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Abstract

In this paper we deal with the solvability of the infinite system of differential equations x′(t) = ∆(λ)x(t) + b with
x(0) = a, where ∆(λ) is the triangle defined by the infinite matrix whose the nonzero entries are [∆(λ)]nn = λn and
[∆(λ)]n,n−1 = λn−1 for all n ∈ N, for a given sequence λ and a, b are two given infinite column matrices. We use a
new method based on Laplace transformations to solve this system.
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1. Introduction

Infinite matrix theory is used in many branches of classical mathematics such as infinite quadratic forms, integral
equations, matrix transformations, differential equations, operators between sequence spaces, it is also used to provide
approximations of solutions. Infinite-dimensional linear systems appear naturally when studying control problems for
systems modelled by linear partial differential equations. Many problems in dynamic systems can be written in the
form of differential equations or infinite differential systems and lead to infinite linear systems. In this way, we cite
Hill’s equation that was studied by L. Brillouin, E. L. Ince [[1]], K.G. Valeev [[10]], H. Hochstadt (1963), S. Winkler
(1966) and B. Rossetto [[9]]. This equation is the second order differential equation of the form

y′′ (z) + J (z) y (z) = 0, (1.1)

where z ∈ Ω and Ω is an open subset of C, containing the real axis and J (z) is a special periodic function. It was shown
that the solutions of (1.1) are of the form y (z) = eµz

∑+∞
m=−∞ xme

2imz where µ is the Floquet exponent. Replacing
y (z) by its expression in equation (1.1), we obtain an infinite linear system represented by the matrix equation

Aµx = 0, (1.2)
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where xt = (. . . , x−1, x0, x1, . . . ) and Aµ = (anm)n,m∈Z is an infinite matrix depending on µ (cf. [5]) defined by:{
ann = θ0 + (µ+ 2ni)2, ∀n ∈ Z
anm = θ|m−n|, for m 6= n

The aim is then to determine the values of µ for which (1.2) has a non trivial solution. Some authors determined
such values of µ using an infinite determinant [[7]]. B. Rossetto provided an algorithm that allows us to calculate the
Floquet exponent from the generalization of the notion of the characteristic equation and of a truncated determinant.
On the other hand, B. de Malafosse [[4]] dealt with equation (1.1) and studied system (1.2) using special additionnal
equations.

More recently, B. de Malafosse [[5]] used the same method for the study of the Mathieu equation that is a differential
equation with π-periodic coefficients of the form:

y(n)(t) + J1y
(n−1)(t) + · · ·+ Jky

(n−k)(t) + · · ·+ Jny(t) = 0, for all t ∈ R.

in which only one of the coefficients Jk is of the form p+ 2a cos(2t) (a, p ∈ R), the other being constants. In 2006 K.L.
Chiu and P.N. Shivakumar [[2]] studied the differential system

−y′′ (z) + f (z) y (z) = λy (z)

with y(0) = 0 and y(∞) = 0. It is well known that this system is a Sturm Liouville problem and hence there is an
infinite number of eigenvalues which are all reals, positive and ordered if f(z) is chosen to be a positive function tending
to infinity as z tends to ∞. The authors used finite difference scheme to reduce the linear system to an equivalent
infinite linear algebraic eigenvalue problem.

In this paper, we use special well known infinite matrices such as the operator of the first difference ∆. Some
properties of this operator were studied by Hausdorff, Leibowitz, Reade [[8]] and Okutoyi [[6]]. Then we deal with the
infinite linear system of differential equations defined by

x′ (t) = ∆(λ)x(t) + b, (1.3)

where ∆(λ) is the triangle defined by the infinite matrix [∆(λ)]nn = λn and [∆(λ)]n,n−1 = λn−1 for all n ∈ N,
b = (bn)n≥1 is a given sequence and x (t) = (xn (t))n≥1 is the unknown sequence of functions. The matrix ∆(λ)
generalizes the well known operator of first difference ∆. Here we use a new method based on Laplace transformations
to solve equation (1.3) and we will see that the resolution of these systems leads to solutions with complicated
expressions although they are associated with infinite lower triangular matrices.

This paper is organized as follows. In Section 2 we define the triangle matrix and we recall some results on infinite
bidiagonal matrices and Laplace tranformation operator. We consider in section 3 the equation x′ (t) = ∆ (λ)x (t) + b
with x (0) = a where λ and a = (an)n≥1 are two given sequences. We consider two cases where all terms of λ are
pairewisely distinct or equals. Finally, in Section 4, we give some examples with particular sequences λ, a and b.

2. Preliminaries

In this paper, we consider infinite lower triangular matrices with nonzero diagonal entries that are called triangles.
An infinite matrix T = (tnk)n,k≥1 is a triangle if and only if tnk = 0 for all k > n and tnn 6= 0 for all n ≥ 1, that is

T =



t11
t21 t22 0
...

