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Abstract

A fixed point theorem for condensing maps due to Martelli combined with theories of a strongly continuous cosine
family of bounded linear operators is used to investigate the existence of solutions to second order impulsive neutral
functional integrodifferential inclusions with infinite delay in Banach spaces.
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1. Introduction

The impulsive differential equations have received much attention during the last decade, but the study of the
impulsive differential inclusions is relatively late in the literature. The dynamical systems, which involve the jumps or
discontinuities are modeled on the impulsive differential equations and inclusions. On the other hand, integrodifferential
equations are encountered in many areas of science, where it is necessary to take into account aftereffect or delay (for
example, in control theory, biology, ecology and medicine). Especially, one always describes a model which possesses
hereditary properties by integrodifferential equations in practice. The theory of integrodifferential inclusions with
impulse actions has not yet been fully investigated, when compared to that of impulsive differential inclusions and
integrodifferential inclusions. For more details on impulsive theory and integrodifferential equations we refer to the
monographs of Bainov and Simeonov [3], Lakshmikantham, Bainov, and Simeonov [43], Samoilenko and Perestyuk [51],
Benchohra, Henderson and Ntouyas [7] and the papers of Rogovchenko [54], Liu [47], Hernandez [28, 29, 30, 31, 32, 33],

∗Corresponding author
Email addresses: kavi_velubagyam@yahoo.co.in (V. Kavitha), arjunphd07@yahoo.co.in (M. Mallika Arjunan),

ravibirthday@gmail.com (C. Ravichandran)

Received 2011-10-19



V. Kavitha, M. Mallika Arjunan, C. Ravichandran, J. Nonlinear Sci. Appl. 5 (2012), 321–333 322

Anguraj et al. [2], Balachandran et al. [4, 5, 50], Benchohra et al. [8, 9, 10], Ntouyas [49], Chang et al. [15, 16,
17, 18, 19], Liang et al. [45]. However, very few results are available for impulsive differential and integrodifferential
inclusions; see for instance, the papers of Benchohra et al. [11, 12, 13, 14], Erbe and Krawcewicz [22], and Frigon et
al. [23], Xianlong Fu et al.[24], Anguraj et al. [20] and Junhao Hu et al. [39].

Abstract neutral differential equations arise in many areas of applied mathematics. For this reason, they have
largely been studied during the last few decades. The literature related to ordinary neutral differential equations is
very extensive, thus, we refer the reader to [26] only, which contains a comprehensive description of such equations.
Similarly, for more on partial neutral functional differential equations and related issues we refer to Adimy and Ezzinbi
[1], Hale [27], Wu and Xia [55] and [56] for finite delay equations, and Hernandez and Henriquez [34, 35] and Hernandez
[36] for unbounded delays.

Recently, in many areas of science there has been an increasing interest in the investigation of functional differential
equations incorporating memory or aftereffect, i.e., there is the effect of infinite delay on state equations. We refer
the reader to Kolmanovskii and Myshkis [41, 42], Wu [55] and references therein for a wealth of reference materials
on the subject. Therefore, there is a real need to discuss functional differential systems with infinite delay. And the
development of the theory of functional differential equations with infinite delays depends on a choice of a phase space.
In fact, various phase spaces have been considered and each different phase space has required a separate development
of the theory (Hino et al. [37]). The common space is the phase space B proposed by Hale and Kato [25], which is
widely applied in functional differential equations with infinite delay and references therein. However, in this paper,
we introduce an abstract phase space Bh which has been adopted by [15, 18, 57]. Based on the phase space Bh, Chang
et al. [15] proved the existence of solutions of impulsive partial neutral functional differential equations with infinite
delay:

d

dt
[x(t)− g(t, xt)] = Ax(t) + f(t, xt), t ∈ J = [0, b], t 6= tk, k = 1, 2, ...,m,

∆x|t=tk = Ik(x(t−k )), k = 1, 2, ...,m,

x(t) = ϕ ∈ Bh.

To the best of our knowledge, there is no work reported on a second order impulsive partial neutral functional
integro-differential equations and inclusions with infinite delay Bh. To close the gap, motivated by the above works,
the purpose of this paper is to study the existence of solutions of a second order impulsive partial neutral functional
integro-differential inclusions with infinite delay:

d

dt

[
x′(t)− g

(
t, xt,

∫ t

0

a(t, s, xs)ds
)]
∈ Ax(t) + F

(
t, xt,

∫ t

0

b(t, s, xs)ds
)
,

t ∈ J = [0, T ], t 6= tk, k = 1, 2, ...,m, (1.1)

x(t) = ϕ ∈ Bh, x′(0) = x1 ∈ E, (1.2)

∆x|t=tk = I1k(x(t−k )), k = 1, 2, ...,m, (1.3)

∆x′|t=tk = I2k(x(t−k )), k = 1, 2, ...,m, (1.4)

where the state variable x(·) takes values in Banach space E, A is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} in a real Banach space E. The function F : J × Bh × E → 2E is a bounded, closed,
convex-valued map, g : J × Bh × E → E, a, b : J × J × Bh → E, 0 = t0 < t1 < · · · < tm < tm+1 = T , and
∆x|t=tk = x(t+k ) − x(t−k ), x(t−k ) and x(t+k ) represent the left and right limits of x(t) at t = tk, respectively. The
histories xt : (−∞, 0]→ E, xt(s) = x(t+ s), s ≤ 0, belong to an abstract phase space Bh which is defined in Section 2.

