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Abstract

In this paper, we first propose a single-species system with impulsive effects on time scales and by
establishing some new comparison theorems of impulsive dynamic equations on time scales, we obtain
sufficient conditions to guarantee the permanence of the system. Then we prove a Massera type theorem
for impulsive dynamic equations on time scales and based on this theorem, we establish a criterion for the
existence and uniformly asymptotic stability of a unique positive almost periodic solution of the system.
Finally, we give an example to show the feasibility of our main results. Our example also shows that the
continuous time system and its corresponding discrete time system have the same dynamics. Our results of
this paper are completely new. c©2016 All rights reserved.
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1. Introduction

In 1978, Ludwig et al. [8] introduced the following single-species system:

x′(t) = x(t)[a− bx(t)]− h(x),

where x(t) is the density of species x at time t, a and b are the intrinsic growth rate and self-inhibition rate,
respectively. The h(x)-term represents predation. Predation is an increasing function and usually saturates
for large enough x. If the density of species x is small, then the predation term h(x) drops rapidly. To

∗Corresponding author
Email addresses: yklie@ynu.edu.cn (Yongkun Li), wp521009@126.com (Pan Wang), bli123@126.com (Bing Li)

Received 2015-10-03



Y. K. Li, P. Wang, B. Li, J. Nonlinear Sci. Appl. 9 (2016), 1019–1034 1020

investigate the effects of other specific forms of h(x), Murray [10] took h(x) = αx2(t)
β+x2(t)

and the authors of

[13, 14] took h(x) = cx(t)
d+x(t) .

Since, in reality, many natural and man-made factors (e.g., fire, drought, flooding deforestation, hunting,
harvesting, breeding etc.) always lead to rapid decrease or increase of population number at fixed times–
such sudden changes can often be characterized mathematically in the form of impulses, the authors of [14]
considered the following single-species system governed by the impulsive differential equation: x′(t) = x(t)[a(t)− b(t)x(t)]− c(t)x(t)

d(t) + x(t)
, t 6= tk,

x(t+k ) = (1 + λk)x(tk), t = tk, k ∈ N,
(1.1)

where x(0) > 0, tk is an impulsive point for every k and 0 ≤ t0 < t1 < t2 < . . . < tk < . . ., and N is the
set of positive integers, the coefficients a(t), b(t), c(t), d(t) are positive continuous T -periodic functions for
t ≥ 0, the jump condition reflects the possibility of impulsive perturbations on species x, {λk} is assumed
to be a real sequence with λk > −1 and there exists an integer q > 0 such that λk+q = λk, tk+q = tk + T .
By using Brouwers fixed point theorem and the Lyapunov function, sufficient conditions for the existence
and global asymptotic stability of positive periodic solutions of the system were derived.

It is well known that biological and environmental parameters are naturally subject to fluctuation in
time, the effects of a periodically or almost periodically varying environment are considered as important
selective forces on systems in a fluctuating environment. Therefore, on the one hand, models should take into
account the seasonality of the periodically changing environment. However, on the other hand, if the various
constituent components of the temporally nonuniform environment is with incommensurable (nonintegral
multiples) periods, then one has to consider the environment to be almost periodic since there is no a priori
reason to expect the existence of periodic solutions. For this reason, the assumption of almost periodicity is
more realistic, more important and more general when we consider the effects of the environmental factors.
Also, at present, few results are available for the existence of positive almost periodic solutions to population
models with impulses.

Meanwhile, discrete time models governed by difference equations are very important in implementation
and applications, so it is significant to study the discrete time models. As we know, the study of dynamical
systems on time scales can unify and extend continuous and discrete analysis [2], which is now an active
area of research. In recent years, a variety of dynamic equations on time scales have been investigated (see
[1, 2, 3, 4, 5, 6, 11, 12, 17]). However, only few papers [7, 15, 16] published on the permanence for dynamic
equation models on time scales, and up to now, there is no paper published on the permanence for impulsive
dynamic equation models on time scales. Thus, it is worthwhile continuing to study the single-species system
with impulsive effects on time scales.

Motivated by the above reasons, in this paper, we are concerned with the following single-species system
with impulsive effects on time scales: x∆(t) = a(t)− b(t)ex(t) − c(t)

d(t) +m(t)ex(t)
, t 6= tk, t ∈ [t0,+∞)T,

x(t+k ) = x(tk) ln(1 + λk), t = tk, k ∈ N,
(1.2)

where T is an almost periodic time scale, 0 ≤ t0 ∈ T.

Remark 1.1. Let y(t) = ex(t). If T = R, then system (1.2) is reduced to the following system: y′(t) = y(t)[a(t)− b(t)y(t)]− c(t)y(t)

d(t) +m(t)y(t)
, t 6= tk, t ∈ [t0,+∞),

y(t+k ) = (1 + λk)y(tk), t = tk, k ∈ N,
(1.3)

let m(t) ≡ 1, then system (1.2) is reduced to system (1.1) and if T = Z, then system (1.2) is reduced to the
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following system: y(n+ 1) = y(n) exp

{
a(n)− b(n)y(n)− c(n)

d(n) +m(n)y(n)

}
, n 6= nk,

y(n+
k ) = (1 + λk)y(nk), n = nk, k ∈ N, n ∈ [t0,+∞)Z.

