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Abstract

The purpose of this work is to deal with the blow-up behavior of the nonnegative solution to a degenerate
and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and
non-existence of the global solution are given. Further, under some suitable hypotheses, we discuss the
blow-up set and the uniform blow-up profile of the blow-up solution. c©2016 All rights reserved.
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1. Introduction and main results

In this article, we consider the blow-up phenomenon of the following nonlinear degenerate and singular
parabolic equation with nonlocal boundary condition

ut = (xαux)x +
∫ l

0 u
pdx, (x, t) ∈ (0, l)× (0,+∞) ,

u (0, t) =
∫ l

0 f (x)uq (x, t)dx, t ∈ (0,+∞) ,

u (l, t) =
∫ l

0 g (x)uq (x, t)dx, t ∈ (0,+∞) ,
u (x, 0) = u0 (x) ≥ 0, x ∈ [0, l] ,

(1.1)

where 0 ≤ α < 1, p and q are positive parameters, the weight functions f (x) and g (x) are nonnegative
continuous on [0, l] and not identically zero, and u0 (x) satisfies the following assumption:
(H1) u0 (x) ∈ C2+χ (0, l) ∩ C [0, l] with 0 < χ < 1.
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(H2) u0 (x) > 0 in (0, l), u0 (0) =
∫ l

0 f (x)uq0dx and u0 (l) =
∫ l

0 g (x)uq0dx.

(H3) (xαu0x)x +
∫ l

0 u
p
0dx ≥ 0 for x ∈ (0, l).

The equation in (1.1) arises in large numbers of physical phenomena. For example, it can be used to
describe the conduction of heat related to the geometric shape of the body (see [2] and the references therein
for more details of the physical background). It is necessary to point out that problem (1.1) is singular and
degenerate because the coefficients of ux and uxx tend to ∞ and 0 as x→ 0, respectively.

Blow-up singularity, as one of the most remarkable properties that distinguish nonlinear parabolic
problems from the linear ones, attracted extensive attention of mathematicians in the past few decades.
There are many works focused on the global existence and the blow-up property of various degener-
ate and singular parabolic equations (or systems) with homogenous Dirichlet boundary conditions (see
[1, 3, 4, 5, 18, 23, 24, 25] and the references therein).

On the other hand, parabolic equations with nonlocal (or nonlinear nonlocal) boundary conditions come
from applied science, for instance, in the study of the heat conduction with thermoelastcity, Day [6, 7]
derived a class of heat equation with nonlocal boundary in one-dimension space. In this model, the solution
u (x, t) describes entropy per volume of the material. Motivated by the works of Day, a lot of mathematicians
devoted to studying the blow-up behaviours of different kinds of parabolic equations with nonlocal boundary
conditions in the past few years. In particular, Lin and Liu [17] considered problem (1.1) with α = 0 and
q = 1 in multidimensional space. They obtained some results on the existence and nonexistence of the global
solutions, and derived the uniform blow-up profile estimate under some assumptions. For other works on
this topic, we refer the readers to [8, 9, 10, 19, 21] and the references therein.

However, as far as we know, there were only few articles which concerned with the blow-up behaviors
of solutions for parabolic equations coupled with nonlocal nonlinear boundary condition. Gladkov and Kim
[13, 14] considered a semilinear heat equation as the form

ut = ∆u+ c (x, t)up, (x, t) ∈ Ω× (0,∞) ,
u (x, t) =

∫
Ω ϕ (x, y, t)ul (y, t) dy, (x, t) ∈ ∂Ω× (0,∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,
(1.2)

where p, l > 0 and Ω is a bounded open domain in RN . First, they obtained the uniqueness and the
non-uniqueness of the local solution (see [14]), then according to the different behaviors of the coefficient
functions c (x, t) and ϕ (x, y, t) as t tends to infinity, they gave some criteria for the existence of the global
solutions as well as for finite time blow-up solutions (see [13]). Recently, Gladkov and Guedda studied
problem (1.2) with c (x, t)up replaced by −c (x, t)up. The authors showed the existence, uniqueness and
non-uniqueness of local solution (see [12]). What is more, they gave the critical blow-up exponent (see [11]).

