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Abstract

In this work, we introduce some condition on one-parameter semigroup of self-mappings it is called k-
uniformly generalized Lipschitzian. The condition is weaker than Lipschitzian type conditions. Also, we
show that a k-generalized Lipschitzian semigroup of nonlinear self-mappings of a nonempty closed convex
subset C of real Banach space X admits a common fixed point if the semigroup has a bounded orbit and if
k > 0. Our results extending the results due to L.C. Ceng, H. K. Xu and J.C. Yao [5]
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1. Introduction

Assume that X is a real Banach space with uniformly normal structure and C is a nonempty closed
convex subset of X. A mapping T : C → C is said to be a Lipschitzian mapping if, for each integer n ≥ 1,
there exist a constant kn > 0 such that

||Tnx− Tny|| ≤ kn||x− y|| for all x, y ∈ C.

A Lipschitzian mapping is said to be a k-uniformly Lipschitzian mapping if kn ≡ k for all n ≥ 1. These
mappings were first studied by Goebel and Kirk [8]. They studied the existence of a fixed point of a uniformly
k-Lipschitzian mapping T defined on a bounded closed convex subset of a uniformly convex Banach space
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X. They showed that such mapping T has a fixed point if k < γ where γ > 1 is the unique solution of the
equation

(1− δX(1/γ))γ = 1, (1.1)

δX being the modulus of convexity of X.

In 1973, Goebel and Kirk [8] then posed the question whether or not the constant γ > 1 which solves
the equation 1.1 is the largest number for which any k-uniformly Lipschitzian mapping T with k < γ has a
fixed point.

In 1975, Lifschits [12] proved that in Hilbert space a k-uniformly Lipschitzian mapping with k <
√

2
has a fixed point.

Casini and Maluta [4] and Ishihara and Takahashi [10] proved that a uniformly k−Lipschitzian semi-
group in Banach space X has a common fixed point if k <

√
N(X) where N(X) is the uniformly normal

structure coefficient.

Since then, k-uniformly Lipschitzian mapping have extensively been investigated by many authors.
Moreover, some of results for uniformly Lipschitzian mapping have been extended to uniformly Lipschitzian
semigroups, and even more general, to Lipschitzian semigroup; see [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Particularly, in 1993, Tan and Xu [16] answered the question of Goebel and Kirk [8] mentioned above
in the negative by proving the following:

Theorem 1.1. ([16], Theorem 3.5) Let X be a real uniformly convex Banach space, C a nonempty closed
convex subset of X, and τ = {Ts : s ∈ G} a k-uniformly Lipschitzian semigroup on C with k < α, where
α > 1 is the unique solution of the equation

α2

N(X)
δ−1X (1− 1

α
) = 1 (1.2)

where N(X) > 1 is the normal structure coefficient of X. Suppose there exists an x0 ∈ C such that the orbit
{Tsx0 : s ∈ G} is bounded. then there exists z ∈ C such that Tsz = z for all s ∈ G.

Remark 1.2. One can prove that γ < α, where γ and α are the solution of equations 1.1 and 1.2, respectively.
Consequently, the constant γ solving equation 1.1 is not the biggest number for which every k-uniformly
Lipschitzian mapping T with k < γ has a fixed point. Indeed, the best possible number γ is still unknown,
even in the setting of Hilbert spaces. It is therefore an interesting question to find another constant α∗

which is strictly bigger than α and for which every k-uniformly Lipschitzian mapping T with k < α∗ has a
fixed point.

Some years later, Zeng and Yang [23] proved a fixed point result for Lipschitzian semigroups as follows:

Theorem 1.3. ([23], theorem 3.1) Let C be a nonempty bounded subset of a uniformly convex Banach Space
X, and let τ = {Ts : s ∈ G} be a k-uniformly Lipschitzian semigroup on C with

lim inf
s
|||Ts||| <

√
γ0N(X),

where
γ0 = inf{γ : γ(1− δX(1/γ)) ≥ 1/2},
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and |||Ts||| is the exact Lipschitzian constant of Ts. Suppose also there exists a nonempty bounded closed
convex subset E of C with the following properties:
(P1) x ∈ E implies ww(x) ⊂ E; where ww(x) is the weak w-limit set of τ at x, i.e.,

ww(x) = {y ∈ X : y = weak − limtαTtαx for some subnet {tα} ⊂ G}.

(P2) τ is asymptotically regular on E; i.e., limt ||Tt+sx− Ttx|| = 0, ∀ s ∈ G, x ∈ E.
Then there exists z ∈ C such that Tsz = z for all s ∈ G.