(1.4)

From the point of view of biology, we focus our discussion on the positive solutions of system (1.2). So
it is assumed that the initial condition of system (1.2) is of the form x(t0) > 0.

For convenience, we denote

f l = inf
t∈T

f(t), fu = sup
t∈T

f(t),

where f is an almost periodic function on T.
Throughout this paper, we assume that

(H1) a(t), b(t), c(t), d(t),m(t) are all bounded nonnegative almost periodic functions on T such that al > 0,
bl > 0, cl > 0, dl ≥ 1 and ml > 0;

(H2) {λk} is an almost periodic sequence and there exists positive constant r such that 0 < r ≤
∏
t0<tk<t

ln(1+
λk) ≤ 1 for t ≥ t0 and 0 < λk ≤ e− 1 for k ∈ N;

(H3) the set of sequences {tjk}, t
j
k = tk+j − tk, k, j ∈ N is uniformly almost periodic and infk t

1
k = θ > 0;

(H4) au > bl, (al − cu)r > bu, −al + cu ∈ R+.

The main purpose of this paper is to discuss the permanence of system (1.2) by establishing some new
comparison theorems of impulsive dynamic equations on time scales and based on the permanence result,
by establishing a Massera [9] type theorem of impulsive dynamic equations on time scales, we obtain the
existence and uniformly asymptotic stability of a unique positive almost periodic solution of system (1.2)
on time scales. To the best of our knowledge, this is the first time to study the permanence and almost
periodicity of system (1.3) and system (1.4), and is the first time to study the permanence of impulsive
dynamic equations on time scales.

The organization of this paper is as follows: In Section 2, we introduce some notations and definitions,
state some preliminary results which are needed in later sections and establish some new comparison theo-
rems. In Section 3, we establish some sufficient conditions for the permanence of (1.2). In Section 4, we prove
a Massera type theorem for impulsive dynamic equations on time scales and apply this theorem to obtain
some sufficient conditions for the existence and uniformly asymptotic stability of a unique positive almost
periodic solution of (1.2). In Section 5, we give an example to illustrate the feasibility and effectiveness of
our results obtained in previous sections. We draw a conclusion in Section 6.

2. Preliminaries and comparison theorems

In this section, we shall recall some basic definitions and lemmas which are used in what follows.
A time scale T is an arbitrary nonempty closed subset of the real numbers, the forward and backward

jump operators σ, ρ : T→ T and the forward graininess µ : T→ R+ are defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t} and µ(t) = σ(t)− t.

A point t is said to be left-dense if t > inf T and ρ(t) = t, right-dense if t < supT and σ(t) = t, left-
scattered if ρ(t) < t and right-scattered if σ(t) > t. If T has a left-scattered maximum m, then Tk = T\m;
otherwise Tk = T. If T has a right-scattered minimum m, then Tk = T\m; otherwise Tk = T.

A function f : T → R is right-dense continuous or rd-continuous provided it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function on T.
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For f : T→ R and t ∈ Tk, then f is called delta differentiable at t ∈ T if there exists c ∈ R such that for
given any ε > 0, there is an open neighborhood U of t satisfying

|[f(σ(t))− f(s)]− c[σ(t)− s]| ≤ ε |σ(t)− s|

for all s ∈ U . In this case, c is called the delta derivative of f at t ∈ T, and is denoted by c = f∆(t). For
T = R, we have f∆ = f

′
, the usual derivative, and for T = Z we have the backward difference operator,

f∆(t) = ∆f(t) := f(t+ 1)− f(t).
Let f be right-dense continuous, if F∆(t) = f(t), then we define the delta integral by

∫ s
r f(t)∆t =

F (s)− F (r), r, s ∈ T.

Lemma 2.1 ([2]). Assume f, g : T −→ R are delta differentiable at t ∈ T. Then

(i) (f + g)∆(t) = f∆(t) + g∆(t);

(ii) (fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t);

(iii) If f and f∆ are continuous, then (
∫ t
a f(t, s)∆s)∆ = f(σ(t), t) +

∫ t
a f

∆(t, s)∆s.

A function p : T → R is called regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tk. The set of all
regressive and rd-continuous functions p : T → R will be denoted by R = R(T) = R(T,R). We define the
set R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

If r ∈ R, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{ Log(1 + hz)

h
, h 6= 0,

z, h = 0.

Let p, q : T→ R be two regressive functions. We define

p⊕ q = p+ q + µpq, 	p = − p

1 + µp
, p	 q = p⊕ (	q) =

p− q
1 + µq

.

Then the generalized exponential function has the following properties.

Lemma 2.2 ([2]). Assume that p, q : T→ R are two regressive functions. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e	p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);

(v) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vi) ep(t, s)/eq(t, s) = ep	q(t, s);

(vi)
(

1
ep(t,s)

)∆
= −p(t)

eσp (t,s) .

Lemma 2.3. Let f : T→ R be a continuous function, f(t) > 0 and f∆(t) ≥ 0 for t ∈ T. Then

f∆(t)

fσ(t)
≤ [ln(f(t))]∆ ≤ f∆(t)

f(t)
.

If f(t) > 0 and f∆(t) < 0 for t ∈ T, then
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f∆(t)

f(t)
≤ [ln(f(t))]∆ ≤ f∆(t)

fσ(t)
.

