinear weakly C-contractive mappings in partially ordered metric spaces. In 2012, Karapinar [12]
obtained some fixed point theorems for cyclic generalized weak φ-contraction on partial metric spaces. In
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2014, Alsulami [1] proved fixed point theorem for g-weakly C-contractive mappings in partial metric spaces.
Meantime, other authors also obtained some corresponding results in this area [5]-[10].

The notion of a probabilistic metric space was introduced and studied by Menger [14]. The idea of
Menger was to use distribution functions instead of nonnegative real numbers to describe the distance
between two points. It has become an active field since then and many fixed point results for mappings
satisfying different conditions have been studied [10]-[20].

The purpose of this paper is to present some fixed point theorems for cyclic weakly (ψ, φ)-contractive
mappings and cyclic weakly (C,ψ, ϕ)-contractive mappings in complete partially ordered Menger PM-spaces.

We first recall some definitions from probabilistic metric spaces (see [4, 18]).
Let R denote the set of reals and R+ the nonnegative reals. A mapping F : R → R+ is called a

distribution function if it is nondecreasing and left continuous with inf
t∈R

F (t) = 0 and sup
t∈R

F (t) = 1. We will

denote by D the set of all distribution functions and let D+ = {F ∈ D : F (t) = 0, ∀t ≤ 0}.
Let H denote the specific distribution function defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 1.1 ([18]). The mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a
t-norm) if the following conditions are satisfied:
(∆− 1) ∆(a, 1) = a, for all a ∈ [0, 1];
(∆− 2) ∆(a, b) = ∆(b, a);
(∆− 3) ∆(a, b) ≤ ∆(c, d), for c ≥ a, d ≥ b;
(∆− 4) ∆(a,∆(b, c)) = ∆(∆(a, b), c).

Three typical examples of continuous t-norm are ∆1(a, b) = max{a + b − 1, 0}, ∆2(a, b) = ab and
∆M (a, b) = min{a, b}, for all a, b ∈ [0, 1].

Definition 1.2 ([18]). A triplet (X,F ,∆) is called a Menger probabilistic metric space (for short, a Menger
PM-space), if X is a nonempty set, ∆ is a t-norm and F is a mapping from X × X → D satisfying the
following conditions (for x, y ∈ X, we denote F(x, y) by Fx,y):
(MS-1) Fx,y(t) = H(t), for all t ∈ R, if and only if x = y;
(MS-2) Fx,y(t) = Fy,x(t), for all x, y ∈ X and t ∈ R;
(MS-3) Fx,y(s+ t) ≥ ∆(Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 1.3. Schweizer and Sklar [18] point out that if (X,F ,∆) is a Menger probabilistic metric space
and ∆ is continuous, then (X,F ,∆) is a Hausdorff topological space in the (ε, λ)-topology T , i.e., the
family of sets {Ux(ε, λ) : ε > 0, λ ∈ (0, 1]} (x ∈ X) is a basis of neighborhoods of point x for T , where
Ux(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

Definition 1.4 ([4]). (X,F ,∆) is called a non-Archimedean Menger PM-space(shortly, a N.A Menger PM-
space), if (X,F ,∆) is a Menger PM-space and ∆ satisfies the following condition: for all x, y, z ∈ X and
t1, t2 ≥ 0,

Fx,z(max{t1, t2}) ≥ ∆(Fx,y(t1), Fy,z(t2)). (1.1)

Definition 1.5 ([4]). A non-Archimedean Menger PM-space (X,F,∆) is said to be of type (D)g if there
exists a g ∈ Ω such that

g(∆(s, t)) ≤ g(s) + g(t),

for all s, t ∈ [0, 1], where Ω = {g : g : [0, 1]→ [0,∞) is continuous, strictly decreasing, g(1) = 0}.

Example 1.6. Let (X,F ,∆) be a N.A Menger PM-space and ∆ ≥ ∆2. Let g ∈ Ω satisfy one of the three
conditions:

(1) g(t) = 1− tp for all t ∈ [0, 1], where 0 < p < 1;
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(2) g(t) = | ln t|, for all t ∈ (0, 1], and g(0) = +∞;
(3) g(t) = at − a, for all t ∈ [0, 1], where 1

e ≤ a < 1.
Then (X,F ,∆) is of type (D)g.

Definition 1.7 ([13]). Let X be a nonempty set, m be a positive integer, A1, A2, . . . , Am be nonempty
subsets of X, Y = ∪mi=1Ai and a mapping f : Y → Y . Then Y is said to be a cyclic representation of Y
with respect to f , if
(i) Ai, i = 1, 2, . . . ,m, are nonempty closed sets, and
(ii) f(A1) ⊆ A2, . . ., f(Am−1) ⊆ Am, f(Am) ⊆ A1.

Example 1.8. Let X = R+. Let A1 = [0, π2 ], A2 = [1, π2 ], A3 = [2 − sin 1, π2 ] and Y =
⋃3
i=1Ai. Define

f : Y → Y by fx = x− sinx+ 1, for all x ∈ Y .
Clearly Y =

⋃3
i=1Ai is a cyclic representation of Y with respect to f .