Recently, Ceng, Xu and Yao [5], studied the existence of fixed points of uniformly Lipschitzian semi-
groups τ = {Ts : s ∈ G} in the setting of Banach spaces X under conditions weaker than uniform convexity.
More precisely, their contributions were two fold: 1.1 they replaced the uniform convexity of X in Theorem
1.1 with the weaker condition of the uniformly normal structure of X; and 1.2 they removed the asymptotic
regularity on E of the semigroup τ = {Ts : s ∈ G} in Theorem 1.2.

In this paper, we introduce a new k-generalized Lipschitzian one parameter semigroup of self mappings
and by this condition we generalize the results due to Ceng, Xu and Yao [5].

2. Preliminaries

Let C be a closed convex subset of a Banach space X. Then the collection τ = {Ts : s ∈ G} of
mappings of C into itself is said to be generalized Lipschitzian semigroup on C if the following conditions
are satisfied:
(i) Tstx = TsTtx for all s, t ∈ G and x ∈ C;
(ii) for each x ∈ C, the mapping t→ Ttx from G into C is continuous;
(iii) for each t ∈ G, Tt : X → X is continuous.
(iv) for each t ∈ G, there exists a constant kt > 0 such that

||Ttx− Tty|| ≤ kt max{||x− y||, 1

2ω
||x− Ttx||,

1

2ω
||y − Tty||} for all x, y ∈ C,

where ω > k, ω > 1.
In particular, if kt ≡ k then τ = {Ts : s ∈ G} is called k-uniformly generalized Lipschitzian semigroup on C.
Recall that X is strictly convex if its unit sphere does not contain any line segments, that is, X is strictly
convex if and only if the following implication holds:

x, y ∈ X, ||x|| = ||y|| = 1 and ||(x+ y)/2|| = 1 ⇒ x = y.

In order to measure the degree of convexity of X, we define its modulus of convexity δX : [0, 2]→ [0, 1]
by

δX(ε) = inf{1− ||(x+ y)/2|| : ||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε}.

The characteristic of convexity of X is the number ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}. It is easy to
see [7] that X is uniformly convex iff ε0(X) = 0; uniformly nonsquare iff ε0(X) < 2; and strictly convex
iff δ(2) = 1. Moreover, if ε0(X) < 1; then X has a normal structure, that is, each bounded convex subset
H of X which contains more than one point contains a point x0 such that sup{||x0−x|| : x ∈ H} < diam(H).

The following properties of modulus δX of convexity of X are quite well-known (see [9])
(a) δX is increasing on [0,2], and moreover strictly increasing on [ε0, 2];
(b) δX is continuous on [0,2)(but not necessarily at ε = 2);
(c) δX(2) = 1 iff X is strictly convex;
(d) δX(0) = 0 and limε→2− δX(ε) = 1− ε0/2
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(e) [||a− x|| ≤ r, ||a− y|| ≤ r and ||x− y|| ≥ ε] ⇒ ||a− (x+ y)/2|| ≤ r(1− δX(ε/r)).

Recall that the normal structure coefficient N(X) of X is the number (see [3])

inf
{diamK
rK(K)

}
,

where the infimum is taken over all bounded closed convex subsets K of X with more than one member,
and rK(K) and diam(K) are Chebyshev radii of K relative to it self and the diameter of K, respectively,
i.e., rK(K) = infx∈K supy∈K ||x − y|| and diamK = supx,y∈K ||x − y||. A Banach space X is said to have
uniformly normal structure if N(X) > 1. it is known that a Banach space with uniformly normal structure is
reflexive and that all uniformly convex or uniformly smooth Banach spaces have uniformly normal structure
(see, e.g., [26]). It is also been computed that N(H) =

√
2 for a Hilbert spaces H. The computations of the

normal structure coefficient N(X) for general Banach spaces look however complicated. No exact values
of N(X) are known except for some special cases (e.g., Hilbert and Lp spaces). In general, we have the
following lower bounded for N(X) (see [3, 14, 1])

N(X) ≥ 1

1− δX(1)
.

Other lower bounds for N(X) in terms of some Banach space parameters or constants can be found
in [11, 15].

Tan and Xu [16] have also proven that if X is uniformly convex and γ > 1 is the unique solution of
the equation 1.1, then N(X) > γ. Note that for a Hilbert space H, we have N(H) =

√
2 and γ =

√
5/2.