Proof. If f∆(t) ≥ 0 for t ∈ T, by use of Chain Rule, we can obtain

[ln(f(t))]∆ =


f∆(t)
f(t) , µ(t) = 0,(∫ 1

0
dh

f(t)+hµ(t)f∆(t)

)
f∆(t), µ(t) 6= 0.

If µ(t) 6= 0, then

[ln(f(t))]∆ =

(∫ 1

0

dh

f(t) + hµ(t)f∆(t)

)
f∆(t) =

1

µ(t)f∆(t)

∫ f(t)+µ(t)f∆(t)

f(t)

ds

s
f∆(t)

=
1

µ(t)
ln

(
f(t) + µ(t)f∆(t)

f(t)

)
=

1

µ(t)
ln

(
fσ(t)

f(t)

)
.

(2.1)

Let g1(r) = r − 1− ln r. Then g′1(r) = r−1
r ≥ 0 for r ≥ 1. Hence, g1 is an increasing function. By use of

g1(1) = 0, we have g1(r) ≥ 0 for r ≥ 1. That is, r − 1 ≥ ln r for r ≥ 1. Since

f∆(t)

f(t)
=

1

µ(t)

(
f(t) + µ(t)f∆(t)

f(t)
− 1

)
≥ 1

µ(t)
ln

(
f(t) + µ(t)f∆(t)

f(t)

)
= [ln(f(t))]∆,

and so,

[ln(f(t))]∆ ≤ f∆(t)

f(t)
.

Similarly, by use of Chain Rule, if µ(t) = 0, then f(t) = fσ(t), and we have

[ln(f(t))]∆ =
f∆(t)

f(t)
=
f∆(t)

fσ(t)
.

If µ(t) 6= 0, let g2(r) = ln r + 1
r − 1, then g′2(r) = r−1

r2 ≥ 0 for r ≥ 1. Hence, g2 is an increasing function.
By use of g2(1) = 0, we have g2(r) ≥ 0 for r ≥ 1. That is, ln r ≥ 1− 1

r for r ≥ 1. By use of (2.1), we have

f∆(t)

fσ(t)
=

1

µ(t)

(
µ(t)f∆(t)− fσ(t)

fσ(t)
+ 1

)
=

1

µ(t)

(
1− f(t)

fσ(t)

)
≤ 1

µ(t)
ln

(
fσ(t)

f(t)

)
= [ln(f(t))]∆,

and so

f∆(t)

fσ(t)
≤ [ln(f(t))]∆.

Similarly, if f∆(t) ≤ 0 for t ∈ T, we can prove that

f∆(t)

f(t)
≤ [ln(f(t))]∆ ≤ f∆(t)

fσ(t)
.

The proof is completed.
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Definition 2.4 ([6]). A time scale T is called an almost periodic time scale if

Π =
{
τ ∈ R : t± τ ∈ T,∀t ∈ T

}
6= {0}.

Definition 2.5. Let T be an almost periodic time scale. A function f ∈ C(T,Rn) is called an almost
periodic function if the ε-translation set of f

E{ε, f} = {t ∈ Π : |f(t+ τ)− f(t)| < ε,∀t ∈ T}

is relatively dense for all ε > 0; that is, for any given ε > 0, there exists a constant l(ε) > 0 such that each
interval of length l(ε) contains a τ(ε) ∈ E{ε, f} such that

|f(t+ τ)− f(t)| < ε,∀t ∈ T.

τ is called the ε-translation number of f .

Remark 2.6. Definition 2.5 is a slightly modified version of Definition 3.9 in [6].

Lemma 2.7 ([6]). If f, g ∈ C(T,Rn) are almost periodic, then fg, f + g are almost periodic.

Lemma 2.8 ([6]). If f ∈ C(T,Rn) is almost periodic and F (·) is uniformly continuous on the value field of
f(t), then F ◦ f is almost periodic.

Lemma 2.9 ([6]). If f ∈ C(T,Rn) is almost periodic, then F (t) is almost periodic if and only if F (t) is
bounded on T, where F (t) =

∫ t
0 f(s)∆s.

Definition 2.10 ([7]). ϕ ∈ C(T,R) is said to be asymptotically almost periodic, if

ϕ(t) = p(t) + q(t), (2.2)

where p(t) is an almost periodic function on T and q(t) is continuous on T, limt→∞ q(t) = 0.

Lemma 2.11 ([7]). Let ϕ ∈ C(T,R) is asymptotically almost periodic. Then the decomposition (2.2) is
unique.

Lemma 2.12 ([7]). Let ϕ ∈ C(T,R), the following propositions are equivalent:

(i) ϕ(t) is asymptotically almost periodic;

(ii) for any ε > 0, there exist constants l(ε) > 0 and k(ε) > 0 such that each interval of length l(ε) contains
at least one τ such that

|ϕ(t+ τ)− ϕ(t)| < ε, ∀t, t+ τ ≥ k(ε).

Lemma 2.13 ([2]). Assume that a ∈ R and t0 ∈ T. If a ∈ R+ on Tk, then ea(t, t0) > 0 for all t ∈ T.

