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Abstract

We present a fixed point technique for some iterative algorithms on a generalized Banach space setting to
approximate a locally unique zero of an operator. Earlier studies such as [I. K. Argyros, Approx. Theory
Appl., 9 (1993), 1–9], [I. K. Argyros, Southwest J. Pure Appl. Math., 1 (1995), 30–36], [I. K. Argyros,
Springer-Verlag Publ., New York, (2008)], [P. W. Meyer, Numer. Funct. Anal. Optim., 9 (1987), 249–259]
require that the operator involved is Fréchet-differentiable. In the present study we assume that the operator
is only continuous. This way we extend the applicability of these methods to include right fractional calculus
as well as problems from other areas. Some applications include fractional calculus involving right generalized
fractional integral and the right Hadamard fractional integral. Fractional calculus is very important for its
applications in many applied sciences. c©2016 All rights reserved.

Keywords: Generalized Banach space, fixed point iterative algorithm, semilocal convergence, fixed point
right generalized fractional integral.
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1. Introduction

We present a semilocal convergence analysis for some fixed point iterative algorithms on a generalized
Banach space setting to approximate a zero of an operator. The semilocal convergence is, based on the
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information around an initial point, to give conditions ensuring the convergence of the iterative algorithm.
A generalized norm is defined to be an operator from a linear space into a partially order Banach space
(to be precised in section 2). Earlier studies such as [3, 4, 5, 7] for Newton’s method have shown that a
more precise convergence analysis is obtained when compared to the real norm theory. However, the main
assumption is that the operator involved is Fréchet-differentiable. This hypothesis limits the applicability
of Newton’s method. In the present study using a fixed point technique (see iterative algorithm 3.1), we
show convergence by only assuming the continuity of the operator. This way we expand the applicability of
these iterative algorithms.

The rest of the paper is organized as follows: section 2 contains the basic concepts on generalized
Banach spaces and auxiliary results on inequalities and fixed points. In section 3 we present the semilocal
convergence analysis. Finally, in the concluding sections 4-5, we present special cases and applications in
generalized right fractional calculus.

2. Generalized Banach spaces

We present some standard concepts that are needed in what follows to make the paper as self contained
as possible. More details on generalized Banach spaces can be found in [3, 4, 5, 7], and the references there
in.

Definition 2.1. A generalized Banach space is a triplet (x,E, /·/) such that
(i) X is a linear space over R (C) .
(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K,
(ii3) The norm ‖·‖ is monotone on K.
(iii) The operator /·/ : X → K satisfies
/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,
/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X, θ ∈ R(C).
(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/ .

Remark 2.2. The operator /·/ is called a generalized norm. In view of (iii) and (iii3) ‖·‖i , is a real norm.
In the rest of this paper all topological concepts will be understood with respect to this norm.

Let L
(
Xj , Y

)
stand for the space of j-linear symmetric and bounded operators from Xj to Y , where

X and Y are Banach spaces. For X,Y partially ordered L+

(
Xj , Y

)
stands for the subset of monotone

operators P such that
0 ≤ ai ≤ bi ⇒ P (a1, · · · , aj) ≤ P (b1, · · · , bj) .

Definition 2.3. The set of bounds for an operator Q ∈ L (X,X) on a generalized Banach space (X,E, /·/)
the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} .

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = Tn+1 (x0)

is well defined. We write in case of convergence

T∞ (x0) := lim (Tn (x0)) = lim
n→∞

xn.

We need some auxiliary results on inequations.
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Lemma 2.4. Let (E,K, ‖·‖) be a partially ordered Banach space, ξ ∈ K and M,N ∈ L+ (E,E).
(i) Suppose there exists r ∈ K such that

R (r) := (M +N) r + ξ ≤ r (2.1)

and
(M +N)k r → 0 as k →∞. (2.2)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller than any solution of the
inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there exists r ≤ q satisfying (i).