Suppose X is uniformly convex Banach space. Then it is easily seen that the equation

α2δ−1X (1− 1

α
)Ñ(X) = 1 (2.1)

has a unique solution α > 1, where Ñ(X) = 1/N(X). Tan and Xu [16] proved that if γ > 1 and α > 1 are
the solution of 1.1 and 2.1, respectively, then γ < α. Note that γ =

√
5/2, and α = 1√√

3−1
> γ.

We need the notation of asymptotic centers, due to Edelstein [6]. Let C be a nonempty closed convex
subset of a Banach space X and let {xt : t ∈ G} be a bounded net of elements of X. Then the asymptotic
radius and asymptotic center of {xt}t∈G with respect to C are the number

rC{xt} = inf
y∈C

lim sup
t
||xt − y||,

and respectively, the (possibly empty) set

AC({xt}) = {y ∈ C : lim sup
t
||xt − y|| = rC({xt})}.

Lemma 2.1. ([16], Lemma 2.1) If C is a nonempty closed convex subset of a reflexive Banach space X,
then for every bounded net {xt}t∈G of elements of X, AC({xt}) is a nonempty bounded closed convex subset
of C. In particular, if X is a uniformly convex Banach space, then AC({xt}) consists of a single point.

The following lemma can be proven in exactly the same way as in Lim [13] for sequences and the proof
is thus omitted here.

Lemma 2.2. ([16], lemma 2.2) Suppose X is a Banach space with uniformly normal structure. Then for
every bounded net {xt}t∈G of elements of X there exists y ∈ co({xt : t ∈ G}) such that

lim sup
t
||xt − y|| ≤ Ñ(X)D({xt}),

where Ñ(X) = 1/N(X), and co(E) is the closure of the convex hull of a set E ⊂ X and D({xt}) =
lim
t

(sup{||xi − xj || : t ≤ i, j ∈ G}) is the asymptotic diameter of {xt}.
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3. Main results

The following lemma plays an important role in proving our results.

Lemma 3.1. Let {Tsx0; s ∈ G} be a bounded for some x0 ∈ C and τ = {Ts; s ∈ G} k-uniformly generalized
Lipschitzian semigroup on C, then {Tsx; s ∈ G} is bounded for each x ∈ C.

We next present the first result of this paper which weakens the uniform convexity assumption in
theorem 1.1.

Theorem 3.2. Suppose X is a real Banach space with N(X) > max(1, ε0), C is a nonempty closed convex
subset of X, and τ = {Ts : s ∈ G} is a k-uniformly generalized Lipschitzian semigroup on C which satisfy
the condition (iv) with ω < α∗. Here ε0 is the characteristic of convexity of X and

α∗ = sup
{
α : α2δ−1X (1− 1

α
)N(X)−1 ≤ 1 and 1− 1

α
∈ (0, 1− 1

2
ε0)
}
. (3.1)

If {Tsx0 : s ∈ G} is bounded for some x0 ∈ C, then there exists z ∈ C such that Tsz = z for all s ∈ G.

Proof. Put Ñ(X) = N(X)−1. Observe that the set{
α : α2δ−1X (1− 1

α
)N(X)−1 ≤ 1 and 1− 1

α
∈ (0, 1− 1

2
ε0)
}
6= φ. (3.2)

Indeed, by properties (a),(b),(d) of the modulus δx of convexity of X, we see that the mapping

δx : [ε0, 2)→ δx([ε0, 2)) = [0, 1− 1

2
ε0)

is strictly increasing and continuous, and hence a bijection. Thus, we deduce that

lim
α→1+

α2δ−1X (1− 1

α
)N(X)−1 = δ−1X (0)Ñ(X) = ε0Ñ(X) < 1.

which implies that there exists α0 > 1 such that α2
0δ
−1
X (1− 1

α0
)Ñ(X) < 1 and

1− 1

α0
∈ δx([ε0, 2)) = [0, 1− 1

2
ε0).

This verifies our assertion 3.2.

Since X has a uniformly normal structure, X is reflexive. Due to the boundedness of {Tsx0 : s ∈ G}
and by Lemma 2.1, we get that AC({Ttx0}t∈G) is nonempty bounded closed convex subset of C. Then we
can choose x1 ∈ AC({Ttx0}t∈G) such that

lim sup
t
||Ttx0 − x1|| = inf

y∈C
lim sup

t
||Ttx0 − y||.