Lemma 2.14 ([5]). Assume that x ∈ PC1[T,R] and{
x∆(t) ≤ (≥)p(t)x(t) + q(t), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≤ (≥)dkx(tk) + bk, t = tk, k ∈ N.

Then for t ≥ t0 ≥ 0,

x(t) ≤ (≥)x(t0)
∏

t0<tk<t

dkep(t, t0) +
∑

t0<tk<t

( ∏
t0<tj<t

djep(t, tk)

)
bk

+

∫ t

t0

∏
s<tk<t

dkep(t, σ(s))q(s)∆s,

where PC1 = {y : [0,∞)T → R which is rd-continuous except at tk, k = 1, 2, . . ., for which y(t−k ), y(t+k ),
y∆(t−k ), y∆(t+k ) exist with y(t−k ) = y(tk), y

∆(t−k ) = y∆(tk)}.
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Lemma 2.15. Assume that x ∈ PC1[T,R], −a ∈ R+, α ≤
∏
t0<tk<t

dk ≤ β for t ≥ t0.

(i) If {
x∆(t) ≤ b− ax(t), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≤ dkx(tk) + bk, t = tk, k ∈ N, (2.3)

then for t ≥ t0,

x(t) ≤ x(t0)βe(−a)(t, t0) +
∑

t0<tk<t

βe(−a)(t, tk)bk +
bβ

a
[1− e(−a)(t, t0)].

Especially, if b > 0, a > 0, we have lim supt→+∞ x(t) ≤ bβ
a .

(ii) If {
x∆(t) ≥ b− ax(t), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≥ dkx(tk) + bk, t = tk, k ∈ N, (2.4)

then for t ≥ t0,

x(t) ≥ x(t0)αe(−a)(t, t0) +
∑

t0<tk<t

αe(−a)(t, tk)bk +
bα

a
[1− e(−a)(t, t0)].

Especially, if b > 0, a > 0, we have lim inft→+∞ x(t) ≥ bα
a .

Proof. Because the proof of (ii) is similar to that of (i), we only prove (i). By Lemma 2.14 and (2.3), we
have

x(t) ≤ x(t0)
∏

t0<tk<t

dke(−a)(t, t0) +
∑

t0<tk<t

( ∏
t0<tj<t

dje(−a)(t, tk)

)
bk

+

∫ t

t0

∏
s<tk<t

dke(−a)(t, σ(s))b∆s.

In view of
∏
t0<tk<t

dk ≤ β, we have

x(t) ≤ x(t0)βe(−a)(t, t0) +
∑

t0<tk<t

βe(−a)(t, tk)bk + β

∫ t

t0

e(−a)(t, σ(s))b∆s

≤ x(t0)βe(−a)(t, t0) +
∑

t0<tk<t

βe(−a)(t, tk)bk +
bβ

a
[1− e(−a)(t, t0)].

In particular, if a > 0, then e(−a)(t, t0) < 1. We obtain lim supt→+∞ x(t) ≤ bβ
a . The proof is completed.

Similarly, we can easily obtain the following results:

Lemma 2.16. Assume that −b ∈ R+, x ∈ PC1[T,R] and x(t) > 0 for t ∈ T and α ≤
∏
t0<tk<t

dk ≤ β for
t ≥ t0.

(i) If {
x∆(t) ≤ xσ(t)(b− ax(t)), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≤ dkx(tk), t = tk, k ∈ N, (2.5)

then for t ≥ t0,

x(t) ≤ bβ

a

[
1 +

(
b

ax(t0)
− 1

)
e(−b)(t, t0)

]−1

.

Especially, if b > 0, a > 0, we have lim supt→+∞ x(t) ≤ bβ
a .
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(ii) If {
x∆(t) ≥ xσ(t)(b− ax(t)), t ∈ [t0,+∞)T, t 6= tk,
x(t+k ) ≥ dkx(tk), t = tk, k ∈ N, (2.6)

then for t ≥ t0,

x(t) ≥ bα

a

[
1 +

(
b

ax(t0)
− 1

)
e(−b)(t, t0)

]−1

.

Especially, if b > 0, a > 0, we have lim inft→+∞ x(t) ≥ bα
a .

Proof. Because the proof of (ii) is similar to that of (i), we only prove (i). Noticing that

x∆(t)

x(t)xσ(t)
≤ b

x(t)
− a

and (
1

x(t)

)∆

= − x∆(t)

x(t)xσ(t)
.

Let y(t) = 1
x(t) , we have {

−y∆(t) ≤ by(t)− a, t 6= tk, t ∈ [t0,+∞)T,
y(t+k ) ≥ 1

dk
y(tk), t = tk, k ∈ N,

that is, {
y∆(t) ≥ a− by(t), t 6= tk, t ∈ [t0,+∞)T,
y(t+k ) ≥ 1

dk
y(tk), t = tk, k ∈ N.

By Lemma 2.15 (ii), for t > t0, we have

y(t) ≥ y(t0)
1

β
e(−b)(t, t0) +

a

bβ
[1− e(−b)(t, t0)],

that is,

x(t) ≤ bβ

a

[
1 +

(
b

ax(t0)
− 1

)
e(−b)(t, t0)

]−1

.

In particular, if b > 0, then e(−b)(t, t0) < 1. We obtain lim supt→+∞ x(t) ≤ bβ
a . The proof is completed.