Definition 1.9 ([10]). A function ψ : [0,∞) → [0,∞) is called an altering distance function, if it is
continuous and nondecreasing in [0,∞), and ψ(t) = 0 if and only if t = 0.

Lemma 1.10 ([4]). Let {xn} be a sequence in X such that lim
n→∞

Fxn,xn+1(t) = 1 for all t > 0, If the sequence

{xn} is not a Cauchy sequence in X, then there exist ε0 > 0, t0 > 0 and two sequences {k(i)}, {m(i)} of
positive integers such that
(1) m(i) > k(i), and m(i)→∞ as i→∞;
(2) Fxm(i),xk(i)(t0) < 1− ε0 and Fxm(i)−1,xk(i)(t0) ≥ 1− ε0, for i = 1, 2, · · · .

2. Main results

In this section, we first define the concepts of cyclic weakly (ψ, φ)-contractive mappings and cyclic weakly
(C,ψ, ϕ)-contractive mappings in partially ordered Menger PM-spaces.

Definition 2.1. Let (X,≤) be a partially ordered set and (X,F ,∆) be a N.A Menger PM-space of type
(D)g. Let m be a positive integer, A1, A2, . . . , Am be nonempty subsets of X and Y = ∪mi=1Ai. A mapping
T : X → X is said to be a cyclic weakly (ψ, φ)-contractive, if Y is a cyclic representation of Y with respect
to T , and for k ∈ {1, 2, . . . ,m}, Am+1 = A1, x ∈ Ak and y ∈ Ak+1 are comparable with

ψ(g(FTx,Ty(t))) ≤ ψ(g(Fx,y(t)))− φ(g(Fx,y(t))), (2.1)

for all t > 0, where ψ is a altering distance function, φ : [0,∞)→ [0,∞) is a continuous function, such that
φ(s) = 0 if and only if s = 0.

Definition 2.2. Let (X,≤) be a partially ordered set and (X,F ,∆) be a N.A Menger PM-space of type
(D)g. Let m be a positive integer, A1, A2, . . . , Am be nonempty subsets of X and Y = ∪mi=1Ai. A mapping
T : Y → Y is said to be a cyclic weakly (C,ψ, ϕ)-contractive, if Y is a cyclic representation of Y with respect
to T , and for k ∈ {1, 2, . . . ,m}, Am+1 = A1, x ∈ Ak and y ∈ Ak+1 are comparable with

ψ(g(FTx,Ty(t))) ≤ ψ(
1

2
(g(Fx,Ty(t)) + g(FTx,y(t))))− ϕ(g(Fx,Ty(t)), g(FTx,y(t))), (2.2)

for all t > 0, where ψ is a altering distance function, ϕ : [0,∞)× [0,∞) → [0,∞) is a continuous function,
such that ϕ(s, t) = 0 if and only if s = t = 0.

Now, we are ready to state our main results.

Theorem 2.3. Let (X,≤) be a partially ordered set and (X,F ,∆) be a complete N.A Menger PM-space of
type (D)g, m be a positive integer, A1, A2, . . . , Am be subsets of X and Y = ∪mi=1Ai. Let T : Y → Y be a
cyclic weakly (ψ, φ)-contractive mapping satisfying (2.1). Suppose that the following hold:

(i) T is nondecreasing;
(ii) if a nondecreasing sequence {xn} ⊆ Y such that xn → x, then xn ≤ x, for all n ∈ N.
If there exists x0 ∈ A1 such that x0 ≤ Tx0, then T has a fixed point in Y . Furthermore, if for each

x, y ∈ Y , there exists z ∈ Y which is comparable to x and y, then T has a unique fixed point.
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Proof. Let x0 ∈ A1 such that x0 ≤ Tx0. Since T (A1) ⊆ A2, there exists x1 ∈ A2, such that x1 = Tx0.
Since T (A2) ⊆ A3, there exists x2 ∈ A3, such that x2 = Tx1. Continuing this process, we can construct
a sequence {xn} in Y , such that xn+1 = Txn, for all n ∈ N, and there exists in ∈ {1, 2, . . . ,m} such that
xn ∈ Ain and xn+1 ∈ Ain+1.

Since T is nondecreasing and x0 ≤ Tx0 = x1, we have x1 = Tx0 ≤ Tx1 = x2. By induction, we obtain

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · , for all n ∈ N. (2.3)

Since xn ∈ Ain and xn+1 ∈ Ain+1 are comparable, for in ∈ {1, 2, . . . ,m}, by (2.1) and (2.3), we have

ψ[g(Fxn+1,xn(t))] ≤ ψ[g(Fxn,xn−1(t))]− φ(g(Fxn,xn−1(t))) ≤ ψ[g(Fxn,xn−1(t))], for all t > 0. (2.4)

Since ψ is nondecreasing, it follows from (2.4) that {g(Fxn+1,xn(t))} is a decreasing sequence and bounded
below, for every t > 0. Hence, there exists rt ≥ 0, such that lim

n→∞
g(Fxn+1,xn(t)) = rt.