Since τ is k−uniformly generalized Lipschitzian property, by lemma 3.1, we know that Ttx1 remains bounded.
Consequently we can choose x2 ∈ AC({Ttx1}t∈G) such that

lim sup
t
||Ttx1 − x2|| = inf

y∈C
lim sup

t
||Ttx1 − y||.

Continuing this process, we can construct a sequence {xn}∞n=0 in C with the properties:
(i) for each n ≥ 0, {Ttxn}t∈G is bounded;
(ii) for each n ≥ 0, xn+1 ∈ AC({Ttxn}t∈G); that is xn+1 is a point in C such that

lim
t
||Ttxn − xn+1|| = inf

y∈C
lim
t
||Ttxn − y||.
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Write rn = rC({Ttxn}t∈G). Then by Lemma 2.2 we have

rn = lim sup
t
||Ttxn − xn+1|| ≤ Ñ(X)D({Ttxn}t∈G) = Ñ(X) lim

t
(sup{||Tixn − Tjxn|| : t ≤ i, j ∈ G})

≤ Ñ(X)k lim
t

(sup max{||xn − Tj−ixn||,
1

2ω
||xn − Tixn||,

1

2ω
||Tjxn − Tj−ixn||}

≤ Ñ(X)k lim
t

(sup max{d(xn),
1

2ω
d(xn),

1

ω
d(xn)} ≤ Ñ(X).k.d(xn),

that is,

rn ≤ Ñ(X).k.d(xn) ≤ Ñ(X).ω.d(xn). (3.3)

Where
d(xn) = sup{||xn − Ttxn|| : t ∈ G}.

We may assume that d(xn) > 0 for all n ≥ 0 (since otherwise xn is a common fixed point of the semigroup
τ and the proof is finished). Let n ≥ 0 be fixed and let ε > 0 be small enough. We can choose j ∈ G such
that

||Tjxn+1 − xn+1|| > d(xn+1)− ε

and then choose s0 ∈ G so large that

||Tsxn − xn+1|| < rn + ε < ω(rn + ε)

for all s ≥ s0. It turns out, for s ≥ s0 + j,

||Tsxn − Tjxn+1|| ≤ kmax{||Ts−jxn − xn+1||,
1

2ω
||Tsxn − Ts−jxn||,

1

2ω
||xn+1 − Tjxn+1||}

≤ kmax{rn + ε,
1

ω
(rn + ε),

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||}.

If

max{rn + ε,
1

ω
(rn + ε),

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||} =

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||,

then we have:

||Tsxn − Tjxn+1|| ≤
k

2ω
(rn + ε) +

k

2ω
||Tsxn − Tjxn+1|| ≤

1

2
(rn + ε) +

1

2
||Tsxn − Tjxn+1||,

hence
||Tsxn − Tjxn+1|| ≤ rn + ε < ω(rn + ε).

Then it follows from property (e) that

||Tsxn −
1

2
(xn+1 + Tjxn+1)|| ≤ ω(rn + ε)

(
1− δX

(d(xn+1)− ε
ω(rn + ε)

))
for s ≥ s0 + j and hence

rn ≤ lim sup
s
||Tsxn −

1

2
(xn+1 + Tjxn+1)|| ≤ ω(rn + ε)

(
1− δX

(d(xn+1)− ε
ω(rn + ε)

))
.

Taking the limit as ε→ 0 we obtain

rn ≤ ωrn
(

1− δX
(d(xn+1)

ωrn

))
.
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This implies that

δX

(d(xn+1)

ωrn

)
≤ 1− 1

ω
(3.4)

d(xn+1) ≤ ωrnδ−1X (1− 1

ω
) (3.5)

Indeed, if d(xn+1)/(ωrn) ∈ [0, ε0), then noticing that δX : [ε0, 2)→ [0, 1− ε0/2) is a bijection and that 1− 1
ω

lies in [0, 1− ε0/2) by assumption k < ω < α∗, we have δ−1X (1− 1
ω ) ≥ ε0; hence d(xn+1)/(ωrn) ≤ δ−1X (1− 1

ω )
and 3.5 follows. If d(xn+1)/(ωrn) ∈ [ε0, 2], then it is clear that d(xn+1)/(ωrn) ≤ δ−1X (1− 1

ω ). This also shows
that 3.6 is true.
Therefore, utilizing 3.3 and 3.5, we obtain

d(xn+1) ≤ ω2Ñ(X)δ−1X (1− 1

ω
)d(xn). (3.6)

Write A = ω2Ñ(X)δ−1X (1− 1
ω ). Then A < 1. Indeed, from the assumption that ω < α∗ it follows that there

exists an α̃ > ω such that

α̃2Ñ(X)δ−1X (1− 1

α̃
) ≤ 1 and (1− 1

α̃
) ∈ δX((ε0, 2)).