2. Preliminaries

At first, we present the abstract phase space Bh, which has been used in [15]. Assume that h : (−∞, 0]→ (0,+∞)

is a continuous function with ` =
∫ 0

−∞ h(t)dt < +∞. For any e > 0, we define

B = {ψ : [−e, 0]→ E such that ψ(t) is bounded and measurable},

and equip the space B with the norm

‖ψ‖[−e,0] = sup
s∈[−e,0]

|ψ(s)|, ∀ ψ ∈ B.
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Let us define

Bh = {ψ : (−∞, 0]→ E such that for any c > 0, ψ|[−c,0] ∈ B

and

∫ 0

−∞
h(s)‖ψ‖[s,0]ds < +∞}.

If Bh is endowed with the norm

‖ψ‖Bh =

∫ 0

−∞
h(s)‖ψ‖[s,0]ds, ∀ ψ ∈ Bh,

then it is clear that (Bh, ‖ · ‖Bh) is a Banach space.
Now we consider the space

B′h = {x : (−∞, T ]→ E such that xk ∈ C(Jk, E) and there exist x(t+k )

and x(t−k ) with x(tk) = x(t−k ), x0 = ϕ ∈ Bh, k = 0, 1, ..,m},

where xk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, ..,m. Set ‖ · ‖T be a seminorm in B′h defined by

‖x‖T = ‖ϕ‖Bh + sup{|x(s)| : s ∈ [0, T ]}, x ∈ B′h.

Next, we introduce definitions, notations, and preliminary facts from multivalued analysis which are used thoughout
this paper.

The notation C(J,E) is the Banach space of continuous functions from J into E with the norm ‖x‖∞ = supt∈J |x(t)|
for x ∈ C(J,E). B(E) denotes the Banach space of bounded linear operator from E into E. A measurable function
x : J → E is Bochner integrable if and only if |x| is Lebesgue integrable. L1(J,E) denotes the Banach space of

continuous functions x : J → E which are Bochner integrable norm by ‖x‖L1 =
∫ T
0
|x(t)|dt for all x ∈ L1(J,E).

Let (E, ‖ · ‖) be a Banach space. A multivalued map F : E → 2E is convex (closed) valued, if F(x) is convex
(closed) for all x ∈ E. F is bounded on bounded set if F(B) =

⋃
x∈B F(x) is bounded in E, for any bounded set B

of E ( i.e., supx∈B sup{‖y‖ ∈ F(x)} <∞).
F is called upper semicontinuous (u.s.c.) on E if for each x∗ ∈ E, the set F(x∗) is nonempty, closed subset of E,

and if for each open set B of E containing F(x∗), there exists an open neighbourhood V of x∗ such that F(V ) ⊂ B.
F is said to be completely continuous if F(B) is relatively compact, for every bounded subset B ⊂ E.
If the multivalued map F is completely continuous with nonempty compact values, then F is u.s.c. if and only if

F has a closed graph ( i.e., xn → x∗, yn → y∗, yn ∈ Fxn imply y∗ ∈ Fx∗).
F has a fixed point if there is x ∈ E such that x ∈ Fx.
Let BCC(E) denote the set of all nonempty, bounded, closed and convex subsets of E. A multivalued map

F : J → BCC(E) is said to be measurable if for each x ∈ E the function G : J → R defined by

G(t) = d(x,F(t)) = inf{|x− y| : y ∈ F(t)}

belongs to L1(J,R). For more details on multivalued maps see the books of Deimling [21] and Hu and Papageorgiou
[38].

An upper semicontinuous map H : E → E is said to be condensing [6] if for any subset D ⊂ E with α(D) 6= 0,
we have α(H(D)) < α(D), where α denotes the Kuratowski measure of noncompactness [6]. It is easy to see that a
completely continuous multivalued map is a condensing map.

Throughout this paper, A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous cosine function
of bounded linear operators (C(t))t∈R on Banach space (E, ‖ · ‖). We denote by (S(t))t∈R the sine function associated

with (C(t))t∈R which is defined by S(t)x =
∫ t
0
C(s)xds, for x ∈ E and t ∈ R. Moreover, M0 and M1 are positive

constants such that ‖C(t)‖ ≤M0 and ‖S(t)‖ ≤M1 for every t ∈ J .
The notation [D(A)] stands for the domain of the operator A endowed with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖,

x ∈ D(A). Moreover, in this work, E is the space formed by the vectors x ∈ E for which C(·)x is of class C1 on R. It
was proved by Kisinsky [40] that E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator valued function G(t) =

[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded

linear operators on the space E ×X generated by the operator A =

[
0 I
A 0

]
defined on D(A)× E. It follows from
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this that AS(t) : E → E is a bounded linear operator and that AS(t)x → 0, t → 0, for each x ∈ E. Furthermore, if

x : [0,∞)→ X is a locally integrable function, then z(t) =
∫ t
0
S(t− s)x(s)ds defines an E-valued continuous function.

This is a consequence of the fact that∫ t

0

G(t− s)
[

0
x(s)

]
ds =

[ ∫ t

0

S(t− s)x(s) ds,

∫ t

0

C(t− s)x(s) ds

]T
defines an E× E-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem{
x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ T,
x(0) = z, x′(0) = w,

(2.1)

where h : I → E is an integrable function has been discussed in [52]. Similarly, the existence of solutions of the
semilinear second order abstract Cauchy problem it has been treated in [53]. We only mention here that the function
x(·) given by

x(t) = C(t)z + S(t)w +

∫ t

0

S(t− s)h(s)ds, 0 ≤ t ≤ T, (2.2)

is called mild solution of (2.1) and that when z ∈ E, x(·) is continuously differentiable and

x′(t) = AS(t)z + C(t)w +

∫ t

0

C(t− s)h(s)ds, 0 ≤ t ≤ T. (2.3)

For additional details about cosine function theory, we refer to the reader to [52, 53].
For our approach, we need the following fixed point theorem.