...
. . .

tn1 tn2 · · · tnn
...

... · · ·
...

. . .

 .

We denote by w the set of all the sequences and by U the set of the sequences u = (un)n≥1 with un 6= 0 for all n ≥ 1.
The matrix T is considered as an operator from w to itself in the following way, for every sequence x ∈ w which can
be written as a column matrix x = (x1, ..., xn, ...)

t
, we have Tx = (T1 (x) , ..., Tn (x) , ...)

t
with

Tn (x) =

n∑
k=1

tnkxk for all n ≥ 1.
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It is known that every triangle T is invertible and if T−1 denotes its inverse then we have

T
(
T−1x

)
= T−1 (Tx) = x for all x ∈ w. (2.1)

We are interested in solving infinite linear systems represented by

Tx = b (2.2)

for a given b ∈ w where x ∈ w is the unknown. Equation (2.2) is equivalent to

n∑
k=1

tnkxk = bn n = 1, 2, ...

It can be easily deduced from (2.1) that the unique solution of (2.2) is given by

x = T−1b.

In this paper, we will solve the equation ∆̂ (α, β)x = b where ∆̂ (α, β) is the triangle defined by

∆̂ (α, β) =



α1 0
−β1 α2

. . .
. . .

−βn−1 αn

0
. . .

. . .


and α = (αn)n≥1 ∈ U and β = (βn)n≥1 ∈ w.

Lemma 2.1. Let α = (αn)n≥1 ∈ U and β = (βn)n≥1 ∈ ω. We have(
∆̂ (α, β)

)−1
= Ĉ (α, β) = (cnk)n,k≥1 ,

where

cnk =



1

αn
if k = n,

1

αn

n−1∏
i=k

βi
αi

if k < n,

0 otherwise.

Let ∆ (α) = ∆̂ (α, α) and C (α) = Ĉ (α, α). Then ∆ (α) is the triangle defined by:

∆ (α)nk =

 αn for k = n
−αn−1 for k = n− 1

0 for k 6= n− 1 and k 6= n (n ≥ 1)

and C (α) is the triangle defined by:

C (α)n,k =

{
1/αn for k ≤ n
0 otherwise

Note that C (α) is the inverse of ∆ (α).
Let e ∈ U , defined by en = 1 for all n ≥ 1. Then ∆ = ∆ (e) is the well known operator of the first-difference

defined by
∆n(x) = xn − xn−1 for all n ≥ 1,

with the convention x0 = 0. Recall that the operator ∆ is invertible and its inverse is usually written Σ = C (e).
Finally, we recall some properties on Laplace transformations that are useful in the sequel. For a function f of one

variable t, we define the Laplace transformation of f as follows:

F (p) =

∫ +∞

0

f(t) e−ptdt

where p ∈ C is a new variable. We denote by £ : f 7−→ F , the Laplace operator.
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Lemma 2.2. Let £−1 be the inverse mapping of £. Let c ∈ R and f be a function of one variable t. Then the
following properties hold:

1. £ and £−1 are linear operators.

2. £(c) = c
p .

3. £(f ′(t)) = p£(f(t))− f(0).

4. For all m ∈ N,

£−1
( 1

(p− c)m
)

=
tm−1ect

(m− 1)!
.

3. The equation x′ (t) = ∆ (λ)x (t) + b

Let λ = (λn)n≥1 ∈ U be a sequence. We consider the equation{
x′ (t) = ∆ (λ)x (t) + b
x (0) = a

(3.1)

where a = (an)n≥1 and b = (bn)n≥1 are given sequences.
Equation (3.1) is equivalent to the following infinite linear system:x

′
n (t) = (∆(λ))n(x(t)) + bn

= λnxn(t)− λn−1xn−1(t) + bn
xn(0) = an n = 1, 2, ...

(3.2)

with the convention λ0 = 0 and x0(t) = 0.

3.1. Case when all the entries λn of λ are pairwisely distinct

In this case, we need the following lemma whose its proof is immediate:

Lemma 3.1. Let ck, . . . , cn be pairwisely distinct real numbers where k ≤ n is an integer and let

F (z) =
1

z − cn

n−1∏
i=k

ci
z − ci

Then the decomposition of F (z) into simple fractions is given by:

F (z) =
An

z − cn
+
n−1∑
i=k

Ai
z − ci

where

An =

n−1∏
i=k

ci
cn − ci

and Ai =
ci

ci − cn

n−1∏
j=k,j 6=i

cj
ci − cj

for all i = k, . . . , n− 1.