It then turns out that δ−1X (1− 1
ω ) < δ−1X (1− 1

α̃), and

A = ω2Ñ(X)δ−1X (1− 1

ω
) < α̃2Ñ(X)δ−1X (1− 1

α̃
) ≤ 1.

Hence, it is follows from 3.6 that

d(xn) ≤ Ad(xn−1) ≤ ... ≤ And(x0). (3.7)

Since
||xn+1 − xn|| ≤ lim sup

t
||Ttxn − xn+1||+ lim sup

t
||Ttxn − xn|| ≤ rn + d(xn) ≤ 2d(xn).

We get from 3.7 that
∑∞

n=1 ||xn+1 − xn|| < ∞, and hence {xn} is a norm-Cauchy. Let z = ||.|| − limn xn.
Finally, we have for each s ∈ G,

||z−Tsz|| ≤ ||z−xn||+||Tsxn−xn||+||Tsxn−Tsz|| ≤ ||z−xn||+d(xn)+kmax{||z−xn||,
1

2ω
d(xn),

1

2ω
||z−Tsz||}

≤ ||z−xn||+d(xn)+k||z−xn||+
k

2ω
d(xn)+

k

2ω
||z−Tsz|| < ||z−xn||+d(xn)+k||z−xn||+

k

2ω
d(xn)+

1

2
||z−Tsz||

||z − Tsz|| ≤ 2(k + 1)||z − xn||+ (k + 2)d(xn)→ 0 as n→∞

Hence, Tsz = z for all s ∈ G and the proof is complete.

Theorem 3.3. Let C be a nonempty bounded subset of a uniformly convex Banach space X, and τ = {Ts :
s ∈ G} be a k-uniformly generalized Lipschitzian semigroup on C which satisfy the condition (iv) with

ω <
√
γ0N(X), where γ0 = inf{γ ≥ 1 : γ(1− δX(1/γ)) ≥ 1/2. (3.8)

Suppose also there exists a nonempty bounded closed convex subset E of C with the following property (<):
(<) x ∈ E implies ww(x) ⊂ E.
Then there exists z ∈ E such that Tsz = z for all s ∈ G.
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Proof. Take an x0 ∈ E and, consider for each t ∈ G, the bounded net {Tsx0 : t ≤ s ∈ G}.
According to Lemma 2.2, we have a yt ∈ co{Tsx0 : t ≤ s ∈ G} such that

lim sup
s
||Tsx0 − yt|| ≤ Ñ(X)D({Tsx0}t≤s∈G), (3.9)

where Ñ(X) = 1/N(X) and D({Tsx0}t≤s∈G) denotes the asymptotic diameter of the net {zl} i.e, the number

lim
t

(sup{||zi − zj || : t ≤ i, j ∈ G}).

Since X is reflexive, {yt} admits a subnet {ytβ} converging weakly to some x1 ∈ X. From 3.9 and the weakly
lower semicontinuity of the functional lim supt ||Ttx0 − y||, it follows that

lim sup
t
||Ttx0 − x1|| ≤ Ñ(X)D({Ttx0}t∈G). (3.10)

It is also seen that x1 ∈
⋂
t∈G co{Tsx0 : t ≤ s ∈ G} and that

||z − x1|| ≤ lim sup
t
||z − Ttx0|| for all z ∈ X. (3.11)

Observing Property (<) and the fact that
⋂
t∈G co{Tsx0 : t ≤ s ∈ G} = co{ww(x0)} which is easy to prove

by using the Separation Theorem(see[2]), we know that x1 actually lies in E. So we can repeat the above
process and obtain a sequence {xn}∞n=0 in E with the properties: for all nonnegative integers n ≥ 0,

lim sup
t
||Ttxn − xn+1|| ≤ Ñ(X)D({Ttxn}t∈G). (3.12)

and

||z − xn+1|| ≤ lim sup
t
||z − Ttxn|| for all z ∈ X. (3.13)

Write rn = lim supt ||Ttxn − xn+1|| and d(xn) = sup{||xn − Ttxn|| : t ∈ G}. This in view of 3.12, we have

rn = lim sup
t
||Ttxn − xn+1|| ≤ Ñ(X)D({Ttxn}t∈G) = Ñ(X) lim

t
(sup{||Tixn − Tjxn|| : t ≤ i, j ∈ G})