Proof. (i) Define sequence {bn} by bn = Rn (0). Then, we have by (2.1) that b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r.
Suppose that bk ≤ r for each k = 1, 2, · · · , n. Then, we have by (2.1) and the inductive hypothesis that
bn+1 = Rn+1 (0) = R (Rn (0)) = R (bn) = (M +N) bn + ξ ≤ (M +N) r + ξ ≤ r ⇒ bn+1 ≤ r. Hence,
sequence {bn} is bounded above by r. Set Pn = bn+1 − bn. We shall show that

Pn ≤ (M +N)n r for each n = 1, 2, · · · . (2.3)

We have by the definition of Pn and (2.2) that

P1 = R2 (0)−R (0) = R (R (0))−R (0) = R (ξ)−R (0)

=

∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt ≤

∫ 1

0
R′ (r) rdt ≤ (M +N) r,

which shows (2.3) for n = 1. Suppose that (2.3) is true for k = 1, 2, · · · , n. Then, we have in turn by (2.2)
and the inductive hypothesis that

Pk+1 = Rk+2 (0)−Rk+1 (0) = Rk+1 (R (0))−Rk+1 (0)

= Rk+1 (ξ)−Rk+1 (0) = R
(
Rk (ξ)

)
−R

(
Rk (0)

)
=

∫ 1

0
R′
(
Rk (0) + t

(
Rk (ξ)−Rk (0)

))(
Rk (ξ)−Rk (0)

)
dt

≤ R′
(
Rk (ξ)

)(
Rk (ξ)−Rk (0)

)
= R′

(
Rk (ξ)

)(
Rk+1 (0)−Rk (0)

)
≤ R′ (r)

(
Rk+1 (0)−Rk (0)

)
≤ (M +N) (M +N)k r = (M +N)k+1 r,

which completes the induction for (2.3). It follows that {bn} is a complete sequence in a Banach space and

as such it converges to some b. Notice that R (b) = R
(

lim
n→∞

Rn (0)
)

= lim
n→∞

Rn+1 (0) = b ⇒ b solves the

equation R (t) = t. We have that bn ≤ r ⇒ b ≤ r, where r a solution of R (r) ≤ r. Hence, b is smaller than
any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 = R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (2.4)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q. We also get by (2.4)
that wn − vn → 0 as n→∞ ⇒ wn → r as n→∞.

We also need the auxiliary result for computing solutions of fixed point problems.
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Lemma 2.5. Let (X, (E,K, ‖·‖) , /·/) be a generalized Banach space, and P ∈ B (Q) be a bound for
Q ∈ L (X,X) . Suppose there exists y ∈ X and q ∈ K such that

Pq + /y/ ≤ q and P kq → 0 as k →∞.

Then, z = T∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y and /z/ ≤ P /z/ + /y/ ≤ q.
Moreover, z is the unique solution in the subspace {x ∈ X|∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [7, Lemma 3.2 ].

3. Semilocal convergence

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open subset, G : D → Y a
continuous operator and A (·) : D → L (X,Y ).

A zero of operator G is to be determined by an iterative algorithm starting at a point x0 ∈ D. The
results are presented for an operator F = JG, where J ∈ L (Y,X). The iterates are determined through a
fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) . (3.1)

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we present the semilocal convergence analysis of iterative algorithm 3.1 using the preceding nota-

tion.

Theorem 3.1. Let F : D ⊂ X, A (·) : D → L (X,Y ) and x0 ∈ D be as defined previously. Suppose:
(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞.
Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) , Tn (y) := (I −A (xn)) y − F (xn)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, · · · and converges to the unique zero of operator F
in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and for each n = 1, 2, · · ·

rn = P∞n (0) , Pn (t) = Mt+Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞n (0) , Rn (t) = (M +N) t+Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,
where

an−1 := /xn − xn−1/ for each n = 1, 2, · · · .
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Proof. Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 2.4 and (H3), (H5) there exists q ≤ r
such that:

Mq + /F (x0)/ = q and Mkq ≤Mkr → 0 as k →∞.