By using the continuities of ψ and φ, letting n → ∞ in (2.4), we get ψ(rt) ≤ ψ(rt) − φ(rt), which
implies that φ(rt) = 0. Using the property of φ, we obtain rt = 0. Thus, lim

n→∞
g(Fxn+1,xn(t)) = 0 and

lim
n→∞

Fxn+1,xn(t) = 1, for all t > 0.

In the sequel, we will prove that {xn} is a Cauchy sequence. In order to prove this fact, we first prove
the following claim.

Claim: for every t > 0 and ε > 0, there exists n0 ∈ N, such that p, q ≥ n0 with p − q ≡ 1(m) then
Fxp,xq(t) > 1− ε and g(Fxp,xq(t)) < g(1− ε).

In fact, in oppose case, there exist t0 > 0 and ε0 > 0, such that for any n ∈ N, we can find p(n) > q(n) ≥ n
with p(n)− q(n) ≡ 1(m) satisfying Fxp(n),xq(n)

(t0) ≤ 1− ε0. Thus, g(Fxp(n),xq(n)
(t0)) ≥ g(1− ε0).

Now, take n > 2m. Then corresponding to q(n) ≥ n, we can choose p(n) in such a way that it is the
smallest integer with p(n) > q(n) satisfying p(n)−q(n) ≡ 1(m) and g(Fxp(n),xq(n)

(t0)) ≥ g(1−ε0). Therefore,
g(Fxp(n)−m,xq(n)

(t0)) < g(1− ε0). Using the triangular inequality, we have

g(1− ε0) ≤ g(Fxq(n),xp(n)
(t0)) ≤ g(∆(Fxq(n),xq(n)+1

(t0), Fxq(n)+1,xp(n)
(t0)))

≤ g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n)+1,xp(n)

(t0))

≤ g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n)+1,xp(n)+1

(t0)) + g(Fxp(n)+1,xp(n)
(t0))

≤ 2g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n),xp(n)

(t0)) + 2g(Fxp(n)+1,xp(n)
(t0))

≤ 2g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n),xp(n)−m

(t0)) + g(Fxp(n)−m,xp(n)
(t0)) + 2g(Fxp(n)+1,xp(n)

(t0))

≤ 2g(Fxq(n),xq(n)+1
(t0)) + g(1− ε0) +

m∑
i=1

g(Fxp(n)−i,xp(n)−i+1
(t0)) + 2g(Fxp(n)+1,xp(n)

(t0)).

(2.5)

Since lim
n→∞

g(Fxn,xn+1(t)) = 0, for all t > 0, letting n→∞ in (2.5), we obtain

lim
n→∞

g(Fxq(n),xp(n)
(t0)) = lim

n→∞
g(Fxq(n)+1,xp(n)+1

(t0)) = g(1− ε0). (2.6)

By p(n)− q(n) ≡ 1(m), we know that xp(n) and xq(n) lie in different adjacently labeled sets Ai and Ai+1,
for 1 ≤ i ≤ m. By (2.1) and (2.3), we have

ψ[g(Fxq(n)+1,xp(n)+1
(t0))] ≤ ψ[g(Fxq(n),xp(n)

(t0))]− φ(g(Fxq(n),xp(n)
(t0))). (2.7)

From the continuities of ψ and φ, and (2.6), letting n→∞ in (2.7), we get

ψ[g(1− ε0)] ≤ ψ[g(1− ε0)]− φ(g(1− ε0)),

which implies that φ(g(1− ε0)) = 0. Hence, g(1− ε0) = 0, it follows that ε0 = 0, which is in contradiction
to ε0 > 0. Therefore, our claim is proved.
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Now, we prove that that {xn} is a Cauchy sequence. By the continuity of g and g(1) = 0, we have
lim
a→0+

g(1 − aε) = 0, for any given ε > 0. Since g is strictly decreasing, then there exists a > 0, such that

g(1− aε) ≤ g(1−ε)
2 .

For any given t > 0 and ε > 0, there exists a > 0 such that g(1 − aε) ≤ g(1−ε)
2 . By the claim, we find

n0 ∈ N , such that if p, q ≥ n0 with p− q ≡ 1(m), then

Fxp,xq(t) > 1− aε and g(Fxp,xq(t)) < g(1− aε) ≤ g(1− ε)
2

. (2.8)

Since lim
n→∞

g(Fxn+1,xn(t)) = 0, we also find n1 ∈ N such that

g(Fxn+1,xn(t)) ≤ g(1− ε)
2m

, (2.9)

for all n > n1.
Suppose that r, s ≥ max{n0, n1} and s > r. Then there exists k ∈ {1, 2, . . . ,m} such that s− r ≡ k(m).