Theorem 2.1 (Martelli [48]). Let E be a Banach space and Φ : E → BCC(E) a condensing map. If the set

Λ = {x ∈ E : λx ∈ Φx, for some λ > 1}

is bounded then Φ has a fixed point.

3. Existence Results

In this section, we shall present and prove existence results for the problem (1.1)-(1.4). First, we give the mild
solution for the problem (1.1)-(1.4).

Definition 3.1. A function x : (−∞, T ] → E is called a mild solution of problem (1.1)-(1.4) if the following holds:
x0 = ϕ ∈ Bh on (−∞, 0], x′(0) = x1; ∆x|t=tk = I1k(x(t−k )), k = 1, 2, ...,m,∆x′|t=tk = I2k(x(t−k )), k = 1, 2, . . . ,m, the
restriction of x(·) to the interval [0, T ) − {t1, t2, ..., tm} is continuous, and for each s ∈ [0, t), the impulsive integral
equation

x(t) = C(t)ϕ(0) + S(t)[x1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

+

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(x(t−k )) +
∑

0<tk<t

S(t− tk)I2k(x(t−k )), t ∈ J
(3.1)

is satisfied, where

f ∈ SF,x =

{
f ∈ L1(J,E) : f(t) ∈ F

(
t, xt,

∫ t

0

b(t, s, xs)ds
)
, for a.e. t ∈ J

}
.

For the study of the problem (1.1)-(1.4), we need the following hypotheses:

(H1) (i) There exist a constant L > 0 such that

‖
∫ t

0

[a(t, s, x)− a(t, s, y)]ds‖ ≤ L‖x− y‖Bh for t, s ∈ J, x, y ∈ Bh.
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(ii) There exist constants L1, L̃1 such that

‖
∫ t

0

a(t, s, x)ds‖ ≤ L1‖x‖Bh + L̃1, t, s ∈ J, x ∈ Bh.

(H2) (i) The function g : J × Bh × E → E is continuous and there exists a constant L2 > 0 such that the function
g satisfies the Lipschitz condition:

‖g(t1, x1, x2)− g(t2, y1, y2)‖ ≤ L2

[
‖t1 − t2‖+ ‖x1 − y1‖Bh + ‖x2 − y2‖

]
,

t1, t2 ∈ J, x1, y1 ∈ Bh, x2, y2 ∈ E.

(ii) There exist constants L3, L̃3 such that `L3 < 1 and

‖g(t, x, y)‖ ≤ L3

[
‖x‖Bh + ‖y‖

]
+ L̃3, t ∈ J, x ∈ Bh, y ∈ E,

where ` =
∫ 0

−∞ h(s)ds < +∞.
(H3) (i) F : J × Bh × E → BCC(E); (t, x, y) → F (t, x, y) is measurable with respect to t for each x ∈ Bh, y ∈ E,

u.s.c. with respect to x, y for each t ∈ J , and for each fixed x ∈ Bh, y ∈ E, the set

SF,x =

{
f ∈ L1(J,E) : f(t) ∈ F

(
t, xt,

∫ t

0

b(t, s, xs)ds
)
, for a.e. t ∈ J

}
.

is nonempty.

(ii) There exists an integrable function m : J → [0,∞) such that

‖F
(
t, xt,

∫ t

0

b(t, s, xs)ds
)
‖ = sup

{
|f | : f ∈ F

(
t, xt,

∫ t

0

b(t, s, xs)ds
)}

≤ m(t)Ω(‖x‖Bh + ‖y‖), t ∈ J, x ∈ Bh, y ∈ E,

where Ω : [0,∞)→ (0,∞) is a continuous nondecreasing function.

(H4) For each (t, s) ∈ J × J , the function b(t, s, ·) : Bh → E is continuous and for each x ∈ Bh, the function
b(·, ·, x) : J × J → E is strongly measurable. There exist an integrable function p : J → [0,∞) and a constant
γ > 0, such that

‖b(t, s, x)‖ ≤ γp(s)Θ(‖x‖Bh)

where Θ : [0,∞) → (0,∞) is a continuous nondecreasing function. Assume that the finite bound of
∫ t
0
γp(s)ds

is L0.

(H5) I1k , I
2
k ∈ C(E,E) and there exist constant dk, d̃k such that ‖I1k(x)‖ ≤ dk, ‖I2k(x)‖ ≤ d̃k, k = 1, 2, . . . ,m for each

x ∈ E.

(H6) The following inequality holds: ∫ T

0

m̃(s)ds <

∫ ∞
h1

ds

s+ Ω(s) + Θ(s)
,

where h1 = ‖ϕ‖Bh + `K1, h2 = `M0L3(1 + L1), h3 = `M1, m̃(t) = max{h2, h3m(t), γp(t)},
t ∈ J, and K1 = M0

[
|ϕ(0)|+ T (L3L̃1 + L̃3) +

∑m
k=1 dk

]
+M1

[
|x1|+ L3‖ϕ‖Bh + L̃3 +

∑m
k=1 d̃k

]
.