The main goal of this article is to understand the effects of α, p, q and the weight functions f (x) and g (x)
in problem (1.1) on the global existence and blow-up singularity of the solution to problem (1.1). Compared
with [13] and [17], we need more skills to handle the difficulties, which are produced by the degeneration
and singularity of problem (1.1) and the appearance of the nonlinear nonlocal boundary condition.

Throughout this article, we denote

N = max

{∫ l

0
f (x)dx,

∫ l

0
g (x)dx

}
,

and let λ1 be the first eigenvalue and ζ (x) be the corresponding eigenfunction of the following eigenvalue
problem

− (xαζx)x = λ1ζ, 0 < x < l; ζ (0) = ζ (l) = 0. (1.3)

In fact, from [4, 20], we know that the principle eigenvalue λ1 of the eigenvalue problem (1.3) is the first

zero of J 1−α
2−α

(
2
√
λ

2−αx
2−α
2

)
, where J 1−α

2−α
is Bessel function of the first kind of orders 1−α

2−α . In addition, we know

that ζ (x) is a positive smooth function in (0, l) and can be expressed in an explicit form as follows

ζ (x) = ax
1−α
2 J 1−α

2−α

(
2
√
λ1

2− α
x

2−α
2

)
, (1.4)
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where a is an arbitrary positive parameter. Here, for the sake of convenience, we normalize ζ (x) in L1-norm
by choosing an appropriate value for parameter a.

The first part of our main results is on the existence and nonexistence of the global solution.

Theorem 1.1. Assume that p < 1 and q = 1. Then for any nonnegative initial datum u0 (x), the solution
of problem (1.1) exists globally provided that N < 1.

Theorem 1.2. Assume that min {p, q} > 1. Then for any nonnegative weight functions f (x) and g (x), the
solution of problem (1.1) exists globally provided that u0 (x) is sufficiently small.

Remark 1.3. In fact, when p > 1 and q = 1 (or q > 1 and p = 1), we can also prove that the solution of
problem (1.1) exists globally for sufficiently small initial data. In the case p > 1 and q < 1 (or q > 1 and
p < 1), we guess that the solution of problem (1.1) exists globally for small initial data, but we can not
give a proof for this conjecture by the methods used in this paper. We hope to address this question in the
future.

Theorem 1.4. Assume that max {p, q} > 1.
(i) If p = max {p, q}, then for any nonnegative weight functions f (x) and g (x), the solution of problem
(1.1) blows up in finite time provided that u0 (x) satisfies∫ l

0
u0 (x) ζ (x) dx >

[
λ1 max

x∈[0,l]
ζ (x)

] 1
p−1

.

(ii) If q = max {p, q}, then for any f (x) ≥ 0 and g (x) > 0, the solution of problem (1.1) blows up in finite
time provided that u0 (x) satisfies

∫ l

0
u0 (x) ζ (x) dx >

 max
x∈[0,l]

ζ (x)

min
x∈[0,l]

g (x)


1
q−1

.

The second part of our main results is on the blow-up set and the uniform blow-up profile of the blow-up
solution. In this part, we need the following two additional assumptions on initial datum u0 (x).

(H4) lim
x→0+

[
(xαu0x)x +

∫ l
0 u

p
0dx
]

= lim
x→l−

[
(xαu0x)x +

∫ l
0 u

p
0dx
]

= 0.

(H5) (xαu0x)x ≤ 0 in (0, l).

Theorem 1.5. Suppose that hypotheses (H1)− (H5) hold, and assume that p > 1, q = 1 and N ≤ 1. Then
the blow-up set of the blow-up solution u (x, t) of problem (1.1) is the whole interval (0, l).