Therefore, s− r + j ≡ 1(m), for j = m− k + 1 and so

g(Fxr,xs(t)) ≤ g(Fxr,xs+j (t)) + g(Fxs+j ,xs+j−1(t)) + · · ·+ g(Fxs+1,xs(t)).

By (2.8), (2.9) and the last inequality, we get

g(Fxr,xs(t)) <
g(1− ε)

2
+ j · g(1− ε)

2m
≤ g(1− ε)

2
+
g(1− ε)

2
= g(1− ε). (2.10)

Since g is strictly decreasing, by (2.10), we have Fxr,xs(t) > 1 − ε. This proves that {xn} is Cauchy
sequence. Since (X,F ,∆) is a complete PM-space, there exists x∗ ∈ X, such that xn → x∗. Since {xn} ⊆ P
and Y = ∪mi=0Ai is closed, we get that x∗ ∈ Y . As Y = ∪mi=1Ai is a cyclic representation of Y with respect
to T , then the sequence {xn} has infinite terms in each Ai for i ∈ {1, 2, . . . ,m}.

First, suppose that x∗ ∈ Ai, then Tx∗ ∈ Ai+1, and we take a subsequence {xnk
} of {xn} with xnk

∈
Ai−1(the existence of this subsequence is guaranteed by the comment above).

Since xn → x∗ and {xn} is a nondecreasing sequence, by the condition (ii), we have xnk
∈ Ai−1 and

x∗ ∈ Ai are comparable, for all k ∈ N. By (2.1), we have

ψ[g(Fxnk+1,Tx∗(t))] ≤ ψ[g(Fxnk
,x∗(t))]− φ(g(Fxnk

,x∗(t))) ≤ ψ[g(Fxnk
,x∗(t))].

Since ψ is nondecreasing and g is strictly decreasing, by the above inequality, we deduce

Fxnk+1,Tx∗(t) ≥ Fxnk
,x∗(t). (2.11)

Let G0 be the set of all discontinuous points of Fx∗,Tx∗(·). Moreover, we know that G0 is a countable
set. Let G = R+\G0. When t ∈ G (t is a continuous point of Fx∗,Tx∗(·)), it follows from (2.11) that
Fx∗,Tx∗(t) ≥ Fx∗,x∗(t) = H(t). Thus,

Fx∗,Tx∗(t) = H(t), for all t ∈ G. (2.12)

When t ∈ G0 with t > 0, by the density of real numbers, there exist t1, t2 ∈ G such that 0 < t! < t < t2.
Since the distribution is nondecreasing, we have

1 = H(t1) = Fx∗,Tx∗(t1) ≤ Fx∗,Tx∗(t) ≤ Fx∗,Tx∗(t2) = 1.

This shows that, for all t ∈ G0 with t > 0,

Fx∗,Tx∗(t) = H(t). (2.13)
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Hence, from (2.12) with (2.13), we obtain Fx∗,Tx∗(t) = H(t), for all t > 0. Thus, Tx∗ = x∗ and x∗ is a fixed
point of T .

Finally, suppose that for each x, y ∈ Y , there exists z ∈ Y which is comparable to x and y. We prove that
fixed point of T is unique. In fact, suppose that there exist x∗, y∗ ∈ Y , such that Tx∗ = x∗ and Ty∗ = y∗,
then we have x∗, y∗ ∈ ∩mi=1Ai. Now, we consider the following cases:

Case 1. If x∗ ∈ Ai and y∗ ∈ Ai+1 are comparable. By (2, 1), we have

ψ[g(Fx∗,y∗(t))] ≤ ψ[g(Fx∗,y∗(t))]− φ(g(Fx∗,y∗(t))), for all t > 0.

Hence, φ(g(Fx∗,y∗(t))) = 0, that is, g(Fx∗,y∗(t)) = 0. Thus, Fx∗,y∗(t) = 1, for all t > 0. Then x∗ = y∗.
Case 2. If x∗ and y∗ are not comparable, then there exists z0 ∈ Y comparable to x∗ and y∗.
First, suppose that z0 ∈ Ai. Define a sequence {zn} in Y , such that zn+1 = Tzn, for all n ∈ N, and there

exists in ∈ {1, 2, . . . ,m} such that zn ∈ Ain and zn+1 ∈ Ain+1.
Since T is nondecreasing and z0 ∈ Ai and x∗ ∈ Ai+1 are comparable, we have z1 = Tz0 and Tx∗ = x∗

are comparable. By induction, we obtain zn+1 = Tzn and Tx∗ = x∗ are comparable, for all n ∈ N. Since
x∗ ∈ ∩mi=1Ai, we have zn and x∗ lie in different adjacently labeled sets, for all n ∈ N. By (2.1), we have

ψ(g(Fzn,x∗(t))) ≤ ψ(g(Fzn−1,x∗(t)))− φ(g(Fzn−1,x∗(t))) ≤ ψ(g(Fzn−1,x∗(t))). (2.14)

Since ψ is nondecreasing, we get g(Fzn,x∗(t)) ≤ g(Fzn−1,x∗(t)). Hence, {g(Fzn,x∗(t))} is a nonnegative
decreasing sequence and hence possesses limit rt, for every t > 0.