Lemma 2.17. Assume that −b ∈ R+, a > 0, x ∈ PC1[T,R] and x(t) > 0, α ≤
∏
t0<tk<t

dk ≤ β for t ≥ t0,
µ̄ = supt∈T µ(t). If {

x∆(t) ≥ x(t)(b− ax(t)), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≥ dkx(tk), t = tk, k ∈ N, (2.7)

then for t ≥ t0,

x(t) ≥ bα

a

[
1 +

(
b

ax(t0)
− 1

)
e(− b

1+µ̄b
)(t, t0)

]−1

.

Especially, if b > 0, we have lim inft→+∞ x(t) ≥ bα
a .
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Proof. Since

x(t) = xσ(t)− µ(t)x∆(t),

we have

x∆(t) ≥ x(t)(b− ax(t)) = (xσ(t)− µ(t)x∆(t))(b− ax(t)),

this is,

[1 + µ(t)(b− ax(t))]x∆(t) ≥ xσ(t)(b− ax(t))

and so

x∆(t) ≥ xσ(t)

(
b

1 + µ̄b
− a

1 + µ̄b
x(t)

)
.

Thus we have  x∆(t) ≥ xσ(t)

(
b

1+µ̄b −
a

1+µ̄bx(t)

)
, t 6= tk, t ∈ [t0,+∞)T,

x(t+k ) ≥ dkx(tk), t = tk, k ∈ N.
(2.8)

From Lemma 2.16 and (2.8), we have

x(t) ≥ bα

a

[
1 +

(
b

ax(t0)
− 1

)
e(− b

1+µ̄b
)(t, t0)

]−1

.

In particular, if b > 0, then e(− b
1+µ̄b

)(t, t0) < 1. We obtain lim inft→+∞ x(t) ≥ bα
a . The proof is

completed.

3. Permanence

In this section, we will give our main results about the permanence of system (1.2). For convenience, we
introduce the following notations:

x∗ =
au − bl

bl
, x∗ = ln

(
(al − cu)r

bu

)
.

Lemma 3.1. Assume that (H1)-(H4) hold. Let x(t) be any solution of system (1.2). Then

x∗ ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ x∗.

Proof. Let x(t) be any solution of system (1.2). From (1.2), it follows that

x∆(t) ≤ au − blex(t) ≤ au − bl[1 + x(t)]

= (au − bl)− blx(t)

and so {
x∆(t) ≤ (au − bl)− blx(t), t 6= tk, t ∈ [t0,+∞)T,
x(t+k ) ≤ x(tk) ln(1 + λk), t = tk, k ∈ N.

In view of Lemma 2.15 (i), we have

lim sup
t→+∞

x(t) ≤ au − bl

bl
= x∗.
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By system (1.2), we arrive at

x∆(t) ≥ al − cu − buex(t), t ∈ [t0,+∞)T.

Let N(t) = ex(t). Then it is obvious that N(t) > 0. The above inequality yields that

[ln(N(t))]∆ ≥ al − cu − buN(t).

If N∆(t) ≥ 0, in view of Lemma 2.3, we have

N∆(t)

N(t)
≥ al − cu − buN(t),

and so

N∆(t) ≥ N(t)[al − cu − buN(t)].

Thus {
N∆(t) ≥ N(t)[al − cu − buN(t)], t 6= tk, t ∈ [t0,+∞)T,
N(t+k ) ≥ (1 + λk)N(tk), t = tk, k ∈ N.

By applying Lemma 2.17, (al − cu)r > bu and −al + cu ∈ R+, we have

lim inf
t→+∞

N(t) ≥ (al − cu)r

bu
.

If N∆(t) < 0, in view of Lemma 2.3, we have

N∆(t)

Nσ(t)
≥ al − cu − buN(t)

and so

N∆(t) ≥ Nσ(t)[al − cu − buN(t)].

Thus {
N∆(t) ≥ Nσ(t)[al − cu − buN(t)], t 6= tk, t ∈ [t0,+∞)T,
N(t+k ) ≥ (1 + λk)N(tk), t = tk, k ∈ N.

By applying Lemma 2.17, (al − cu)r > bu and −al + cu ∈ R+, we have

lim inf
t→+∞

N(t) ≥ (al − cu)r

bu
.

That is,

lim inf
t→+∞

x(t) ≥ ln

(
(al − cu)r

bu

)
= x∗.

The proof is complete.

Theorem 3.2. Assume that (H1)-(H4) hold. Then system (1.2) is permanence.
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4. A Massera type theorem and almost periodic solutions

In this section, we will prove a Massera type theorem and use it to study the existence of almost periodic
solutions of (1.2). Consider the following equation{

x∆(t) = f(t, x), t 6= tk, t ∈ T+,
∆x(tk) = Ik(x(tk)), t = tk, k ∈ N, (4.1)

where f : T+ × SB → R, SB = {x ∈ R : ‖x‖ < B}, ‖x‖ = supt∈T |x(t)|, the functions Ik ∈ C[R,R], k ∈ N
are almost periodic uniformly with respects to x ∈ SB and are Lipschitz continuous in x, f(t, x) is almost
periodic in t uniformly for x ∈ SB and is continuous in x. The set of sequences {tjk}, t

j
k = tk+j − tk, k, j ∈ N

is uniformly almost periodic and infk t
1
k = θ > 0. To find the solution of (4.1), we consider the product

system of (4.1) as follows{
x∆(t) = f(t, x), t 6= tk, t ∈ T+,
∆x(tk) = Ik(x(tk)), t = tk, k ∈ N,

{
y∆(t) = f(t, y), t 6= tk, t ∈ T+,
∆y(tk) = Ik(y(tk)), t = tk, k ∈ N.