Theorem 1.6. Under the assumptions of Theorem 1.5, we have

u (x, t) ∼ [l (p− 1) (T − t)]−
1
p−1 a.e. in (0, l) as t→ T,

where T is the blow-up time.

Remark 1.7. There are many functions which satisfy the condition

N = max

{∫ l

0
f (x)dx,

∫ l

0
g (x)dx

}
≤ 1

in Theorems 1.1, 1.5 and 1.6. For example,

f (x) = g (x) =
1

l
cos

π

2l
x.

The rest of this paper is organized as follows. In Section 2, we state the comparison theorem, the
existence and uniqueness result on the local solution of problem (1.1) as preliminaries. Section 3 is mainly
about the existence and nonexistence of the global solution and the proofs of Theorems 1.1, 1.2 and 1.4.
The blow-up set and the uniform blow-up profile of the blow-up solution are considered in section 4.
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2. Preliminaries

In this section, we will establish a suitable comparison principle for problem (1.1) and state the existence
and uniqueness result on the local solution. For the sake of simplify, we first denote IT = (0, l)× (0, T ) and
IT = [0, l]× [0, T ). We begin with the definitions of the super-solution and sub-solution to problem (1.1).

Definition 2.1. A nonnegative function u (x, t) is called a super-solution of problem (1.1) if
u (x, t) ∈ C2,1 (IT ) ∩ C

(
IT
)

satisfies
ut ≥ (xαux)x +

∫ l
0 u

pdx, (x, t) ∈ IT ,
u (0, t) ≥

∫ l
0 f (x)uq (x, t)dx, t ∈ (0, T ) ,

u (l, t) ≥
∫ l

0 g (x)uq (x, t)dx, t ∈ (0, T ) ,
u (x, 0) ≥ u0 (x) , x ∈ [0, l] .

(2.1)

Similarly, u (x, t) ∈ C2,1 (IT ) ∩ C
(
IT
)

is called a sub-solution of problem (1.1) if it satisfies all the reversed
inequalities in (2.1). We say that u (x, t) is a solution of problem (1.1) if it is both a sub-solution and a
super-solution of problem (1.1).

Now, by making use of the similar arguments as those in [8], we can prove the following maximum
principle, which plays a critical role in the discussions of the blow-up set and the uniform blow-up profile of
the blow-up solution.

Lemma 2.2. Let ω (x, t) ∈ C2,1 (IT ) ∩ C
(
IT
)

satisfy
ωt − (xαωx)x ≥

∫ l
0 θ1 (x, t)ω (x, t) dx, (x, t) ∈ IT ,

ω (0, t) ≥
∫ l

0 θ2 (x)ω (x, t)dx, t ∈ (0, T ) ,

ω (l, t) ≥
∫ l

0 θ3 (x)ω (x, t)dx, t ∈ (0, T ) ,

(2.2)

where θi (x, t), i = 1, 2, 3, are bounded functions, θ1 (x, t) is nonnegative for (x, t) ∈ IT , θ2 (x) and θ3 (x)
are nonnegative, nontrivial in (0, l). Then ω (x, 0) > 0 in [0, l] implies that ω (x, t) > 0 for (x, t) ∈ IT .
Moreover, if one of the following conditions holds, (a) θ2 (x) = θ3 (x) ≡ 0 for x ∈ (0, l); (b) θ2 (x), θ3 (x) ≥ 0

for x ∈ (0, l) and max
{∫ l

0 θ2 (x) dx,
∫ l

0 θ3 (x) dx
}
≤ 1, then ω (x, 0) ≥ 0 in [0, l] leads to ω (x, t) ≥ 0 for

(x, t) ∈ IT .

By using the idea in [16], we can show the following comparison principle, which plays an important
part in investigating the existence of the global solution for problem (1.1).