By the continuities of ψ and φ, letting n→∞ in (2.14), we have ψ(rt) ≤ ψ(rt)−φ(rt). Hence, φ(rt) = 0,
that is, rt = 0. Then lim

n→∞
g(Fzn,x∗(t)) = 0 and lim

n→∞
Fzn,x∗(t) = 1, for all t > 0. Thus, lim

n→∞
zn = x∗.

Analogously, lim
n→∞

zn = y∗. Therefore, x∗ = y∗.

Therefore, T has a unique fixed point.

Theorem 2.4. Let (X,≤) be a partially ordered set and (X,F ,∆) be a complete N.A Menger PM-space of
type (D)g, m be a positive integer, A1, A2, . . . , Am be subsets of X and Y = ∪mi=1Ai. Let T : Y → Y be a
cyclic weakly (C,ψ, ϕ)-contractive mapping satisfying (2.2). Suppose that the following hold:

(i) T is nondecreasing;
(ii) if a nondecreasing sequence {xn} ⊆ Y such that xn → x, then xn ≤ x, for all n ∈ N.
If there exists x0 ∈ A1 such that x0 ≤ Tx0, then T has a fixed point in Y . Furthermore, if for each

x, y ∈ Y , there exists z ∈ Y which is comparable to x and y, then T has a unique fixed point.

Proof. According to the proof of Theorem 2.3, we can construct a sequence {xn} in Y , such that xn+1 = Txn,
for all n ∈ N, and there exists in ∈ {1, 2, . . . ,m} such that xn ∈ Ain and xn+1 ∈ Ain+1. Since T is
nondecreasing and x0 ≤ Tx0 = x1, we also have that (2.3) holds.

Since xn ∈ Ain and xn+1 ∈ Ain+1 are comparable, for in ∈ {1, 2, . . . ,m}, by (2.2) and (2.3), we get

ψ[g(Fxn+1,xn(t))] = ψ[g(FTxn,Txn−1(t))]

≤ ψ[
1

2
(g(Fxn,Txn−1(t)) + g(FTxn,xn−1(t)))]− ϕ(g(Fxn,Txn−1(t)), g(FTxn,xn−1(t)))

= ψ[
1

2
(g(Fxn,xn(t)) + g(Fxn+1,xn−1(t)))]− ϕ(g(Fxn,xn(t)), g(Fxn+1,xn−1(t)))

≤ ψ[
1

2
(0 + g(Fxn+1,xn−1(t)))].

(2.15)

Since h is nondecreasing, by (2.15), we have

g(Fxn+1,xn(t)) ≤ 1

2
g(Fxn+1,xn−1(t))

≤ 1

2
g(∆(Fxn+1,xn(t), Fxn,xn−1(t)))

≤ 1

2
(g(Fxn+1,xn(t)) + g(Fxn,xn−1(t))),

(2.16)



W. Q. Xu, C. X. Zhu, Z. Q. Wu, L. Zhu, J. Nonlinear Sci. Appl. 8 (2015), 412–422 418

that is,
g(Fxn+1,xn(t)) ≤ g(Fxn,xn−1(t)). (2.17)

From (2.17), it implies that{g(Fxn+1,xn(t)} is a decreasing sequence and bounded below, for every given
t > 0. Hence, there exists rt ≥ 0 such that

lim
n→∞

g(Fxn+1,xn(t)) = rt. (2.18)

By (2.18), letting n→∞ in (2.16), we get

rt ≤ lim
n→∞

1

2
g(Fxn+1,xn−1(t)) ≤ 1

2
(rt + rt),

that is,
lim
n→∞

g(Fxn+1,xn−1(t)) = 2rt.

By using the continuities of ψ and ϕ, letting n→∞ in (2.15), we get

ψ(rt) ≤ ψ(
1

2
(2rt))− ϕ(0, 2rt) = ψ(rt)− ϕ(0, 2rt),

which implies that ϕ(0, 2rt) = 0. Thus, rt = 0. Then lim
n→∞

g(Fxn+1,xn(t)) = 0 and lim
n→∞

Fxn+1,xn(t) = 1, for

all t > 0.
In the sequel, we will prove that {xn} is a Cauchy sequence. In order to prove this fact, we first prove

the following claim.
Claim: for every t > 0 and ε > 0, there exists n0 ∈ N, such that p, q ≥ n0 with p − q ≡ 1(m), then

Fxp,xq(t) > 1− ε and g(Fxp,xq(t)) < g(1− ε).
In fact, in the oppose case, there exist t0 > 0 and ε0 > 0, such that for any n ∈ N, we can find p(n) >

q(n) ≥ n with p(n)− q(n) ≡ 1(m) satisfying Fxp(n),xq(n)
(t0) ≤ 1− ε0. Thus, g(Fxp(n),xq(n)

