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Abstract

The purpose of this paper is to generalize the Euler sequences of nonabsolute type by introducing a gen-
eralized Euler mean difference operator Er(∆(α̃)) of order α. We investigate their topological structures as
well as some interesting results concerning the operator Er(∆(α̃)) for a proper fraction α̃. Also we obtain
the α-, β- and γ-duals of these sets.
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1. Introduction

By Γ(α̃), we denote the Euler gamma function of a real number α̃. Using the definition, Γ(α̃) with
α̃ /∈ {0,−1,−2,−3 . . . } can be expressed as an improper integral as follows:

Γ(α̃) =

∫ ∞
0

e−ttα̃−1dt. (1.1)

Also, the Euler gamma function is known as the generalized factorial function. Let w be the set of all
sequences of real numbers and `∞, c and c0 respectively be the Banach spaces of bounded, convergent and
null sequences x = (xk) with the usual norm ‖x‖ = supk |xk| . By bs, cs, `1 and `p we denote the spaces of
all bounded, convergent, absolutely and p−absolutely convergent series, respectively.
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For a positive proper fraction α̃, Baliarsingh and Dutta [6, 7] ( also, see [8, 13]) have defined the
generalized fractional difference operator ∆(α̃) as

∆(α̃)(xk) =
∞∑
i=0

(−1)i
Γ(α̃+ 1)

i!Γ(α̃− i+ 1)
xk−i. (1.2)

Throughout the text it is assumed that the series defined in (1.2) is convergent for x ∈ w. More specifically,
it is convenient to express the difference operator ∆(α̃) as a triangle i.e.,

(∆(α̃))nk =

{
(−1)(n−k) Γ(α̃+1)

(n−k)!Γ(α̃−n+k+1) , (0 ≤ k ≤ n)

0, (k > n)

In fact, this difference matrix includes several difference matrices introduced by Ahmad and Mursaleen [1],
Malkowsky et al. [18] and many others (see[5, 10, 14, 15, 16, 17, 19, 20, 23]).

The well known Euler mean matrix Er = (ernk) of order r, (0 < r < 1) is defined by the matrix

ernk =


(
n

k

)
(1− r)n−krk, (k ≤ n)

0, (k > n).

Equivalently, we may write

Er =


1 0 0 0 . . .

1− r r 0 0 . . .
(1− r)2 2(1− r)r r2 0 . . .
(1− r)3 3(1− r)2r 3(1− r)r2 r3 . . .

...
...

...
...

. . .

 .

Combining the Euler mean matrix of order r and the difference matrix of order α̃, we define the product
matrix Er(∆(α̃)) as

(Er(∆(α̃)))nk =


n∑
i=k

(−1)i−k
(

n

n− i

)
Γ(α̃+ 1)

(i− k)!Γ(α̃− i+ k + 1)
ri(1− r)n−i, (0 ≤ k ≤ n)

0, (k > n)

Moreover, (Er(∆(α̃)))nk can be written as follows:

(Er(∆(α̃)))nk =


1 0 0 0 · · ·

(1− r)− α̃r r 0 0 · · ·
(1− r)2 − 2α̃(1− r)r + α̃(α̃−1)

2! r2 2(1− r)r − α̃r2 r2 0 · · ·
...

...
...

...
. . .

 .

Let A = (ank) be an infinite matrix of real numbers ank, where n, k ∈ N0, the set of all natural numbers
including zero. For the sequence spaces X and Y , we write a matrix mapping A : X → Y defined by

(Ax)n =
∑
k

ankxk, (n ∈ N0). (1.3)

For every x = (xk) ∈ X, we call Ax the A−transform of x if the series
∑

k ankxk converges for each n ∈ N0.
By (X,Y ), we denote the class of all infinite matrices A such that A : X → Y . Thus, A ∈ (X,Y ) if and
only if the series in (1.3) converges for each n ∈ N0.
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The matrix domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) ∈ w : Ax ∈ λ},
In fact, for most cases the new sequence space λA generated by the limitation matrix A can be expressed
as either an expansion or contraction of the original space λ. In some cases they may overlap each others.