Proposition 2.3 (Comparison principle). Let u (x, t) and u (x, t) be a nonnegative super-solution and sub-
solution of problem (1.1), respectively. Suppose that either u (x, t) > 0 or u (x, t) > 0 if min {p, q} < 1. Then
u (x, t) ≥ u (x, t) holds in IT if u (x, 0) ≥ u (x, 0) for x ∈ [0, l].

Next, we state the result on the existence and uniqueness of the local solution of problem (1.1) at the
end of this section.

Theorem 2.4 (Local existence and uniqueness). Assume that (H1), (H2) and (H3) hold, then there exists
a small positive real number T such that problem (1.1) admits a nonnegative solution u(x, t) ∈ C

(
IT
)
∩

C2,1 (IT ). Furthermore, assume that the initial datum u0 (x) is positive for the case min {p, q} < 1, then the
local solution of problem (1.1) is unique.

Remark 2.5. We can get the proof of Theorem 2.4 by using regularization method and Schauder’s fixed
point theorem. For more details, we refer the readers to [4, 22]. Moreover, for the case min {p, q} ≥ 1, the
uniqueness of the local solution holds without the restrictive condition u0 > 0.
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3. Global existence and blow-up in finite time

In this section, first of all, by constructing some appropriate global super-solutions and employing com-
parison principle, we investigate the existence of the global solutions for problem (1.1), and give the proofs
of Theorems 1.1 and 1.2, respectively.

Proof of Theorem 1.1. Putting

σ (x) =
lε0

2− α
x1−α − ε0

2− α
x2−α +N , x ∈ [0, l] ,

where

ε0 ∈

(
0,

(1−N ) (2− α)3−α

l2−α (1− α)1−α

)
(3.1)

is a given constant. Then, it is not difficult to verify that{
− (xασx)x = ε0, 0 < x < l,
σ (0) = σ (l) = N , (3.2)

and

min
x∈[0,l]

σ (x) = N , max
x∈[0,l]

σ (x) = N +
ε0l

2−α (1− α)1−α

(2− α)3−α < 1. (3.3)

Defining
v1 (x, t) = ε1σ (x) ,

where

ε1 = max

{
N−1 max

x∈[0,1]
(u0 (x) + 1) ,

[
lε0

(
max
x∈[0,l]

σ (x)

)p] 1
1−p
}
. (3.4)

Calculating directly, one has

L (v1) :≡ v1t − (xαv1x)x −
∫ l

0
vp1dx

= ε0ε1 − εp1
∫ l

0
σpdx

≥ ε0ε1 − l
[
ε1 max
x∈[0,l]

σ (x)

]p
.

By p < 1 and the choice of the value for ε1, for any x ∈ (0, l) and t ∈ (0,∞), we can easily deduce that

L (v1) ≥ 0. (3.5)

On the other hand, for x = 0, we have that

v1 (0, t) = ε1σ (0) ≥
∫ l

0
ε1f (x) dx ≥

∫ l

0
ε1f (x)σ (x) dx

=

∫ l

0
f (x) v1 (x, t) dx.

(3.6)

By the similar argument, for x = l, we can claim that

v1 (l, t) ≥
∫ l

0
g (x) v1 (x, t) dx. (3.7)

From (3.4), (3.5), (3.6) and (3.7), we can infer that v1 (x, t) is a global super-solution of problem (1.1). And
hence, by comparison principle, we know that the solution u (x, t) of problem (1.1) exists globally. The proof
of Theorem 1.1 is complete.
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Proof of Theorem 1.2. Taking a bounded open interval (a, b) ⊂ R such that (0, l) ⊂⊂ (a, b). Letting λ̃1 be
the first eigenvalue and ζ̃ (x) be the associated eigenfunction of the following eigenvalue problem

−
(
xαζ̃x

)
x

= λ̃1ζ̃, a < x < b; ζ (a) = ζ (b) = 0. (3.8)

It is clear that there exists a constant µ1 ∈ (1,∞) such that

max
x∈[a,b]