Hence, by Lemma 2.5 x1 is well defined and we have a0 ≤ q. Then, we get the estimate

P1 (r − q) = M (r − q) +Nr0

≤Mr −Mq +Nr = R0 (r)− q
≤ R0 (r)− q = r − q.

It follows with Lemma 2.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (Ij) is true for each j = 1, 2, · · · , n. We need to show the existence of xn+1 and to obtain a
bound q for an. To achieve this notice that:

Mrn +N (rn−1 − rn) = Mrn +Nrn−1 −Nrn = Pn (rn)−Nrn ≤ rn.

Then, it follows from Lemma 2.4 that there exists q ≤ rn such that

q = Mq +N (rn−1 − rn) and (M +N)k q → 0, as k →∞. (3.2)

By (Ij) it follows that

bn = /xn − x0/ ≤
n−1∑
j=0

aj ≤
n−1∑
j=0

(rj − rj+1) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I −A (xn). We can write by (H2) that

/F (xn)/ = /F (xn)− F (xn−1)−A (xn−1) (xn − xn−1)/
≤ Nan−1 ≤ N (rn−1 − rn) . (3.3)

It follows from (3.2) and (3.3) that
Mq + /F (xn)/ ≤ q.

By Lemma 2.5, xn+1 is well defined and an ≤ q ≤ rn. In view of the definition of rn+1 we have that

Pn+1 (rn − q) = Pn (rn)− q = rn − q,

so that by Lemma 2.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain in turn that

/xm+1 − xn/ ≤
m∑
j=n

aj ≤
m∑
j=n

(rj − rj+1) = rn − rm+1 ≤ rn. (3.4)
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Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M +N) rn ≤ · · · ≤ (M +N)n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence in a Banach space X
by (3.4) and as such it converges to some x∗ ∈ X. By letting m→∞ in (3.4) we deduce that x∗ ∈ U (xn, rn).
Furthermore, (3.3) shows that x∗ is a zero of F . Hence, (C1) and (C2) are proved. In view of the estimate

Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 2.4. That is sn is smaller in general than rn. The
conditions of Theorem 3.1 are satisfied for xn replacing x0. A solution of the inequality of (C2) is given by
sn (see (3.3)). It follows from (3.4) that the conditions of Theorem 3.1 are easily verified. Then, it follows
from (C1) that x∗ ∈ U (xn, sn) which proves (C3).

In general the aposterior, estimate is of interest. Then, condition (H5) can be avoided as follows:

Proposition 3.2. Suppose: condition (H1) of Theorem 3.1 is true.
(H′3) There exists s ∈ K, θ ∈ (0, 1) such that

R0 (s) = (M +N) s+ /F (x0)/ ≤ θs.

(H′4) U (x0, s) ⊂ D.
Then, there exists r ≤ s satisfying the conditions of Theorem 3.1. Moreover, the zero x∗ of F is unique in
U (x0, s) .

Remark 3.3.

(i) Notice that by Lemma 2.4 R∞n (0) is the smallest solution of Rn (s) ≤ s. Hence any solution of this
inequality yields on upper estimate for R∞n (0). Similar inequalities appear in (H2) and (H′2).

(ii) The weak assumptions of Theorem 3.1 do not imply the existence of A (xn)−1. In practice the compu-
tation of T∞n (0) as a solution of a linear equation is no problem and the computation of the expensive
or impossible to compute in general A (xn)−1 is not needed.

(iii) We can used the following result for the computation of the aposteriori estimates. The proof can be
found in [7, Lemma 4.2 ] by simply exchanging the definitions of R.