Remark 3.2. (i) If dim E <∞, then for each x ∈ Bh, SF,x 6= ∅ ( See [44]).

(ii) SF,x is nonempty if and only if the function Y : J → R defined by Y (t) = inf{|f | : f ∈ F (t, x, y)} belongs to
L1(J,R).

Lemma 3.3. (Lasota and Opial [44]). Let J be a compact real interval and E be a Banach space. Let F be a
multi-valued map satisfying (H2)(i) and let Γ be a linear continuous mapping from L1(J,E) to C(J,E). Then the
operator

Γ ◦ SF : C(J,X)→ BCC(C(J,E)), x 7→ (Γ ◦ SF )(x) := Γ(SF,x)

is a closed graph operator in C(J,E)× C(J,E).
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Lemma 3.4. [18]. Assume x ∈ B′h, then for t ∈ J, xt ∈ Bh. Moreover,

`|x(t)| ≤ ‖xt‖Bh ≤ ‖x0‖Bh + ` sup
s∈[0,t]

|x(s)|,

where ` =
∫ 0

−∞ h(t)dt < +∞.

Consider the multivalued map Φ : B′h → 2B
′
h defined by Φx the set of ρ ∈ B′h such that

ρ(t) =



ϕ(t), if t ∈ (−∞, 0]

C(t)ϕ(0) + S(t)[x1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

+

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(x(t−k )) +
∑

0<tk<t

S(t− tk)I2k(x(t−k )), t ∈ J

where f ∈ SF,x.
We shall show that the operators Φ has fixed points, which are then a solution of equations (1.1)-(1.4). Clearly,

x1 ∈ (Φx)(T ).
For ϕ ∈ Bh, we define ϕ̃ by

ϕ̃(t) =

{
ϕ(t), t ∈ (−∞, 0],

C(t)ϕ(0), t ∈ J,

then ϕ̃ ∈ B′h. Let x(t) = y(t) + ϕ̃(t),−∞ < t ≤ T . It is easy to see that x satisfies (3.1) if and only if y satisfies
y0 = 0, x′(0) = x1 = y′(0) = y1 and

y(t) = S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k )), t ∈ J.

Let B′′h = {y ∈ B′h : y0 = 0 ∈ Bh}. For any y ∈ B′′h,

‖y‖T = ‖y0‖Bh + sup{|y(s)| : 0 ≤ s ≤ T}
= sup{|y(s)| : 0 ≤ s ≤ T},

thus (B′′h, ‖ · ‖T ) is a Banach space. Set Br = {y ∈ B′′h : ‖y‖T ≤ r} for some r ≥ 0, then Br ⊆ B′′h is uniformly bounded,
and for y ∈ Br, from Lemma 3.4, we have

‖yt + ϕ̃t‖Bh ≤ ‖yt‖Bh + ‖ϕ̃t‖Bh
≤ ` sup

s∈[0,t]
|y(s)|+ ‖y0‖Bh + ` sup

s∈[0,t]
|ϕ̃(s)|+ ‖ϕ̃0‖Bh

≤ `(r +M0|ϕ(0)|) + ‖ϕ‖Bh = r′.

(3.2)

Define the multivalued map Φ1 : B′′h → 2B
′′
h defined by Φ1y the set of ρ̄ ∈ B′′h such that

ρ̄(t) =



0, if t ∈ (−∞, 0]

S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k )), t ∈ J

where f ∈ SF,x.
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Lemma 3.5. If the hypotheses (H1)-(H5) are satisfied, then Φ1 : B′′h → 2B
′′
h is a completely continuous multivalued,

u.s.c. with a convex closed value.

Proof. We divide the proof into several steps.
Step 1: Φ1y is convex for each y ∈ B′′h.

In fact, if ρ̄1, ρ̄2 belong to Φ1y, then there exist f1, f2 ∈ SF,y such that for each t ∈ J , we have

ρ̄i(t) = S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)fi(s)ds+
∑

0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k )), i = 1, 2.

Let λ ∈ [0, 1], we have

(λρ̄1 + (1− λ)ρ̄2)(t)

= S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)
[
λf1(s) + (1− λ)f2(s)

]
ds+

∑
0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k )).

Since SF,y is convex ( because F has convex values), we have λρ̄1 + (1− λ)ρ̄2 ∈ Φ1y.
Step 2: Φ1 maps bounded sets into bounded sets in B′′h.

Indeed, it is enough to show that there exists a positive constant K such that for each ρ̄ ∈ Φ1y, y ∈ Br = {y ∈
B′′h : ‖y‖T ≤ r}, one has ‖ρ̄‖T ≤ K.

If ρ̄ ∈ Φ1y, then there exists f ∈ SF,y such that for each t ∈ J , we have

ρ̄(t) = S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k )) (3.3)

+
∑

0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k )).