It is known that the duality is an important concept in the theory of sequence spaces, especially for
studying of topological structures of sequence spaces. Let X,Y ⊂ w and define the set S(X,Y ) by

S(X,Y ) = {z = (zk) : xz = (xkzk) ∈ Y for all x ∈ X}. (1.4)

With the notation of (1.4), we redefine the α−, β− and γ−duals of a sequence space X respectively as
follows:

Xα = S(X, `1), Xβ = S(X, cs) and Xγ = S(X, bs).

Now, we give the following results involving the inverse of the matrices ∆(α̃), Er and Er(∆(α̃))

Lemma 1.1 ([9, 12]). The inverse of the difference matrix ∆(α̃) is given by the triangle

(∆(−α̃))nk =

{
(−1)(n−k) Γ(−α̃+1)

(n−k)!Γ(−α̃−n+k+1) , (0 ≤ k ≤ n),

0, (k > n).

Lemma 1.2. The inverse of the Euler mean matrix Er is given by the triangle

(E1/r)nk =

{
(−1)(n−k)

(
n
k

)
(1− r)n−kr−n, (0 ≤ k ≤ n),

0, (k > n).

Proof. Proof is straightforward (see [12]).

Lemma 1.3. The inverse of the Euler mean difference matrix Er(∆(α̃)) is given by a triangle (bnk), where

bnk =



n∑
j=k

(−1)(n−k)

(
j

k

)
Γ(−α̃+ 1)(1− r)j−kr−j

(n− j)!Γ(−α̃− n+ j + 1)
, (0 < k ≤ n),

1
rn , (k = n),

0, (k > n).

Proof. Proof follows from Lemma 1.1 and Lemma 1.2.

2. New Euler difference sequence spaces

In this section, we define certain sequence spaces of non absolute type erp(∆
(α̃)), er0(∆(α̃)),erc(∆

(α̃)) and

er∞(∆(α̃)) by combining the Euler mean operator Er and the fractional difference operator ∆(α̃). We also
investigate their certain topological properties. In addition, the α−, β− and γ−duals of these spaces have
been determined.

For a positive real number α̃ and 0 < r < 1, we define certain classes of Euler fractional difference
sequence spaces as

erp(∆
(α̃)) =

x = (xk) :
∑
n

∣∣∣∣∣∣
n∑
j=0

n∑
i=j

(−1)i−j
(

n

n− i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)n−ixj

∣∣∣∣∣∣
p

<∞


er0(∆(α̃)) =

x = (xk) : lim
n→∞

n∑
j=0

n∑
i=j

(−1)i−j
(

n

n− i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)n−ixj = 0


erc(∆

(α̃)) =

x = (xk) : lim
n→∞

n∑
j=0

n∑
i=j

(−1)i−j
(

n

n− i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)n−ixj exists


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er∞(∆(α̃)) =

x = (xk) : sup
n

∣∣∣∣∣∣
n∑
j=0

n∑
i=j

(−1)i−j
(

n

n− i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)n−ixj

∣∣∣∣∣∣ <∞


It is noted that the spaces erp(∆
(α̃)), er0(∆(α̃)), erc(∆

(α̃)) and er∞(∆(α̃)) can be derived by taking Er(∆(α̃))−
transform of x in the spaces `p, c0, c and `∞, respectively i.e.,

erp(∆
(α̃)) = (`p)Er(∆(α̃)); c

r
0(∆(α̃)) = (c0)Er(∆(α̃)); c

r(∆(α̃)) = (c)Er(∆(α̃)); `∞(∆(α̃)) = (`∞)Er(∆(α̃))

Keeping the above new sets in mind, we define the sequence y = (yk), which is used as the Er(∆(α̃))−transform
of a sequence x = (xk) i.e.,

yk =
k∑
j=0

k∑
i=j

(−1)i−j
(

k

k − i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)k−ixj , (k ∈ N0). (2.1)

In particular, the above new spaces include the following special cases:

(i) For α̃ = 0, above classes reduce to the classes defined by Altay and Başar [2, 3].