(t0)) ≥ g(1− ε0).
Now, take n > 2m. Then corresponding to q(n) ≥ n, we can choose p(n) in such away that it is the

smallest integer with p(n) > q(n) satisfying p(n)−q(n) ≡ 1(m) and g(Fxp(n),xq(n)
(t0)) ≥ g(1−ε0). Therefore,

g(Fxp(n)−m,xq(n)
(t0)) < g(1− ε0). Using the triangular inequality, we have

g(1− ε0) ≤ g(Fxq(n),xp(n)
(t0)) ≤ g(∆(Fxq(n),xq(n)+1

(t0), Fxq(n)+1,xp(n)
(t0)))

≤ g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n)+1,xp(n)

(t0))

≤ g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n)+1,xp(n)−1

(t0)) + g(Fxp(n)−1,xp(n)
(t0))

≤ g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n)+1,xp(n)

(t0)) + 2g(Fxp(n)−1,xp(n)
(t0))

≤ 2g(Fxq(n),xq(n)+1
(t0)) + g(Fxq(n),xp(n)−m

(t0)) + g(Fxp(n)−m,xp(n)
(t0)) + 2g(Fxp(n)−1,xp(n)

(t0))

≤ 2g(Fxq(n),xq(n)+1
(t0)) + g(1− ε0) +

m∑
i=1

g(Fxp(n)−i,xp(n)−i+1
(t0)) + 2g(Fxp(n)−1,xp(n)

(t0)).

(2.19)

Since lim
n→∞

g(Fxn+1,xn(t)) = 0, for all t > 0, letting n→∞ in (2.19), we obtain

lim
n→∞

g(Fxq(n),xp(n)
(t0)) = lim

n→∞
g(Fxq(n)+1,xp(n)−1

(t0)) = lim
n→∞

g(Fxq(n)+1,xp(n)
(t0)) = g(1− ε0). (2.20)

By p(n)− q(n) ≡ 1(m), we know that xp(n) and xq(n) lie in different adjacently labeled sets Ai and Ai+1,
for 1 ≤ i ≤ m. By (2.2) and (2.3), we have

ψ[g(Fxp(n),xq(n)+1
(t0))] ≤ψ[

1

2
(g(Fxp(n)−1,xq(n)+1

(t0)) + g(Fxp(n),xq(n)
(t0)))]

− ϕ(g(Fxp(n)−1,xq(n)+1
(t0)), g(Fxp(n),xq(n)

(t0))).
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By the continuities of ψ and ϕ, and (2.20), letting n→∞ in last inequality, we have

ψ[g(1− ε0)] ≤ ψ[g(1− ε0)]− ϕ(g(1− ε0), g(1− ε0)),

which implies that ϕ(g(1− ε0)), g(1− ε0)) = 0. Thus, g(1− ε0) = 0. Then ε0 = 0, which is in contradiction
to ε0 > 0. Therefore, our claim is proved.

By the claim and using the same arguments in the proof of Theorem 2.3, we know that {xn} is a Cauchy
sequence. Since (X,F ,∆) is a complete PM-space, there exists x∗ ∈ X, such that xn → x∗. Since {xn} ⊆ P
and Y = ∪mi=0Ai is closed, we get that x∗ ∈ Y . As Y = ∪mi=1Ai is a cyclic representation of Y with respect
to T , the sequence {xn} has infinite terms in each Ai for i ∈ {1, 2, . . . ,m}.

First, suppose that x∗ ∈ Ai, then Tx∗ ∈ Ai+1, and we take a subsequence {xnk
} of {xn} with xnk

∈ Ai−1.
Since {xn} is a nondecreasing sequence and xn → x∗, by the condition (ii), we have xnk

∈ Ai−1 and
x∗ ∈ Ai are comparable, for all k ∈ N . By (2.2), we have

ψ[g(Fxnk+1,Tx∗(t))] ≤ ψ[
1

2
(g(Fxnk

,Tx∗(t)) + g(Fxnk+1,x∗(t)))]− ϕ(g(Fxnk
,Tx∗(t)), g(Fxnk+1,x∗(t)))

≤ ψ[
1

2
(g(Fxnk

,Tx∗(t)) + g(Fxnk+1,x∗(t)))].

Since ψ is nondecreasing, by the above inequality, we get

g(Fxnk+1,Tx∗(t)) ≤
1

2
(g(Fxnk

,Tx∗(t)) + g(Fxnk+1,x∗(t))). (2.21)

Let G0 be the set of all discontinuous points of Fx∗,Tx∗(·). Since g is continuous and strictly decreasing,
we get that G0 also is the set of all discontinuous points of g(Fx∗,Tx∗(·)). Moreover, we know that G0 is a
countable set. Let G = R+\G0. When t ∈ G (t is a continuous point of Fx∗,Tx∗(·)), it follows from (2.21)
that g(Fx∗,Tx∗(t)) ≤ 1

2 [g(Fx∗,x∗(t)) + g(Fx∗,Tx∗(t))] = 1
2g(Fx∗,Tx∗(t)). Thus, g(Fx∗,Tx∗(t)) = 0. Then