By (H1)-(H5), (3.2) and (3.3), we have for t ∈ J ,

|ρ̄(t)| ≤ |S(t)[y1 − g(0, ϕ, 0)]|+
∫ t

0

∣∣C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)∣∣ds

+

∫ t

0

|S(t− s)f(s)|ds+
∑

0<tk<t

|C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))|

+
∑

0<tk<t

|S(t− tk)I2k(y(t−k ) + ϕ̃(t−k ))|

≤M1|y1|+M1|g(0, ϕ, 0)|+M0

∫ t

0

[
L3

[
‖ys + ϕ̃s‖Bh + ‖

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ‖
]

+ L̃3

]
ds

+M1

∫ t

0

m(s)Ω
(
‖ys + ϕ̃s‖Bh + ‖

∫ s

0

b(s, τ, yτ + ϕ̃τ )dτ‖
)
ds+M0

m∑
k=1

dk +M1

m∑
k=1

d̃k

≤M1|y1|+M1|g(0, ϕ, 0)|+M0T
[
L3r

′ + L̃3 + L3(L1r
′ + L̃1)

]
+M1Ω

[
r′ + L0Θ(r′)

] ∫ T

0

m(s)ds+M0

m∑
k=1

dk +M1

m∑
k=1

d̃k

= K.
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Thus, for each ρ̄ ∈ Φ1(Br), we obtain ‖ρ̄‖T ≤ K.
Step 3: Φ1 maps bounded sets into equicontinuous sets of B′′h.

Let 0 < τ1 < τ2 ≤ T − {t1, t2, . . . , tm}, for each ρ̄ ∈ Φ1y, y ∈ Br = {y ∈ B′′h : ‖y‖T ≤ r} and ρ̄ ∈ Φ1y, there exists
f ∈ SF,y satisfying (3.3). Thus, we see that

|ρ̄(τ2)− ρ̄(τ1)|
≤ |[S(τ2)− S(τ1)][y1 − g(0, ϕ, 0)]|

+

∫ τ1

0

∣∣[C(τ2 − s)− C(τ1 − s)]g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)∣∣ds

+

∫ τ2

τ1

∣∣C(τ2 − s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)∣∣ds

+

∫ τ1

0

|[S(τ2 − s)− S(τ1 − s)]f(s)|ds

+

∫ τ2

τ1

|S(τ2 − s)f(s)|ds+
∑

0<tk<τ1

|[C(τ2 − tk)− C(τ1 − tk)]I1k(y(t−k ) + ϕ̃(t−k ))|

+
∑

τ1<tk<τ2

|C(τ2 − tk)I1k(y(t−k ) + ϕ̃(t−k ))|

+
∑

0<tk<τ1

|[S(τ2 − tk)− S(τ1 − tk)]I2k(y(t−k ) + ϕ̃(t−k ))|

+
∑

τ1<tk<τ2

|S(τ2 − tk)I2k(y(t−k ) + ϕ̃(t−k ))|

≤ |S(τ2)− S(τ1)||y1 − g(0, ϕ, 0)|

+

∫ τ1

0

[
|C(τ2 − s)− C(τ1 − s)|L3

[
‖ys + ϕ̃s‖Bh + L1(‖ys + ϕ̃s‖Bh + L̃1)

]
+ L̃3

]
ds

+

∫ τ2

τ1

|C(τ2 − s)|L3

[
‖ys + ϕ̃s‖Bh + L1(‖ys + ϕ̃s‖Bh + L̃1)

]
+ L̃3]ds

+

∫ τ1

0

|S(τ2 − s)− S(τ1 − s)||f(s)|ds

+

∫ τ2

τ1

|S(τ2 − s)||f(s)|ds+
∑

0<tk<τ1

|C(τ2 − tk)− C(τ1 − tk)|dk +
∑

τ1<tk<τ2

|C(τ2 − tk)|dk

+
∑

0<tk<τ1

|S(τ2 − tk)− S(τ1 − tk)|d̃k +
∑

τ1<tk<τ2

|S(τ2 − tk)|d̃k.

The right hand side of above inequality is independent of y ∈ Br and tends to zero as τ2 − τ1 → 0. Thus the set
{Φ1y : y ∈ Br} is equicontinuous (Note that this proves the equicontinuity for the case where t 6= tk, k = 1, 2, . . . ,m+1.
Easily we prove the equicontinuity for the case where t = ti. And also the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ T
are very simple).

As a consequence of steps 2 and 3 together with the Arzela-Ascoli theorem we can conclude that Φ1 : B′′h → 2B
′′
h

is a compact multivalued map, and therefore, a condensing map.
Step 4: Φ1 has a closed graph.

Let yn → y∗, ρ̄n ∈ Φ1yn and ρ̄n → ρ̄∗. We shall prove that ρ̄∗ ∈ Φ1y∗. Indeed, ρ̄n ∈ Φ1yn means that there exists
fn ∈ SF,yn such that

ρ̄n(t) = S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, yns + ϕ̃s,

∫ s

0

a(s, τ, ynτ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)fn(s)ds+
∑

0<tk<t

C(t− tk)I1k(yn(t−k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(yn(t−k ) + ϕ̃(t−k )), t ∈ J.
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We must prove that there exists f∗ ∈ SF,y∗ such that

ρ̄∗(t) = S(t)[y1 − g(0, ϕ, 0)] +

∫ t

0

C(t− s)g
(
s, y∗s + ϕ̃s

∫ s

0

a(s, τ, y∗τ + ϕ̃τ )dτ
)
ds

+

∫ t

0

S(t− s)f∗(s)ds+
∑

0<tk<t

C(t− tk)I1k(y∗(t
−
k ) + ϕ̃(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(y∗(t
−
k ) + ϕ̃(t−k )), t ∈ J.