(ii) For α̃ = 1, above classes reduce to the classes defined by Altay and Polat [4].

(iii) For α̃ = m ∈ N, above classes reduce to the classes defined by Polat and Başar [21].

We will now give some interesting results of these spaces concerning their topological structures, bases
and duals.

Theorem 2.1. For a positive proper fraction α̃, the sequence space erp(∆
(α̃)) is a complete normed linear

space with co-ordinate wise addition and scalar multiplication which is a BK-space with the norm

‖x‖erp(∆(α̃)) = ‖Er(∆(α̃))x‖p (1 ≤ p <∞).

Also, the sequence spaces er0(∆(α̃)), erc(∆
(α̃)) and er∞(∆(α̃)) are complete normed linear spaces with co-ordinate

wise addition and scalar multiplication, moreover BK-space with the norm

‖x‖erc(∆(α̃)) = ‖x‖er∞(∆(α̃)) = ‖Er(∆(α̃))x‖∞.

Proof. The proof is straightforward, hence omitted.

Theorem 2.2. For a positive proper fraction α̃, the sequence spaces erp(∆
(α̃)), er0(∆(α̃)), erc(∆

(α̃)) and

er∞(∆(α̃)) are linearly isomorphic to the classical spaces `p, c0, c and `∞, respectively.

Proof. We prove the theorem for the space er∞(∆(α̃)). We show that there exists a linear bijection between the
spaces er∞(∆(α̃)) and `∞. With the notation (2.1) we define a mapping T : er∞(∆(α̃))→ `∞ by x 7→ y = Tx.
Clearly, T is linear. If Tx = θ = (0, 0, 0, . . . ), then x = θ; therefore, T is injective. Let y ∈ `∞ and using
Lemma 1.3, define a sequence x = (xk) via yk as

xk =

k∑
i=0

k∑
j=i

(−1)(k−i)
(
j

i

)
Γ(−α̃+ 1)(1− r)j−ir−j

(k − j)!Γ(−α̃− k + j + 1)
yi, (k ∈ N0). (2.2)

Then, we have

sup
n

∣∣∣∣∣∣
n∑
j=0

n∑
i=j

(−1)i−j
(

n

n− i

)
Γ(α̃+ 1)

(i− j)!Γ(α̃− i+ j + 1)
ri(1− r)n−ixj

∣∣∣∣∣∣ = sup
n
|yn| = ‖y‖∞ <∞.

Thus, we obtain that x ∈ er∞(∆(α̃)) and consequently T is surjective. This completes the proof.
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Theorem 2.3. Let λk = (Er(∆(α̃))x)k for all k ∈ N0. Now for fixed k ∈ N0 define the sequence

b
(k)
n = {b(k)

n }n∈N0 by

b(k)
n =


1
rn , (k = n),
n∑
j=k

(−1)(n−k)

(
j

k

)
Γ(−α̃+ 1)(1− r)j−kr−j

(n− j)!Γ(−α̃− n+ j + 1)
, (0 ≤ k ≤ n),

0, (k > n),

for all n, k ∈ N0. Then

(i) The sequence {b(k)
n }n∈N0 is a basis for the space er0(∆(α̃)) and any x ∈ er0(∆(α̃)) has a unique represen-

tation in the form

x =
∑
k

λkb
(k).