Fx∗,Tx∗(t) = H(t), for all t ∈ G. (2.22)

When t ∈ G0 with t > 0, by the density of real numbers, there exist t1, t2 ∈ G such that 0 < t! < t < t2.
Since the distribution is nondecreasing, we have 1 = H(t1) = Fx∗,Tx∗(t1) ≤ Fx∗,Tx∗(t) ≤ Fx∗,Tx∗(t2) = 1.
This shows that, for all t ∈ G0 with t > 0,

Fx∗,Tx∗(t) = H(t). (2.23)

Hence, from (2.22) with (2.23), we have Fx∗,Tx∗(t) = H(t), for all t > 0. Thus, Tx∗ = x∗ and x∗ is a fixed
point of T .

Finally, suppose that for each x, y ∈ Y , there exists z ∈ Y which is comparable to x and y. We prove that
fixed point of T is unique. In fact, suppose that there exist x∗, y∗ ∈ Y , such that Tx∗ = x∗ and Ty∗ = y∗,
then we have x∗, y∗ ∈ ∩mi=1Ai. Now, we consider the following cases:

Case 1. If x∗ ∈ Ai and y∗ ∈ Ai+1 are comparable. By (2.2), we have

ψ[g(Fx∗,y∗(t))] ≤ ψ[
1

2
(g(Fx∗,y∗(t)) + g(Fx∗,y∗(t)))]− ϕ(g(Fx∗,y∗(t)), g(Fx∗,y∗(t))), for all t > 0,

which implies that ϕ(g(Fx∗,y∗(t), g(Fx∗,y∗(t)) = 0. Thus, g(Fx∗,y∗(t))) = 0 and Fx∗,y∗(t) = H(t) for all t > 0.
Then x∗ = y∗.

Case 2. If x∗ and y∗ are not comparable, then there exists z0 ∈ Y comparable to x∗ and y∗.
First, suppose that z0 ∈ Ai. By the proof of Theorem 2.3, we can construct a sequence {zn} in Y , such

that zn+1 = Tzn, for all n ∈ N, there exists in ∈ {1, 2, . . . ,m} such that zn ∈ Ain and zn+1 ∈ Ain+1, and we
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have zn+1 = Tzn and Tx∗ = x∗ are comparable, for all n ∈ N . Since x∗ ∈ ∩mi=1Ai, we have zn and x∗ lie in
different adjacently labeled sets, for all n ∈ N. By (2.2), we have

ψ[g(Fzn,x∗(t))] = ψ[g(FTzn−1,Tx∗ (t))]

≤ ψ[
1

2
(g(Fzn−1,x∗(t)) + g(Fzn,x∗(t)))]− ϕ(g(Fzn−1,x∗(t)), g(Fzn,x∗(t)))

≤ ψ[
1

2
(g(Fzn−1,x∗(t)) + g(Fzn,x∗(t)))].

(2.24)

Since ψ is nondecreasing, by (2.24), we get

g(Fzn,x∗(t)) ≤
1

2
(g(Fzn−1,x∗(t)) + g(Fzn,x∗(t))).

Hence, g(Fzn,x∗(t)) ≤ g(Fzn−1,x∗(t)), which implies that {g(Fzn,x∗(t))} is a nonnegative decreasing sequence
and hence possesses limit rt, for every t > 0.

By the continuities of ψ and ϕ, letting n → ∞ in (2.24), then ψ(rt) ≤ ψ(rt) − ϕ(rt, rt). Hence,
ϕ(rt, rt) = 0, that is, rt = 0. Thus, lim

n→∞
g(Fzn,x∗(t)) = 0 and lim

n→∞
Fzn,x∗(t) = 1, for all t > 0. Then

lim
n→∞

zn = x∗. Analogously, lim
n→∞

zn = y∗. Therefore, x∗ = y∗.

Then T has a unique fixed point.

Remark 2.5. Theorem 2.3 and Theorem 2.4 extend the fixed point theorems of weakly contractive mappings
in metric spaces to probabilistic metric spaces, and they extend and generalize many existing fixed point
theorems in the literature [1-6] and [12-14].

Now, in order to support the usability of our results, we present the following examples.

Example 2.6. Let X = R+, ∆ = ∆2, g(t) = | ln t|, for all t ∈ (0, 1] and g(0) = +∞. Define F : X×X → D+

by

F(x, y)(t) = Fx,y(t) =

{
e−
|x−y|

t , t > 0;
0, t ≤ 0.

for all x, y ∈ X. Then (X,F ,∆) is a complete N.A Menger PM-space. In fact, for all t1, t2 > 0,

Fx,y(max{t1, t2}) = e
− |x−y|

max{t1,t2} ≥ e−
|x−z|+|z−y|
max{t1,t2}

≥ e−
|x−z|
t1 · e−

|z−y|
t2 = ∆(Fx,z(t1), Fz,y(t2)).