Then

‖{ρ̄n(t)− S(t)[y1 − g(0, ϕ, 0)]−
∫ t

0

C(t− s)g
(
s, yns + ϕ̃s,

∫ s

0

a(s, τ, ynτ + ϕ̃τ )dτ
)
ds

−
∑

0<tk<t

C(t− tk)I1k(yn(t−k ) + ϕ̃(t−k ))−
∑

0<tk<t

S(t− tk)I2k(yn(t−k ) + ϕ̃(t−k ))}

− {ρ̄∗(t)− S(t)[y1 − g(0, ϕ, 0)]−
∫ t

0

C(t− s)g
(
s, y∗s + ϕ̃s,

∫ s

0

a(s, τ, y∗τ + ϕ̃τ )dτ
)
ds

−
∑

0<tk<t

C(t− tk)I1k(y∗(t
−
k ) + ϕ̃(t−k ))−

∑
0<tk<t

S(t− tk)I2k(y∗(t
−
k ) + ϕ̃(t−k ))}‖T

→ 0 as n→∞.

Consider the linear operator Γ : L1(J,E)→ C(J,E) defined by

f → Γ(f)(t) =

∫ t

0

S(t− s)f(s)ds.

Clearly, Γ is linear and continuous. Indeed, one has

‖Γf‖∞ ≤M1‖f‖L1 .

From Lemma 3.3, it follws that Γ ◦ SF is a closed graph operator. Moreover, we have

ρ̄n(t)− S(t)[y1 − g(0, ϕ)]−
∫ t

0

C(t− s)g
(
s, yns + ϕ̃s,

∫ s

0

a(s, τ, ynτ + ϕ̃τ )dτ
)
ds

−
∑

0<tk<t

C(t− tk)I1k(yn(t−k ) + ϕ̃(t−k ))−
∑

0<tk<t

S(t− tk)I2k(yn(t−k ) + ϕ̃(t−k )) ∈ Γ(SF,yn).

Since yn → y∗, it follows from Lemma 3.3 that

ρ̄∗(t)− S(t)[y1 − g(0, ϕ)]−
∫ t

0

C(t− s)g
(
s, y∗s + ϕ̃s,

∫ s

0

a(s, τ, y∗τ + ϕ̃τ )dτ
)
ds

−
∑

0<tk<t

C(t− tk)I1k(y∗(t
−
k ) + ϕ̃(t−k ))−

∑
0<tk<t

S(t− tk)I2k(y∗(t
−
k ) + ϕ̃(t−k ))

=

∫ t

0

S(t− s)f∗(s)ds

for some f∗ ∈ SF,y∗ .
Hence Φ1 is a completely continuous multivalued map, u.s.c. with convex closed values.

Now in order to apply Theorem 2.1, we introduce a parameter λ > 1 and consider the following equation:

d

dt

[
x′(t)− 1

λ
g
(
t, xt,

∫ t

0

a(t, s, xs)ds
)]
∈ Ax(t) +

1

λ
F
(
t, xt,

∫ t

0

b(t, s, xs)ds
)
, t ∈ J = [0, T ],

t 6= tk, k = 1, 2, ...,m,

x(t) = ϕ ∈ Bh, x′(0) = x1 ∈ E,

∆x|t=tk =
1

λ
I1k(x(t−k )), k = 1, 2, ...,m, (3.4)

∆x′|t=tk =
1

λ
I2k(x(t−k )), k = 1, 2, ...,m.



V. Kavitha, M. Mallika Arjunan, C. Ravichandran, J. Nonlinear Sci. Appl. 5 (2012), 321–333 330

Thus, by Definition 3.1, the mild solution of (3.4) can be written as

x(t) = C(t)ϕ(0) + S(t)[x1 − g(0, ϕ, 0)] +
1

λ

∫ t

0

C(t− s)g
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
ds

+
1

λ

∫ t

0

S(t− s)f(s)ds+
∑

0<tk<t

C(t− tk)I1k(x(t−k ))

+
∑

0<tk<t

S(t− tk)I2k(x(t−k )), t ∈ J (3.5)

where

f ∈ SF,x =

{
f ∈ L1(J,E) : f(t) ∈ F

(
t, xt,

∫ t

0

b(t, s, xs)ds
)
, for a.e. t ∈ J

}
.

Lemma 3.6. If hypotheses (H1)-(H6) are satisfied, let x(t) be a mild solution of equation (3.4), then there exists a
priori bound K > 0 such that ‖xt‖Bh ≤ K, t ∈ J , where K depends only on T and on the functions m(·), Ω(·) and
Θ(·).

Proof. From equation (3.5), we obtain

|x(t)| ≤ |C(t)ϕ(0)|+ |S(t)[x1 − g(0, ϕ, 0)]|+
∫ t

0

|C(t− s)g
(
s, xs,

∫ s

0

a(s, τ, xτ )dτ
)
|ds

+

∫ t

0

|S(t− s)f(s)|ds+
∑

0<tk<t

|C(t− tk)I1k(x(t−k ))|

+
∑

0<tk<t

|S(t− tk)I2k(x(t−k ))|

≤M0|ϕ(0)|+M1[|x1|+ L3‖ϕ‖Bh + L̃3] +M0

∫ t

0

[
L3

[
‖xs‖Bh + ‖

∫ s

0

a(s, τ, xτ )dτ‖
]

+ L̃3

]
ds+M1

∫ t

0

m(s)Ω
(
‖xs‖Bh + ‖

∫ s

0

b(s, τ, xτ )dτ‖
)
ds+M0

m∑
k=1

dk +M1

m∑
k=1

d̃k

≤M0|ϕ(0)|+M1[|x1|+ L3‖ϕ‖Bh + L̃3] +M0T [L3L̃1 + L̃3]

+M0L3[1 + L1]