Define

V1 =
{
V : T+ × SB × SB → R+, V is rd− continuous in (tk−1, tk]T+ × SB × SB and

lim
(t,x,y)→(tk,x0,y0),t>tk

V (t, x, y) = V (t+k , x0, y0)
}
.

Lemma 4.1. Suppose that there exists a Lyapunov functional V (t, x, y) ∈ V1 satisfying the following condi-
tions

(i) a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||), where (t, x, y) ∈ T+ × SB × SB, a, b ∈ κ, κ = {a ∈ C(R+,R+) :
a(0) = 0 and a is increasing};

(ii) |V (t, x, y)−V (t, x1, y1)| ≤ L(‖x−x1‖+‖y−y1‖), where (t, x, y) ∈ T+×SB×SB, L > 0 is a constant;

(iii) V (t+k , x+ Ik(x), y + Ik(y)) ≤ V (t, x, y), x, y ∈ SB, t = tk, k ∈ N;

(iv) D+V ∆
(4.1)(t, x, y) ≤ −cV (t, x, y), where c > 0, −c ∈ R+, x, y ∈ SB, t 6= tk, k ∈ N.

Moreover, if there exists a solution x(t) ∈ S of (4.1) for t ∈ T+, where S ⊂ SB is a compact set, then
there exists a unique almost periodic solution p(t) ∈ S of (4.1), which is uniformly asymptotically stable. In
particular, if f(t, x) is ω-periodic in t uniformly for x ∈ SB and there exists a positive integer q such that
tk+q = tk + ω, Ik+q(x) = Ik(x) with tk ∈ T+, then p(t) is also periodic.

Proof. Take {ωn} ⊂ Π such that ωn → +∞ as n → +∞. Suppose that ϕ(t) ∈ S is a solution of (4.1) for
t ∈ T+, then ϕ(t+ ωn) ∈ S is a solution of the following equation{

x∆(t) = f(t+ ωn, x), t 6= tk − ωn,
∆x(tk + ωn) = Ik(x(tk + ωn)), t = tk − ωn.

For any ε > 0, take large enough integer n0(ε, β) such that when m ≥ l ≥ n0(ε), we have

b(2B)e(−c)(ωl, 0) <
a(ε)

2

and

|f(t+ ωm, x)− f(t+ ωl, x)| < ca(ε)

2L
.
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Then for (iv), we have

D+V ∆(t, ϕ(t),ϕ(t+ ωm − ωl))
≤ −cV (t, ϕ(t), ϕ(t+ ωm − ωl)) + L|f(t+ ωm − ωl, ϕ(t+ ωm − ωl))
− f(t, ϕ(t+ ωm − ωl))|,

for t 6= tk − (ωm − ωl).
On the other hand, from t = tk − (ωm − ωl) and (iii) it follows that

V (t, ϕ(t) + Ik(ϕ(t)), ϕ(t+ ωm − ωl) + Ik(ϕ(t+ ωm − ωl))) ≤ V (t, ϕ(t), ϕ(t+ ωm − ωl))

and so

D+V ∆(t, ϕ(t),ϕ(t+ ωm − ωl)) ≤ −cV (t, ϕ(t), ϕ(t+ ωm − ωl)) +
ca(ε)

2
.

When m ≥ l ≥ n0(ε), we have

V (t+ ωl,ϕ(t+ ωl), ϕ(t+ ωm))

≤ e(−c)(t+ ωl, 0)V (0, ϕ(0), ϕ(ωm − ωl)) +
a(ε)

2
(1− e(−c)(t+ ωl, 0))

≤ e(−c)(t+ ωl, 0)V (0, ϕ(0), ϕ(ωm − ωl)) +
a(ε)

2
≤ a(ε).

By (i), for m ≥ l ≥ n0(ε) and t ∈ T+, we obtain

|ϕ(t+ ωm)− ϕ(t+ ωl)| < ε,

which implies that ϕ(t) is asymptotically almost periodic. Then ϕ(t) = p(t) + q(t), where p(t) is almost
periodic and q(t) → 0, as t → ∞. Therefore p(t) ∈ S is an almost periodic solution of (4.1). It is easy to
verify that p(t) is uniformly asymptotically stable and every solution in SB tends to p(t), which means that
p(t) is unique. In particular, if f(t, x) is ω-periodic in t uniformly for x ∈ SB and there exists a positive
integer q such that tk+q = tk + ω, Ik+q(x) = Ik(x) with tk ∈ T+, then p(t + ω) ∈ S is also a solution. By
the uniqueness, we have p(t+ ω) = p(t). The proof is complete.

Let x(t) be any solution of system (1.2), Ω = {x(t) : 0 < x∗ ≤ x(t) ≤ x∗}. It is easy to verify that under
the conditions of Theorem 3.2, Ω is an invariant set of (1.2).