Lemma 3.4. Suppose that the conditions of Theorem 3.1 are satisfied. If s ∈ K is a solution of Rn (s) ≤ s,
then q := s − an ∈ K and solves Rn+1 (q) ≤ q. This solution might be improved by Rkn+1 (q) ≤ q for each
k = 1, 2, · · · .

4. Special cases and applications

Application 4.1. The results obtained in earlier studies such as [3, 4, 5, 7] require that operator F (i.e. G)
is Fréchet-differentiable. This assumption limits the applicability of the earlier results. In the present study
we only require that F is a continuous operator. Hence, we have extended the applicability of the iterative
algorithms include to classes of operators that are only continuous. If A (x) = F ′ (x) iterative algorithm 3.1
reduces to Newton’s method considered in [7].

Example 4.2. The j-dimensional space Rj is a classical example of a generalized Banach space. The
generalized norm is defined by componentwise absolute values. Then, as ordered Banach space we set
E = Rj with componentwise ordering with e.g. the maximum norm. A bound for a linear operator
(a matrix) is given by the corresponding matrix with absolute values. Similarly, we can define the ”N”
operators. Let E = R. That is we consider the case of a real normed space with norm denoted by ‖·‖. Let
us see how the conditions of Theorem 3.1 look like.
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Theorem 4.3.

(H1) ‖I −A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.
(H3) M +N < 1,

r =
‖F (x0)‖

1− (M +N)
. (4.1)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)k r → 0 as k →∞, where r is given by (4.1).
Then, the conclusions of Theorem 3.1 hold.

5. Applications to generalized right fractional calculus

Background
We use Theorem 4.3 in this section.
We use here the following right generalized fractional integral.

Definition 5.1 ([6], p. 99). The right generalized fractional integral of a function f with respect to given
function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous functions) and is strictly
increasing, f ∈ L∞ ([a, b]). We set

(
Iαb−;gf

)
(x) =

1

Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t) f (t) dt, x ≤ b, (5.1)

clearly
(
Iαb−;gf

)
(b) = 0.

When g is the identity function id, we get that Iαb−;id = Iαb−, the ordinary right Riemann-Liouville
fractional integral, where

(
Iαb−f

)
(x) =

1

Γ (α)

∫ b

x
(t− x)α−1 f (t) dt, x ≤ b,

(
Iαb−f

)
(b) = 0.

When g (x) = lnx on [a, b], 0 < a < b <∞, we get

Definition 5.2 ([6], p. 110). Let 0 < a < b < ∞, α > 0. The right Hadamard fractional integral of order
α is given by (

Jαb−f
)

(x) =
1

Γ (α)

∫ b

x

(
ln
y

x

)α−1 f (y)

y
dy, x ≤ b,

where f ∈ L∞ ([a, b]) .

We mention:

Definition 5.3 ([1]). The right fractional exponential integral is defined as follows: Let a, b ∈ R, a < b,
α > 0, f ∈ L∞ ([a, b]). We set

(
Iαb−;exf

)
(x) =

1

Γ (α)

∫ b

x

(
et − ex

)α−1
etf (t) dt, x ≤ b.

Definition 5.4 ([1]). Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We give the right fractional integral

(
Iαb−;Axf

)
(x) =

lnA

Γ (α)

∫ b

x

(
At −Ax

)α−1
Atf (t) dt, x ≤ b.
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We also give:

Definition 5.5 ([1]). Let α, σ > 0, 0 ≤ a < b <∞, f ∈ L∞ ([a, b]). We set

(
Kα
b−;xσf

)
(x) =

1

Γ (α)

∫ b

x
(tσ − xσ)α−1 f (t)σtσ−1dt, x ≤ b.

We mention the following generalized right fractional derivatives.