∫ t

0

‖xs‖Bhds+M1

∫ t

0

m(s)Ω
(
‖xs‖Bh +

∫ s

0

γp(τ)Θ(‖xτ‖Bh)dτ
)
ds

+M0

m∑
k=1

dk +M1

m∑
k=1

d̃k

≤M0

[
|ϕ(0)|+ T (L3L̃1 + L̃3) +

m∑
k=1

dk

]
+M1

[
|x1|+ L3‖ϕ‖Bh + L̃3 +

m∑
k=1

d̃k

]
+M0L3[1 + L1]

∫ t

0

‖xs‖Bhds+M1

∫ t

0

m(s)Ω
(
‖xs‖Bh +

∫ s

0

γp(τ)Θ(‖xτ‖Bh)dτ
)
ds

= K1 +M0L3[1 + L1]

∫ t

0

‖xs‖Bhds+M1

∫ t

0

m(s)Ω
(
‖xs‖Bh +

∫ s

0

γp(τ)Θ(‖xτ‖Bh)dτ
)
ds.

From Lemma 3.4, we get

‖xt‖Bh ≤ ` sup{|x(s)| : 0 ≤ s ≤ t}+ ‖ϕ‖Bh

≤ ‖ϕ‖Bh + `K1 + `M0L3[1 + L1]

∫ t

0

‖xs‖Bhds

+ `M1

∫ t

0

m(s)Ω
(
‖xs‖Bh +

∫ s

0

γp(τ)Θ(‖xτ‖Bh)dτ
)
ds, t ∈ J.

Let u(t) = sup{‖xs‖Bh : 0 ≤ s ≤ t}, then the function u(t) is nondecreasing in J , and we have

u(t) ≤ h1 + h2

∫ t

0

u(s)ds+ h3

∫ t

0

m(s)Ω
(
u(s) +

∫ s

0

γp(τ)Θ(u(τ))dτ
)
ds, t ∈ J.
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Denoting by the right hand side of the above inequality as v(t), we see that

v(0) = h1, u(t) ≤ v(t), t ∈ J

and

v′(t) = h2u(t) + h3m(t)Ω
(
u(t) +

∫ t

0

γp(s)Θ(u(s))ds
)
.

Since Ω is nondecresing

v′(t) ≤ h2v(t) + h3m(t)Ω
(
v(t) +

∫ t

0

γp(s)Θ(v(s))ds
)
, t ∈ J.

Let

w(t) = v(t) +

∫ t

0

γp(s)Θ(v(s))ds.

Then
w(0) = v(0) and v(t) ≤ w(t).

w′(t) = v′(t) + γp(t)Θ(v(t))

≤ h2v(t) + h3m(t)Ω(w(t)) + γp(t)Θ(v(t))

≤ h2w(t) + h3m(t)Ω(w(t)) + γp(t)Θ(w(t))

≤ m̃(t)
[
w(t) + Ω(w(t)) + Θ(w(t))

]
.

This implies ∫ w(t)

w(0)

ds

s+ Ω(s) + Θ(s)
≤
∫ T

0

m̃(s)ds <

∫ ∞
h1

ds

s+ Ω(s) + Θ(s)
, t ∈ J.

This inequality implies that w(t) < ∞. Hence there is a constant K such that w(t) ≤ K, t ∈ J . Thus, we have
‖xt‖Bh ≤ u(t) ≤ v(t) ≤ w(t) ≤ K, t ∈ J , where K depends only on T and on the functions m(·) , Ω(·) and Θ(·).

Theorem 3.1. Assume that the hypotheses (H1)-(H6) hold. Then the problem (1.1)-(1.4) admits at least one solution
on J .

Proof. Let G = {y ∈ B′′h : λy ∈ Φ1y for some λ ∈ (0, 1)}. Then for any y ∈ G, we have

y(t) =
1

λ
S(t)[y1 − g(0, ϕ, 0)] +

1

λ

∫ t

0

C(t− s)g
(
s, ys + ϕ̃s,

∫ s

0

a(s, τ, yτ + ϕ̃τ )dτ
)
ds

+
1

λ

∫ t

0

S(t− s)f(s)ds+
1

λ

∑
0<tk<t

C(t− tk)I1k(y(t−k ) + ϕ̃(t−k ))

+
1

λ

∑
0<tk<t

S(t− tk)I2k(y(t−k ) + ϕ̃(t−k ))

which implies the function x = y+ φ̃ is a mild solution of above system (3.4), for which we have proved in Lemma 3.6
as ‖xt‖Bh ≤ K, t ∈ J , and hence from Lemma 3.4

‖y‖T = ‖y0‖Bh + sup{|y(t)| : 0 ≤ t ≤ T}
= sup{|y(t)| : 0 ≤ t ≤ T}
≤ sup{|x(t)| : 0 ≤ t ≤ T}+ sup{|ϕ̃(t)| : 0 ≤ t ≤ T}
≤ sup{l−1‖xt‖Bh : 0 ≤ t ≤ T}+ sup{|C(t)ϕ(0)| : 0 ≤ t ≤ T}
≤ l−1K +M0|ϕ(0)|

which implies that the set G is bounded on J .
Hence it follows from Lemma 3.5 and Theorem 2.1 that the operator Φ1 has a fixed point y∗ ∈ B′′h. Let x(t) =

y∗(t) + ϕ̃(t), t ∈ (−∞, T ]. Then x is a fixed point of the operator Φ which is a mild solution of the problem
(1.1)-(1.4).