Lemma 4.2. Assume that (H1)-(H4) hold. Then Ω 6= ∅.

Proof. By the almost periodicity of a(t), b(t), c(t), d(t) and m(t), there exists a sequence ω = {ωp} ⊆ Π
with ωp → +∞ as p→ +∞ such that for t 6= tk, we have

a(t+ ωp)→ a(t), b(t+ ωp)→ b(t), c(t+ ωp)→ c(t)

d(t+ ωp)→ d(t), m(t+ ωp)→ m(t), p→ +∞,

and there exists a subsequence {kl} of {p}, kl → +∞, l→ +∞, such that tkl → tk, λkl → λk.
In view of Lemma 3.1, for all ε > 0 then there exists a t1 ∈ T and t1 ≥ t0 such that

x∗ − ε ≤ x(t) ≤ x∗ + ε, for t ≥ t1.

Write xp(t) = x(t + ωp) for t ≥ t1, p = 1, 2, . . .. For any positive integer q, it is easy to see that there
exist sequences {xp(t) : p ≥ q} such that the sequences {xp(t)} has subsequences, denoted by {xp(t)} again,
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converging on any finite interval of T as p→ +∞, respectively. Thus, there is a function y(t) defined on T
such that

xp(t)→ y(t), for t ∈ T, as p→ +∞.

Since 
x∆
p (t) = a(t+ ωp)− b(t+ ωp)e

x(t+ωp)

− c(t+ ωp)

d(t+ ωp) +m(t+ ωp)ex(t+ωp)
, t 6= tk − ωp, t ∈ [t0,+∞)T,

xp(t
+
k ) = x(tk + ωp) ln(1 + λkl), t = tk − ωp, k ∈ N,

we have  y∆(t) = a(t)− b(t)ey(t) − c(t)

d(t) +m(t)ey(t)
, t 6= tk, t ∈ [t0,+∞)T,

y(t+k ) = y(tk) ln(1 + λk), t = tk, k ∈ N.

We can easily see that y(t) is a solution of system (1.2) and x∗ − ε ≤ y(t) ≤ x∗ + ε for t ∈ T. Since ε is an
arbitrary small positive number, it follows that x∗ ≤ y(t) ≤ x∗ for t ∈ T.

Theorem 4.3. Assume that (H1)-(H4) hold. Suppose further that

(H5) γ > 0 and −γ ∈ R+, where

γ = 2blex∗ +
2clmlex∗

(du +muex∗)2
− µ̄(bu)2e2x∗ − µ̄(cu)2(mu)2e2x∗

(dl +mlex∗)4
− 2µ̄bucumue2x∗

(dl +mlex∗)2
.

Then (1.2) has a unique almost periodic solution x(t), which is uniformly asymptotically stable.

Proof. From Lemma 4.2, there exists x(t) such that x∗ ≤ x(t) ≤ x∗. Hence, |x(t)| ≤ K, where K =
max{|x∗|, |x∗|}. Denote ‖x‖ = supt∈T |x(t)|. Suppose that x = x(t), y = y(t) are any two positive solutions
of system (1.2), then ‖x‖ ≤ K, ‖y‖ ≤ K. In view of system (1.2), we have

x∆(t) = a(t)− b(t)ex(t) − c(t)

d(t) +m(t)ex(t)
, t 6= tk, t ∈ [t0,+∞)T,

x(t+k ) = x(tk) ln(1 + λk), t = tk, k ∈ N,

y∆(t) = a(t)− b(t)ey(t) − c(t)

d(t) +m(t)ey(t)
, t 6= tk, t ∈ [t0,+∞)T,

y(t+k ) = y(tk) ln(1 + λk), t = tk, k ∈ N.

(4.2)

Consider the Lyapunov function V (t, x, y) on T+ × Ω× Ω defined by

V (t, x, y) = (x(t)− y(t))2.

It is easy to see that there exist two constants C1 > 0, C2 > 0 such that (C1‖x − y‖)2 ≤ V (t, x, y) ≤
(C2‖x − y‖)2. Let a, b ∈ C(R+,R+), a(x) = C2

1x
2, b(x) = C2

2x
2, so the condition (i) of Lemma 4.1 is

satisfied. Besides,

|V (t, x, y)− V (t, x̄, ȳ)| = |(x(t)− y(t))2 − (x̄(t)− ȳ(t))2|
≤ |(x(t)− y(t))− (x̄(t)− ȳ(t))||(x(t)− y(t)) + (x̄(t)− ȳ(t))|
≤ |(x(t)− y(t))− (x̄(t)− ȳ(t))|

(
|x(t)|+ |y(t)|+ |x̄(t)|+ |ȳ(t)|

)
≤ 4K

[
|x(t)− x̄(t)|+ |y(t)− ȳ(t)|

]
= L

(
‖x− x̄‖+ ‖y − ȳ‖

)
,



Y. K. Li, P. Wang, B. Li, J. Nonlinear Sci. Appl. 9 (2016), 1019–1034 1032

where L = 4K, so condition (ii) of Lemma 4.1 is also satisfied.
On the other hand for t = tk, we have

V (t+k , x(t+k ), y(t+k )) = (x(t+k )− y(t+k ))2

= [ln(1 + λk)]
2(x(tk)− y(tk))

2

≤ (x(tk)− y(tk))
2

= V (tk, x(tk), y(tk)),

then condition (iii) of Lemma 4.1 is also satisfied.
In view of system (4.2), we have

(x(t)− y(t))∆ = −b(t)(ex(t) − ey(t))

+c(t)

(
1

d(t) +m(t)ex(t)
− 1

d(t) +m(t)ey(t)

)
, t 6= tk, t ∈ [t0,+∞)T,

x(t+k )− y(t+k ) = (x(tk)− y(tk)) ln(1 + λk), t = tk, k ∈ N.