The main result of this section is stated in the following theorem:

Theorem 3.2. Equation (3.1) has a unique solution which is given for each n ≥ 1, by

xn (t) =
−1

λn

n∑
k=1

bk +

[
an +

bn
λn

+

n−1∑
k=1

(−1)n−k
(
ak +

bk
λn

)
An

]
eλnt

+

n−1∑
k=1

[
n−1∑
i=k

(−1)n−k
(
ak +

bk
λi

)
Aie

λit

]
, (3.3)

where

An =

n−1∏
i=k

λi
λn − λi

and Ai =
λi

λi − λn

n−1∏
j=k
j 6=i

λj
λi − λj

for all k = 1, . . . , n− 1 and i = k, . . . , n− 1.
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Proof. Applying Laplace operator £ to equations (3.2) and using Lemma 2.2, we obtain the equations:

λn−1Xn−1 + (p− λn)Xn = an +
bn
p
, n = 1, 2, ... (3.4)

where for all n ≥ 1,
Xn = Xn (p) = £ (xn (t)) and X0 = 0, λ0 = 0

Then we obtain the following infinite linear system ∆̂ (p− λ,−λ)X = b′ where

∆̂ (p− λ,−λ) =



p− λ1
λ1 p− λ2 0

. . .
. . .

0 λn−1 p− λn
. . .

. . .

 ,

b′ = (b′n)n≥1 and

b′n = an +
bn
p

for all n ≥ 1.

By Lemma 2.1, we obtain

[
∆̂ (p− λ,−λ)

−1
]
nk

=



1
p−λn

if k = n,

1
p−λn

n−1∏
i=k

−λi

p−λi
if k < n,

0 otherwise

that is

∆̂ (p− λ,−λ)
−1

=



1
p−λ1

...
. . . 0

...
... 1

p−λk

...
...

...
...

...
...

. . .

1
p−λn

n−1∏
i=1

−λi

p−λi
· · · 1

p−λn

n−1∏
i=k

−λi

p−λi
· · · 1

p−λn

...
...

... . .
. . .


;

Then for all n ≥ 1, we have

Xn =
1

p− λn

[
b′n +

n−1∑
k=1

(
n−1∏
i=k

−λi
p− λi

)
b′k

]

=
an

p− λn
+

bn
p (p− λn)

+

n−1∑
k=1

(−1)n−k

p− λn

(
n−1∏
i=k

λi
p− λi

)(
ak +

bk
p

)
. (3.5)

To simplify this expression, we write

Xn =
an

p− λn
+

bn
p (p− λn)

+

n−1∑
k=1

(−1)n−k
[
akFnk (p) + bkGnk (p)

]
(3.6)

where

Fnk (p) =
1

p− λn

n−1∏
i=k

λi
p− λi

and Gnk (p) =
1

p (p− λn)

n−1∏
i=k

λi
p− λi

=
Fnk(p)

p
.
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By Lemma 3.1, we obtain the following decompositions into simple fractions:

Fnk (p) =
An

p− λn
+

n−1∑
i=k

Ai
p− λi

and

Gnk (p) =
A0

p
+
An
λn

1

p− λn
+

n−1∑
i=k

Ai
λi

1

p− λi

where

An =

n−1∏
i=k

λi
λn − λi

, A0 =
(−1)n−k+1

λn
and Ai =

λi
λi − λn

n−1∏
j=k
j 6=i

λj
λi − λj

.

Applying £−1 to (3.6) we obtain

xn (t) = an £−1
(

1

p− λn

)
+ bn £−1

[
1

p (p− λn)

]
+

n−1∑
k=1

(−1)n−k
[
ak £−1 (Fnk (p)) + bk £−1 (Gnk (p))

]
, (3.7)

but in the other hand, using Lemma 2.2, we obtain:

£−1
[

1

p (p− λn)

]
= £−1

[
− 1

pλn
+

1

λn (p− λn)

]
= − 1

λn
+

1

λn
eλnt (3.8)

£−1 (Fnk (p)) = Ane
λnt +

n−1∑
i=k

Aie
λit (3.9)

and

£−1 (Gnk (p)) = A0 +
An
λn

eλnt +

n−1∑
i=k

Ai
λi
eλit. (3.10)

Replacing Formulas (3.8), (3.9) and (3.10) in (3.7), we obtain:

xn (t) =
−1

λn

n∑
k=1

bk +

[
an +

bn
λn

+
n−1∑
k=1

(−1)n−k
(
ak +

bk
λn

)
An

]
eλnt

+

n−1∑
k=1

[
n−1∑
i=k

(−1)n−k
(
ak +

bk
λi

)
Aie

λit

]
.

3.2. Case where all terms λn of λ are equals

In this subsection, we suppose that λn = c for all n ≥ 1 where c is a constant. Then infinite linear differential
system (3.2) becomes:{

x′n (t) = cxn(t)− cxn−1(t) + bn,
xn(0) = an, n = 1, 2, ...