V. Kavitha, M. Mallika Arjunan, C. Ravichandran, J. Nonlinear Sci. Appl. 5 (2012), 321–333 332

Acknowledgements:

The authors dedicate this paper to “Silver Jubilee Year Celebrations of Karunya University, Coimbatore-641 114,
Tamil Nadu, India”. And also the authors wish to thank Dr. Paul Dhinakaran, Chancellor, Dr. Paul P. Appasamy,
ViceChancellor, and Dr(Mrs). Anne Mary Fernandez, Registrar, of Karunya University, Coimbatore, for their constant
encouragements and support for this research work.

References

[1] M. Adimy and K. Ezzinbi, Strict solutions of nonlinear hyperbolic neutral differential equations, Appl. Math. Lett., 12:1
(1999) 107-112. 1

[2] A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution
equations, Electronic Journal of Differential Equations, 2005(111)(2005), 1-8. 1

[3] D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific
and Technical Group, England, 1993. 1

[4] K. Balachandran, J.Y. Park and S.H. Park, Controllability of nonlocal impulsive quasi-linear integrodifferential systems in
Banach spaces, Reports on Mathematical Physics, 65(2)(2010), 247-257. 1

[5] K. Balachandran and N. Annapoorani, Existence results for impulsive neutral evolution integrodifferential equations with
infinite delay, Nonlinear Analysis: Hybrid Systems, 3 (2009), 674–684. 1

[6] J. Banas and K. Goebal, Measures of Noncompactness in Banach spaces, Dekker, New York, 1980. 2
[7] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Cor-

poration, 2006. 1
[8] M. Benchohra, J. Henderson and S.K. Ntouyas, An existence result for first order impulsive functional differential equations

in Banach spaces, Comp. Math. Appl., 42 (2001), 1303-1310. 1
[9] M. Benchohra, J. Henderson and S.K. Ntouyas, Semilinear impulsive neutral functional differential inclusions in Banach

spaces, Appl. Anal., 81:4 (2002), 951-963. 1
[10] M. Benchohra and A. Ouahab, Impulsive neutral functional differential equations with variable times, Nonlinear Analysis,

55:6 (2003), 679-693. 1
[11] M. Benchohra and S.K. Ntouyas, Existence and controllability results for nonlinear differential inclusions with nonlocal

conditions, J. Appl. Anal., 8 (2002), 31-46. 1
[12] M. Benchohra and A. Ouahab, Impulsive neutral functional differential inclusions with variable times, Electronic Journal

of Differential Equations, 2003:67 (2003), 1-12. 1
[13] M. Benchohra, E.P. Gatsori, J. Henderson, and S.K. Ntouyas, Nondensely defined evolution impulsive differential inclusions

with nonlocal conditions, J. Math. Anal. Appl., 286 (2003), 307-325. 1
[14] M. Benchohra, J. Henderson and S.K. Ntouyas, Existence results for impulsive multivalued semilinear neutral functional

differential inclusions in Banach Spaces, J. Math. Anal. Appl., 263(2001), 763-780. 1
[15] Y.K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations

with infinite delay, Nonlinear Analysis: Hybrid Systems, 2(1)(2008), 209-218. 1, 2
[16] Y. -K. Chang and W.-T. Li, Existence results for second order impulsive functional differential inclusions, J. Math. Anal.

Appl., 301:2 (2005), 477-490. 1
[17] Y. -K. Chang and Li. Mei. Qi, Existence results for second order impulsive functional differential inclusions, J. Appl. Math.

Stochastic Anal., 2006, 1-12. 1
[18] Y. -K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos,

Solitons & Fractals, 33 (2007), 1601-1609. 1, 3.4
[19] Y.-K. Chang, M. Mallika Arjunan and V. Kavitha, Existence results for a second order impulsive functional differential

equations with state-dependent delay, Differential Equations and Applications, 1:3(2009), 325-339. 1
[20] Y. -K. Chang, A. Anguraj and K. Karthikeyan, Existence for impulsive neutral integrodifferential inclusions with nonlocal

initial conditions via fractional operators, Nonlinear Anlaysis, 71(2009), 4377-4386. 1
[21] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992. 2
[22] L. Erbe and W. Krawcewicz, Existence of solution to B.V.P for impulsive second order differential inclusions, Rocky

Mountain J. Math. 22:2 (1992), 519-539. 1
[23] M. Frigon and D. O’ Regan, Boundary value problems for second order impulsive differential equations using set-valued

maps, Appl. Anal., 58:3-4(1995), 325–333. 1
[24] X. Fu, Y. Cao, Existence for neutral impulsive differential inclusions with nonlocal conditions, Nonlinear Analysis: Theory,

Methods and Applications, 68:12(2008), 3707-3718. 1
[25] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funckcial. Ekvac., 21 (1978), 11-41. 1
[26] J. K. Hale, L. Verduyn and M. Sjoerd, Introduction to functional differential equations, Appl. Math. Sci., 99. Springer

Verlag, New York, 1993. 1
[27] J. K. Hale, Partial neutral functional differential equations, (English. English summary) Rev. Roumaine Math. Pures Appl.,

39:4 (1994), 339-344. 1
[28] E. Hernandez, A second order impulsive Cauchy problem, Int. J. Math. Math. Sci., 31(8)(2002), 451-461. 1
[29] E. Hernandez and H.R. Henriquez, Impulsive partial neutral differential equations, Appl. Math. Lett., 19(2006), 215-222. 1
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