≤ Ñ(X)k lim
t

(sup max{||xn − Tj−ixn||,
1

2ω
||xn − Tixn||,

1

2ω
||Tjxn − Tj−ixn||}

≤ Ñ(X)k lim
t

(max{d(xn),
1

2ω
d(xn),

1

ω
d(xn)}) ≤ Ñ(X).k.d(xn) < Ñ(X).ω.d(xn),

that is,

rn < Ñ(X).ω.d(xn). (3.14)

We may assume that d(xn) > 0 for all n ≥ 0. Let n ≥ 0 be fixed and let ε > 0 be small enough. First
choose j ∈ G such that,

||Tjxn+1 − xn+1|| > d(xn+1)− ε

and then choose s0 ∈ G so large that

||Tsxn − xn+1|| < rn + ε < ω(rn + ε)

for all s ≥ s0. Then we have, for s ≥ s0 + j,

||Tsxn − Tjxn+1|| ≤ kmax{||Ts−jxn − xn+1||,
1

2ω
||Tsxn − Ts−jxn||,

1

2ω
||xn+1 − Tjxn+1||}
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≤ kmax{rn + ε,
1

ω
(rn + ε),

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||}.

If

max{rn + ε,
1

ω
(rn + ε),

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||} =

1

2ω
(rn + ε) +

1

2ω
||Tsxn − Tjxn+1||,

then we have
||Tsxn − Tjxn+1|| ≤ (rn + ε) < ω(rn + ε)

Then it follows from property (e) that, for s ≥ s0 + j,

||Tsxn −
1

2
(xn+1 + Tjxn+1)|| ≤ ω(rn + ε)

(
1− δX

(d(xn+1)− ε
ω(rn + ε)

))
.

Hence from 3.13 (taking z := (xn+1 + Tjxn+1)/2) we obtain

1

2
(d(xn+1)− ε) < ||

1

2
(Tjxn+1 − xn+1)|| ≤ ||Tjxn+1 −

1

2
(xn+1 + Tjxn+1)||

≤ lim sup
t
||Ttxn −

1

2
(xn+1 + Tjxn+1)||

≤ ω(rn + ε)
(

1− δX
(d(xn+1)− ε
ω(rn + ε)

))
. (3.15)

Taking the limit as ε→ 0 we have

1

2
d(xn+1) ≤ ωrn

(
1− δX

(d(xn+1)

ωrn

))
. (3.16)

On other hand, we easily find by 3.13 that, for each j ∈ G,

||Tjxn+1 − xn+1)|| ≤ lim sup
t
||Tjxn+1 − Ttxn|| < ωrn.

It turns out that

d(xn+1) < ωrn (3.17)

Combining 3.16 and 3.17 and using the definition of γ0 in 3.8, we infer that (ωrn)/d(xn+1) ≥ γ0. It turns
out from 3.14 that

d(xn+1) ≤
ω

γ0
rn <

ω2

γ0N(X)
d(xn).

Consequently, we obtain
d(xn) ≤ Ad(xn−1) ≤ ... ≤ And(x0),

where A = ω2[γ0N(X)]−1 < 1 by assumption. Noticing that

||xn+1 − xn|| ≤ lim sup
t
||Ttxn − xn+1||+ lim sup

t
||Ttxn − xn||

≤ rn + d(xn) ≤ (1 + kÑ(X))d(xn) ≤ (1 + kÑ(X))And(x0),

that
∑∞

n=1 ||xn+1−xn|| is convergent. This implies that {xn} is strongly convergent. Let z = ||.|| − limn xn.
Then, we have for each s ∈ G,

||z−Tsz|| ≤ ||z−xn||+||Tsxn−xn||+||Tsxn−Tsz|| ≤ ||z−xn||+d(xn)+kmax{||z−xn||,
1

2ω
d(xn),

1

2ω
||z−Tsz||}

≤ ||z−xn||+d(xn)+k||z−xn||+
k

2ω
d(xn)+

k

2ω
||z−Tsz|| < ||z−xn||+d(xn)+k||z−xn||+

k

2ω
d(xn)+

1

2ω
||z−Tsz||

||z − Tsz|| ≤ 2(k + 1)||z − xn||+ (k + 2)d(xn)→ 0 as n→∞
Hence, Tsz = z for all s ∈ G and the proof is complete.
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