By Example 1.6, we obtain (X,F ,∆) is of type (D)g.
Suppose that A1 = [1, 27], A2 = [1, 9], A3 = [1, 3], and Y = ∪3i=1Ai = [1, 27]. Define T : Y → Y by

Tx = x
1
3 , for all x ∈ Y . Then T is nondecreasing and Y is a cyclic representation of Y with respect to T

Let ψ(t) = t
2 , φ(t) = t

3 , for all t ∈ [0,∞). Now, we verify inequality (2.1) in Theorem 2.3. By the
definitions of F , g, ψ and φ, we only need to prove that

1

2
· |Tx− Ty|

t
≤ 1

2
· |x− y|

t
− 1

3
· |x− y|

t
,

for all t > 0, that is,

|Tx− Ty| ≤ 1

3
|x− y|, for all x, y ∈ Y. (2.25)

For all x, y ∈ Y = [1, 27], we have x
2
3 + x

1
3 y

1
3 + y

2
3 ≥ 3. According to the definition of T , we get

|Tx− Ty| = |x
1
3 − y

1
3 | ≤ x

2
3 + x

1
3 y

1
3 + y

2
3

3
· |x

1
3 − y

1
3 | = 1

3
|x− y|,

which implies that (2.25) holds.
Also, conditions (i) and (ii) of Theorem 2.3 are satisfied. Therefore, from Theorem 2.3, we obtain that

T has a fixed point in Y , indeed, x = 1 is a fixed point of T .
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Example 2.7. Let X = R+, ∆ = ∆2, g : [0, 1] → [0,+∞) and F : X ×X → D+ be the same as the ones
in Example 2.6. Then (X,F ,∆) is a complete N.A Menger PM-space of type (D)g.

Suppose that A1 = [1, 4], A2 = [1, 3], A3 = [1, 2], and Y = ∪3i=1Ai = [1, 4]. Define T : Y → Y by

Tx = x
1
2 , for all x ∈ Y . Then T is nondecreasing and Y is a cyclic representation of Y with respect to T

Let ψ(t) = t, ϕ(s, t) = s+t
6 , for all s, t ∈ [0,∞). Now, we verify inequality (2.2) in Theorem 2.4. By the

definitions of F , g, ψ and ϕ, we only need to prove that

|Tx− Ty|
t

≤ 1

2
[
|x− Ty|

t
+
|Tx− y|

t
]− 1

6
[
|x− Ty|

t
+
|Tx− y|

t
],

for all t > 0, that is,

|Tx− Ty| ≤ 1

3
[|x− Ty|+ |Tx− y|], for all x, y ∈ Y. (2.26)

We consider the following cases:
First, suppose that x ≤ y, x, y ∈ Y . For all x, y ∈ Y = [1, 27], we have x

1
2 + y

1
2 ≥ 2.

Case 1. If x ≤ y
1
2 ≤ y, then x

1
2 ≤ x ≤ y

1
2 ≤ y. Hence,

1

3
[|x− Ty|+ |Tx− y|]− |Tx− Ty| = 1

3
[(y − x

1
2 ) + (y

1
2 − x)]− (y

1
2 − x

1
2 )

=
1

3
(y − x)− 2

3
(y

1
2 − x

1
2 ) =

1

3
(y

1
2 − x

1
2 )(y

1
2 + x

1
2 − 2) ≥ 0,

which implies that (2.26) holds.

Case 2. If y
1
2 ≤ x ≤ y, then x

1
2 ≤ y

1
2 ≤ x ≤ y. Let

h(y) =
1

3
[|x− Ty|+ |Tx− y|]− |Tx− Ty| = 1

3
[(y − x

1
2 ) + (x− y

1
2 )]− (y

1
2 − x

1
2 )

=
1

3
y +

1

3
x− 4

3
y

1
2 +

2

3
x

1
2 ,

for all y ∈ [x,min{x2, 4}]. Hence, h′(y) = 1
3 −

2
3y
− 1

2 ≤ 1
3 −

2
3 · 4

− 1
2 = 0, for all y ∈ [x,min{x2, 4}]. Thus, h is

decreasing. If min{x2, 4} = 4, then x ≥ 2. Hence,

hmin = h(4) =
4

3
+
x

3
+

2

3
x

1
2 − 4

3
· 2 ≥ 2

3
+

2
√

2

3
− 4

3
≥ 0.

If min{x2, 4} = x2, then 1 ≤ x ≤ 2 and y ≤ x2 ≤ 4. Hence,

hmin = h(x2) =
x2

3
+
x

3
+

2

3
x

1
2 − 4x

3
=
x2

3
+

2

3
x

1
2 − x ≥ 0.

Thus, h(y) ≥ 0, for all y ∈ [x,min{x2, 4}], which implies that (2.26) holds.
Similarly, If x > y, for x, y ∈ Y . we also have (2.26) holds.
Also, conditions (i) and (ii) of Theorem 2.4 are satisfied. Therefore, from Theorem 2.4, we obtain that

T has a fixed point in Y , indeed, x = 1 is a fixed point of T .
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