Definition 5.6 ([1]). Let α > 0 and dαe = m (d·e ceiling of the number). Consider f ∈ ACm ([a, b]) (space
of functions f with f (m−1) ∈ AC ([a, b])). We define the right generalized fractional derivative of f of order
α as follows (

Dα
b−;gf

)
(x) =

(−1)m

Γ (m− α)

∫ b

x
(g (t)− g (x))m−α−1 g′ (t) f (m) (t) dt,

for any x ∈ [a, b], where Γ is the gamma function.
We set

Dm
b−;gf (x) = (−1)m f (m) (x) ,

D0
b−;gf (x) = f (x) , ∀x ∈ [a, b] .

When g = id, then Dα
b−f = Dα

b−;idf is the right Caputo fractional derivative.

So we have the specific generalized right fractional derivatives.

Definition 5.7 ([1]).

Dα
b−;lnxf (x) =

(−1)m

Γ (m− α)

∫ b

x

(
ln
y

x

)m−α−1 f (m) (y)

y
dy, 0 < a ≤ x ≤ b,

Dα
b−;exf (x) =

(−1)m

Γ (m− α)

∫ b

x

(
et − ex

)m−α−1
etf (m) (t) dt, a ≤ x ≤ b,

and

Dα
b−;Axf (x) =

(−1)m lnA

Γ (m− α)

∫ b

x

(
At −Ax

)m−α−1
Atf (m) (t) dt, a ≤ x ≤ b,

(
Dα
b−;xσf

)
(x) =

(−1)m

Γ (m− α)

∫ b

x
(tσ − xσ)m−α−1 σtσ−1f (m) (t) dt, 0 ≤ a ≤ x ≤ b.

We make:

Remark 5.8 ([1]). Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increasing over [a, b], α > 0.
Then ∫ b

x
(g (t)− g (x))α−1 g′ (t) dt =

(g (b)− g (x))α

α
, ∀ x ∈ [a, b] .

Finally we will use:

Theorem 5.9 ([1]). Let α > 0, N 3 m = dαe, and f ∈ Cm ([a, b]). Then
(
Dα
b−;gf

)
(x) is continuous in

x ∈ [a, b], −∞ < a < b <∞.
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Results
I) We notice the following (a ≤ x ≤ b):

∣∣(Iαb−;gf) (x)
∣∣ ≤ 1

Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t) |f (t)| dt

≤
‖f‖∞
Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t) dt =

‖f‖∞
Γ (α)

(g (b)− g (x))α

α

=
‖f‖∞

Γ (α+ 1)
(g (b)− g (x))α ≤

‖f‖∞
Γ (α+ 1)

(g (b)− g (a))α .

In particular it holds (
Iαb−;gf

)
(b) = 0,

and ∥∥Iαb−;gf∥∥∞,[a,b] ≤ (g (b)− g (a))α

Γ (α+ 1)
‖f‖∞ , (5.2)

proving that Iαb−;g is a bounded linear operator. We use:

Theorem 5.10 ([2]). Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g is strictly increasing. Consider

B (s) :=

∫ b

s
(g (t)− g (s))r−1 g′ (t)F (t) dt, for all s ∈ [a, b] .

Then B ∈ C ([a, b]) .

By Theorem 5.10, the function
(
Iαb−;gf

)
is a continuous function over [a, b]. Consider a < b∗ < b.

Therefore
(
Iαb−;gf

)
is also continuous over [a, b∗]. Thus, there exist x1, x2 ∈ [a, b∗] such that(

Iαb−;gf
)

(x1) = min
(
Iαb−;gf

)
(x) ,(

Iαb−;gf
)

(x2) = max
(
Iαb−;gf

)
(x) , where x ∈ [a, b∗] .

We assume that (
Iαb−;gf

)
(x1) > 0.

Hence ∥∥Iαb−;gf∥∥∞,[a,b∗] =
(
Iαb−;gf

)
(x2) > 0.

Here it is
J (x) = mx, m 6= 0.

Therefore the equation
Jf (x) = 0, x ∈ [a, b∗] , (5.3)

has the same solutions as the equation

F (x) :=
Jf (x)

2
(
Iαb−;gf

)
(x2)

= 0, x ∈ [a, b∗] .