(3.11)

After applying Laplace operator £ to equations (3.11) we obtain the equations

cXn−1 + (p− c)Xn = an +
bn
p
, n = 1, 2, . . . (3.12)

The solvability of (3.11) can be obtained reasoning as in Theorem 3.2, with Fnk = cn−k

(p−c)n−k+1 and Gnk = Fnk

p , but

here we explicitly calculate X1, X2, . . . , Xn from (3.12) by mathematical induction, for short. In this way, we have,
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Theorem 3.3. The infinite linear differential system (3.11) has a unique solution which is given by:

xn(t) = −Sn
c

+

n∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(n− k)!
tn−kect,

for all n ≥ 1, where Sk =
∑k
j=1 bj for all k = 1, . . . , n.

Proof. Let’s show by induction on n that

Xn = −Sn
cp

+

n∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(p− c)n−k+1
. (3.13)

For n = 1, with the convention that X0 = 0, equation (3.12) gives

X1 =
a1
p− c

+
b1

p(p− c)

=
a1
p− c

+
b1
c

( 1

p− c
− 1

p

)
= − b1

cp
+
ca1 + b1
c(p− c)

= −S1

cp
+
c−1(ca1 + S1)

p− c
Then the formula is true for n = 1. Suppose it is true for n−1 and prove it for n. Replacing Xn−1 in equations (3.12),
this leads to:

(p− c)Xn = an +
bn
p

+
Sn−1
p
− c

n−1∑
k=1

(−1)n−1−k+1 c
n−1−k−1(cak + Sk)

(p− c)n−1−k+1

= an +
Sn
p

+

n−1∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(p− c)n−k
.

Then

Xn =
an
p− c

+
Sn

p(p− c)
+

n−1∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(p− c)n−k+1

=
an
p− c

+
Sn
c

( 1

p− c
− 1

p

)
+

n−1∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(p− c)n−k+1

= −Sn
cp

+

n∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(p− c)n−k+1
.

Applying £−1 to equation (3.13) and using part (4.) of Lemma 2.2, we obtain:

xn(t) = £−1(Xn(p))

= −Sn
c

+

n∑
k=1

(−1)n−k
cn−k−1(cak + Sk)

(n− k)!
tn−kect.

4. Examples

Example 4.1. If λn = n, bn = 1 and an = 0 for all n ≥ 1, then the infinite linear differential system (3.2) becomes:{
x′n (t) = nxn(t)− (n− 1)xn−1(t) + 1
xn(0) = an, n = 1, 2, ...

(4.1)
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Then the unique solution of the system (4.1) is given by Theorem 3.2:

xn(t) = −1 +
1

n

[
1 +

n−1∑
k=1

(−1)n−kAn

]
ent +

n−1∑
k=1

[
n−1∑
s=k

(−1)n−k

s
Ase

st

]

for all n ≥ 1, where

An =
(n− 1)!

(k − 1)!(n− k)!
= Ck−1n−1

and

As =
s

s− n

n−1∏
j=k
j 6=s

j

s− j

=
s

s− n

s−1∏
j=k

j

s− j

n−1∏
j=s+1

j

s− j

= (−1)n−s−1 × s

s− n
× (s− 1)!

(k − 1)! (s− k)!
× (n− 1)!

s! (n− s− 1)!

= (−1)n−s−1 × s

s− n
× Ck−1s−1 × Csn−1.

But

n−1∑
k=1

(−1)n−kAn =

n−1∑
k=1

(−1)n−k × Ck−1n−1

=

n−2∑
j=0

(−1)n−1−j × Cjn−1 (j = k − 1)

= −1 +

n−1∑
j=0

Cjn−1 × 1j × (−1)n−1−j

= −1 + (1− 1)n−1 (using Newton binomial formula)

= −1.

Thus

xn(t) = −1 +

n−1∑
k=1

[
n−1∑
s=k

(−1)k+s+1

s− n
Ck−1s−1 C

s
n−1 e

st

]
,

for all n ≥ 1.

Example 4.2. If λ = b = e, i.e., λn = bn = 1 for all n ≥ 1 and an = 0 for all n ≥ 1, then ∆(λ) = ∆ is the operator
of the first-difference and the infinite linear differential system (3.11) becomes:{

x′n (t) = xn(t)− xn−1(t) + 1
xn(0) = an, n = 1, 2, ...

(4.2)

Then Sk = k for all k = 1, . . . , n and the unique solution of the system (4.2) is given by Theorem 3.3:

xn(t) = −n+

n∑
k=1

(−1)n−k
k

(n− k)!
tn−ket,

for all n ≥ 1.

Conclusion

In this paper, we have proposed a new method based on Laplace transformation for solving particular infinite
linear systems of differential equations. This leads to solve infinite linear systems. A future work is to consider other
particular systems of differential equations, like systems defined by Césaro’s operator.
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