(4.3)

For convenience, we denote u(t) = x(t)− y(t). Using the mean value theorem we get

ex(t) − ey(t) = eξ(t)(x(t)− y(t)), (4.4)

1

d(t) +m(t)ex(t)
− 1

d(t) +m(t)ey(t)
= − m(t)eζ(t)

(d(t) +m(t)eζ(t))2
(x(t)− y(t)), (4.5)

where ξ(t) and ζ(t) lie between x(t) and y(t). Then, by use of (4.4) and (4.5), (4.3) can be written as u∆(t) = −b(t)eξ(t)u(t)− c(t)m(t)eζ(t)

(d(t) +m(t)eζ(t))2
u(t), t 6= tk, t ∈ [t0,+∞)T,

u(t+k ) = u(tk) ln(1 + λk), t = tk, k ∈ N.
(4.6)

Calculating the right derivative D+V ∆ of V along the solution of (4.6) for t 6= tk,

D+V ∆(t, x, y)

= [2(x(t)− y(t)) + µ(t)(x(t)− y(t))∆](x(t)− y(t))∆

= [2u(t) + µ(t)u∆(t)]u∆(t)

=

{
2u(t) + µ(t)

[
− b(t)eξ(t)u(t)− c(t)m(t)eζ(t)

(d(t) +m(t)eζ(t))2
u(t)

]}
×
[
− b(t)eξ(t)u(t)− c(t)m(t)eζ(t)

(d(t) +m(t)eζ(t))2
u(t)

]
= −2b(t)eξ(t)u2(t)− 2c(t)m(t)eζ(t)

(d(t) +m(t)eζ(t))2
u2(t) + µ(t)b2(t)e2ξ(t)u2(t)

+
µ(t)c2(t)m2(t)e2ζ(t)

(d(t) +m(t)eζ(t))4
u2(t) +

2µ(t)b(t)m(t)c(t)e(ξ(t)+ζ(t))

(d(t) +m(t)eζ(t))2
u(t)2

≤ −2blex∗u2(t)− 2clmlex∗

(du +muex∗)2
u2(t) + µ̄(bu)2e2x∗u2(t) +

µ̄(cu)2(mu)2e2x∗

(dl +mlex∗)4
u2(t)

+
2µ̄bucumue2x∗

(dl +mlex∗)2
u(t)2

≤ −
[
2blex∗ +

2clmlex∗

(du +muex∗)2
− µ̄(bu)2e2x∗ − µ̄(cu)2(mu)2e2x∗

(dl +mlex∗)4
− 2µ̄bucumue2x∗

(dl +mlex∗)2

]
u2(t)
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≤ −γu2(t)

= −γV (t, x, y).

By (H5), we see that condition (iv) of Lemma 4.1 holds. Hence, according to Lemma 4.1, there exists a
unique uniformly asymptotically stable almost periodic solution x(t) of system (1.2), and x(t) ∈ Ω.

5. An example

Consider the following single-species system with impulsive effects on time scale T: x∆(t) = a(t)− b(t)ex(t) − c(t)

d(t) +m(t)ex(t)
, t 6= tk, t ∈ [0,+∞)T,

x(t+k ) = x(tk) ln(1 + λk), t = tk, k ∈ N,
(5.1)

where T = R or T = Z, and

a(t) = 0.4− 0.01 sin(
√

2t), b(t) = 0.34, c(t) = 0.009 + 0.001 cos(
√

5t),

d(t) = 1.05 + 0.05 cos(
√

5t), m(t) = 0.2 + 0.03 sin(
√

3t), λk = e(0.9)
1

2k − 1, tk = k.

By calculating, we have

au = 0.41, al = 0.39, bu = bl = 0.34, cu = 0.01, cl = 0.008,

du = 1.1, dl = 1, mu = 0.23, ml = 0.17, r ≈ 0.949,

so we obtain

x∗ =
au − bl

bl
≈ 0.206, x∗ = ln

(
(al − cu)× 0.949

bu

)
≈ 0.059.

When T = R, µ(t) = 0 and γ ≈ 0.723. When T = Z, µ(t) = 1 and γ ≈ 0.547. So, in both cases T = R
and T = Z, all conditions in Theorem 4.3 are satisfied, and thus (5.1) has a unique positive almost periodic
solution, which is uniformly asymptotically stable.

6. Conclusion

In this paper, some new comparison theorems and a Massera type theorem for impulsive dynamic
equations on time scales are established. Based on these results, the existence and uniformly asymptotic
stability of unique positive almost periodic solution of a single-species system with impulsive effects on time
scales is obtained. Our results of this paper are completely new and can be used to study other types
impulsive dynamic equation models on time scales.
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