Notice that

Iαb−;g

 f

2
(
Iαb−;gf

)
(x2)

 (x) =

(
Iαb−;gf

)
(x)

2
(
Iαb−;gf

)
(x2)

≤ 1

2
< 1, x ∈ [a, b∗] .
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Call

A (x) :=

(
Iαb−;gf

)
(x)

2
(
Iαb−;gf

)
(x2)

, ∀ x ∈ [a, b∗] .

We notice that

0 <

(
Iαb−;gf

)
(x1)

2
(
Iαb−;gf

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [a, b∗] .

We observe

|1−A (x)| = 1−A (x) ≤ 1−

(
Iαb−;gf

)
(x1)

2
(
Iαb−;gf

)
(x2)

=: γ0, ∀ x ∈ [a, b∗] .

Clearly γ0 ∈ (0, 1) .
I.e.

|1−A (x)| ≤ γ0, ∀ x ∈ [a, b∗] , γ0 ∈ (0, 1) .

Next we assume that F (x) is a contraction, i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] ,

and 0 < λ < 1
2 . Equivalently we have

|Jf (x)− Jf (y)| ≤ 2λ
(
Iαb−;gf

)
(x2) |x− y| , all x, y ∈ [a, b∗] .

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤ λ |y − x|+ |A (x)| |y − x|
= (λ+ |A (x)|) |y − x| =: (ψ1) , ∀ x, y ∈ [a, b∗] .

By (5.2) we get ∣∣(Iαb−;gf) (x)
∣∣ ≤ ‖f‖∞

Γ (α+ 1)
(g (b)− g (a))α , ∀ x ∈ [a, b∗] .

Hence

|A (x)| =

∣∣∣(Iαb−;gf) (x)
∣∣∣

2
(
Iαb−;gf

)
(x2)

≤
‖f‖∞ (g (b)− g (a))α

2Γ (α+ 1)
(
Iαb−;gf

)
(x2)

<∞, ∀ x ∈ [a, b∗] .

Therefore we get

(ψ1) ≤

λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαb−;gf

)
(x2)

 |y − x| , ∀ x, y ∈ [a, b∗] .

Call

0 < γ1 := λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαb−;gf

)
(x2)

,

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1). We have proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , ∀ x, y ∈ [a, b∗] , γ1 ∈ (0, 1) .

Next we call and we need that
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0 < γ := γ0 + γ1 = 1−

(
Iαb−;gf

)
(x1)

2
(
Iαb−;gf

)
(x2)

+ λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαb−;gf

)
(x2)

< 1,

λ+
‖f‖∞ (g (b)− g (a))a

2Γ (α+ 1)
(
Iαb−;gf

)
(x2)

<

(
Iαb−;gf

)
(x1)

2
(
Iαb−;gf

)
(x2)

,

equivalently,

2λ
(
Iαb−;gf

)
(x2) +

‖f‖∞ (g (b)− g (a))a

Γ (α+ 1)
<
(
Iαb−;gf

)
(x1) ,

which is possible for small λ, and small (g (b)− g (a)). That is γ ∈ (0, 1). So our method solves (5.3).
II) Let α /∈ N, α > 0 and dαe = m, a < b∗ < b, G ∈ ACm ([a, b]), with 0 6= G(m) ∈ L∞ ([a, b]). Here we

consider the right generalized (Caputo type) fractional derivative:

(
Dα
b−;gG

)
(x) =

(−1)m

Γ (m− α)

∫ b

x
(g (t)− g (x))m−α−1 g′ (t)G(m) (t) dt,

for any x ∈ [a, b] .

By Theorem 5.10 we get that
(
Dα
b−;gG

)
∈ C ([a, b]), in particular

(
Dα
b−;gG

)
∈ C ([a, b∗]). Here notice

that
(
Dα
b−;gG

)
(b) = 0.