(ii) The set {z, β(k)} is a basis for the space erc(∆
(α̃)) and any x ∈ erc(∆(α̃)) has a unique representation in

the form

x = lz +
∑
k

(λk − l)b(k),

where l = lim
k→∞

λk and z = (zk), defined by

zk =
k∑
i=0

k∑
j=i

(−1)(k−i)
(
j

i

)
Γ(−α̃+ 1)(1− r)j−ir−j

(k − j)!Γ(−α̃− k + j + 1)
.

3. Dual properties

In this section, we formulate and prove theorems determining the α-, β-, and γ-duals of the Euler
sequence spaces of nonabsolute type.

It is well known that {`∞}β = `1 and {`p}β = `q where 1 ≤ p < ∞ and p−1 + q−1 = 1. We shall
throughout denote the collection of all finite subsets of N by F . We begin with quoting lemmas, due to
Stieglitz and Tietz [22], that are needed in proving the next theorems.

Lemma 3.1. (i) A = (ank) ∈ (c0 : `1) = (c : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣ ∑
k∈K

ank

∣∣∣∣ <∞. (3.1)

(ii) A = (ank) ∈ (c0 : c) if and only if

lim
n→∞

ank = `k for all k, and (3.2)

sup
n∈N

∑
k

|ank| <∞. (3.3)

(iii) A = (ank) ∈ (c0 : `∞) if and only if (3.3) holds.
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Theorem 3.2. Define the sets hα̃∞(r), hα̃(r) and hα̃p (r) as follows:

hα̃∞(r) :=

x = (xk) ∈ ω : sup
k∈N

∑
n

∣∣∣∣∣∣
n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

∣∣∣∣∣∣ <∞
 ,

hα̃(r) :=

x = (xk) ∈ ω : sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

∣∣∣∣∣∣ <∞
 ,

hα̃p (r) :=

x = (xk) ∈ ω : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

∣∣∣∣∣∣
p

<∞

 .

Then {er1(∆(α̃))}α = hα̃∞(r), {er0(∆(α̃))}α = {erc(∆(α̃))}α = hα̃(r) and {erp(∆(α̃))}α = hα̃p (r).

Proof. Since the proof for the spaces er1(∆(α̃)) and erp(∆
(α̃)) is obtained by analogy, we consider only the

spaces er0(∆(α̃)) and erc(∆
(α̃)).

Let x = (xn) ∈ ω consider the matrix Bα̃
r = (bα̃nk(r)) defined by

bα̃nk(r) =


∑n

j=k
(−1)n−kΓ(1−α̃)

(n−j)! Γ(1−α̃−n+j)

(
j
k

)
(1− r)j−kr−j , (k < n),

1/rn , (k = n),
0 , (k > n).

(3.4)

Bearing in mind the relation (2.2), we easily obtain that

xnwn =
n∑
k=0

 n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

 yk = (Bα̃
r y)n, n ∈ N. (3.5)

We, therefore, observe by (3.5) that xw = (xnwn) ∈ `1 whenever w ∈ er0(∆(α̃)) or erc(∆
(α̃)) if and only if

Bα̃
r y ∈ `1 whenever y ∈ c0 or c. Then using Lemma 3.1(i) we derive that

sup
K∈F

∑
n

∣∣∣∣∣∣
∑
k∈K

n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

∣∣∣∣∣∣ <∞.
This yields that {er0(∆(α̃))}α = {erc(∆(α̃))}α = hα̃(r).

Theorem 3.3. Define the sets dα̃1 (r), dα̃2 (r) and dα̃3 (r) by

dα̃1 (r) :=

(xk) ∈ ω : sup
n∈N

n∑
k=0

∣∣∣∣ n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

∣∣∣∣ <∞
 ,

dα̃2 (r) :=

(xk) ∈ ω : lim
n→∞

n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj exists

 ,

dα̃3 (r) :=

(xk) ∈ ω : lim
n→∞

n∑
k=0

n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj exists

 .