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
b−;gG (x1) = minDα

b−;gG (x), and Dα
b−;gG (x2) =

maxDα
b−;gG (x), for x ∈ [a, b∗].

We assume that
Dα
b−;gG (x1) > 0.

(i.e. Dα
b−;gG (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥∥Dα
b−;gG

∥∥
∞,[a,b∗] = Dα

b−;gG (x2) .

Here it is
J (x) = mx, m 6= 0.

The equation
JG (x) = 0, x ∈ [a, b∗] , (5.4)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
b−;gG (x2)

= 0, x ∈ [a, b∗] .

Notice that

Dα
b−;g

(
G (x)

2Dα
b−;gG (x2)

)
=

Dα
b−;gG (x)

2Dα
b−;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a, b∗] .

We call

A (x) :=
Dα
b−;gG (x)

2Dα
b−;gG (x2)

, ∀ x ∈ [a, b∗] .

We notice that

0 <
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

≤ A (x) ≤ 1

2
.
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Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

=: γ0, ∀ x ∈ [a, b∗] .

Clearly γ0 ∈ (0, 1). We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a, b∗] .

Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] ,

and 0 < λ < 1
2 . Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
b−;gG (x2)

)
|x− y| , ∀ x, y ∈ [a, b∗] .

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x|
≤ λ |y − x|+ |A (x)| |y − x|
= (λ+ |A (x)|) |y − x| =: (ξ2) , ∀ x, y ∈ [a, b∗] .

We observe that∣∣Dα
b−;gG (x)

∣∣ ≤ 1

Γ (m− α)

∫ b

x
(g (t)− g (x))m−α−1 g′ (t)

∣∣∣G(m) (t)
∣∣∣ dt

≤ 1

Γ (m− α)

(∫ b

x
(g (t)− g (x))m−α−1 g′ (t) dt

)∥∥∥G(m)
∥∥∥
∞

=
1

Γ (m− α)

(g (b)− g (x))m−α

(m− α)

∥∥∥G(m)
∥∥∥
∞

=
1

Γ (m− α+ 1)
(g (b)− g (x))m−α

∥∥∥G(m)
∥∥∥
∞
≤ (g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
.

That is ∣∣Dα
b−;gG (x)

∣∣ ≤ (g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
<∞, ∀ x ∈ [a, b] .

Hence, ∀ x ∈ [a, b∗] we get that

|A (x)| =

∣∣∣Dα
b−;gG (x)

∣∣∣
2Dα

b−;gG (x2)
≤ (g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
b−;gG (x2)

<∞.

Consequently we observe

(ξ2) ≤

(
λ+

(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
b−;gG (x2)

)
|y − x| , ∀ x, y ∈ [a, b∗] .

Call

0 < γ1 := λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
b−;gG (x2)

,

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1). We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , where γ1 ∈ (0, 1) , ∀ x, y ∈ [a, b∗] .
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Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

+ λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
b−;gG (x2)

< 1,

equivalently we find,

λ+
(g (b)− g (a))m−α

2Γ (m− α+ 1)

∥∥G(m)
∥∥
∞

Dα
b−;gG (x2)

<
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

,

equivalently,

2λDα
b−;gG (x2) +

(g (b)− g (a))m−α

Γ (m− α+ 1)

∥∥∥G(m)
∥∥∥
∞
< Dα

b−;gG (x1) ,

which is possible for small λ, (g (b)− g (a)). That is γ ∈ (0, 1). Hence equation (5.4) can be solved with our
presented iterative algorithms.
Conclusion: Our presented earlier semilocal fixed point iterative algorithms, see Theorem 4.3, can apply
in the above two generalized fractional settings since the following inequalities have been fulfilled:

‖1−A (x)‖∞ ≤ γ0,

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| ,

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) ,

for all x, y ∈ [a, b∗], where a < b∗ < b. The specific functions A (x), F (x) have been described above.
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