Then {er0(∆(α̃))}β = dα̃1 (r) ∩ dα̃2 (r) and {erc(∆(α̃))}β = dα̃1 (r) ∩ dα̃2 (r) ∩ dα̃3 (r).
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Proof. Since the proof can also be obtained for the space erc(∆
(α̃)) in a similar way, we omit it and give only

the proof for the space er0(∆(α̃)). Consider the equality

n∑
k=0

xkwk =
n∑
k=0

 k∑
j=0

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
k

j

)
(r − 1)k−jr−kyj

xk
=

n∑
k=0

 n∑
j=k

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
j

k

)
(1− r)j−kr−jxj

 yk
= (Bα̃

r y)n (3.6)

where Bα̃
r = (bα̃nk(r)) is defined in (3.4). Thus, we deduce from Lemma 3.1(ii) with (3.6) that (xkwk) ∈ cs

whenever w ∈ er0(∆(α̃)) if and only if Bα̃
r y ∈ c whenever y = (yk) ∈ c0. Therefore, we derive from (3.2) and

(3.3) that

lim
n→∞

bα̃nk(r) exists for each k ∈ N and sup
n∈N

n∑
k=0

|bα̃nk(r)| <∞,

which shows that {er0(∆(α̃))}β = dα̃1 (r) ∩ dα̃2 (r).

Theorem 3.4. The γ-duals of the spaces er0(∆(α̃)), erc(∆
(α̃)) and er∞(∆(α̃)) is dα̃1 (r).

Proof. It is natural that the present theorem may be proved by the technique used in the proofs of Theorem
3.2 and 3.3. But, we prefer to follow the classical way and give only the proof for the space eα̃0 (r).

Let x = (xk) ∈ dα̃1 (r) and w = (wk) ∈ er0(∆(α̃)). Consider the equality∣∣∣∣∣
n∑
k=0

xkwk

∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
k=0

[ k∑
j=0

(−1)n−kΓ(1− α̃)

(n− j)! Γ(1− α̃− n+ j)

(
k

j

)
(r − 1)k−jr−kyj

]
xk

∣∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

bα̃nk(r)yk

∣∣∣∣∣
≤

n∑
k=0

|bα̃nk(r)| |yk|

which gives us by taking supremum over n ∈ N that

sup
n∈N

∣∣∣∣∣
n∑
k=0

xkwk

∣∣∣∣∣ ≤ sup
n∈N

n∑
k=0

|bα̃nk(r)| |yk| ≤ ‖y‖∞ sup
n∈N

n∑
k=0

|bα̃nk(r)| ≤ ∞.

This means that x = (xk) ∈ {er0(∆(α̃))}γ . Hence, we have

dα̃1 (r) ⊂ {er0(∆(α̃))}γ . (3.7)

Conversely, let x = (xk) ∈ {er0(∆(α̃))}γ and w ∈ er0(∆(α̃)). Then, one can conclude that the sequence(∑n
k=0 b

α̃
nk(r)yk

)
n∈N ∈ `∞ whenever (xkwk) ∈ bs. This implies that the triangle matrix Bα̃

r = (bα̃nk(r)) is in
the class (c0 : `∞). Hence, the condition

sup
n∈N

n∑
k=0

|bα̃nk(r)| <∞

is satisfied, which implies that x = (xk) ∈ dα̃1 (r). In other words,

{er0(∆(α̃))}γ ⊂ dα̃1 (r). (3.8)

Therefore, by combining inclusions (3.7) and (3.8), we establish that the γ-dual of the space er0(∆(α̃)) is
dα̃1 (r), which completes the proof.
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Conclusion

In this article, certain results on some Euler spaces of difference sequences of order m, (m ∈ N), have
been extended to the sequence spaces of positive fractional order α̃. The results presented in this article
not only generalize the earlier works done by several authors [2, 3, 4, 21] but also give a new perspective
concerning the development of the Euler spaces of difference sequences. As future work we will study certain
matrix transformations of Euler spaces of fractional order and Riesz mean difference sequence of fractional
order.
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