ζ̃ (x) < µ1 min
x∈[0,l]

ζ̃ (x) . (3.9)

Putting

ζ̂ (x) =
µ1µ2

max
x∈[a,b]

ζ̃ (x)
ζ̃ (x) ,

where µ2 will be specialized later. Then it is easy to verify that

max
x∈[a,b]

ζ̂ (x) = µ1µ2

and
max
x∈[a,b]

ζ̂ (x)

min
x∈[0,l]

ζ̂ (x)
=

max
x∈[a,b]

ζ̃ (x)

min
x∈[0,l]

ζ̃ (x)
< µ1. (3.10)

Furthermore, ζ̂ (x) also satisfies problem (3.8). From (3.9), we have that

min
x∈[0,l]

ζ̂ (x) > µ2. (3.11)

Setting

h (t) = e−λ̃1t

[
1 +

lµp1µ
p−1
2

λ̃1e(p−1)λ̃1t

]− 1
p−1

, (3.12)

and
v2 (x, t) = ζ̂ (x)h (t) .

A Simple computation shows that

L (v2) = ζ̂ (x)h′ (t) + λ̃1ζ̂ (x)h (t)− hp (t)

∫ l

0
ζ̂p (x) dx

≥ ζ̂ (x)
[
h′ (t) + λ̃1h (t)− lµp1µ

p−1
2 hp (t)

]
≥ 0.

(3.13)

Choosing µ2 ∈
(

0, (Nµq1)
− 1
q−1

)
, and noticing that h (t) ∈ (0, 1), then we have that

v2 (0, t) ≥ µ2h (t) ≥ Nµq1µ
q
2h
q (t) ≥

∫ l

0
f (x) vq2 (x, t) dx, (3.14)

and

v2 (l, t) ≥
∫ l

0
g (x) vq2 (x, t) dx. (3.15)

By exploiting (3.13), (3.14) and (3.15), we can conclude that v2 (x, t) is a global super-solution of problem
(1.1) provided that

u0 (x) ≤ µ2

(
λ̃1 + lµp1µ

p−1
2

λ̃1

)− 1
p−1

. (3.16)

That is to say, the solution u (x, t) of problem (1.1) exists globally if u0 (x) fulfill (3.16). The proof Theorem
1.4 is complete.
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Now, by using a slight variant of the eigenfunction method (Kaplan’s Method), which is introduced by
Kaplan in [15], we will discuss the blow-up singularity in finite time for problem (1.1) with max {p, q} > 1
and sufficiently large initial data.

Proof of Theorem 1.4. Letting an auxiliary function Π (t) be defined as

Π (t) =

∫ l

0
u (x, t) ζ (x) dx.

Multiplying both sides of the equation in problem (1.1) by ζ (x), where ζ (x) is given by (1.4), and integrating
from 0 to l, one has

Π′ (t) =

∫ l

0

[
(xαux)x +

∫ l

0
updx

]
ζ (x) dx

= −λ1Π +

∫ l

0
updx+ λ1

∫ l

0
g (x)uqdx.

(3.17)

When p = max {p, q} > 1, then it follows from (3.17) and Jensen’s inequality that

Π′ (t) ≥ −λ1Π +
1

max
x∈[0,l]

ζ (x)
Πp. (3.18)

Solving (3.18), we obtain

Π (t) ≥


λ1 max

x∈[0,l]
ζ (x)

1−
[
1− λ1Π (0)1−p max

x∈[0,l]
ζ (x)

]
eλ1(p−1)t


1
p−1

. (3.19)

From (3.19), we know that if

Π (0) =

∫ l

0
u0 (x) ζ (x) dx >

[
λ1 max

x∈[0,l]
ζ (x)

] 1
p−1

,

then
lim
t→T

Π (t) =∞,

where

T =
1

λ1 (p− 1)
ln

Π (0)p−1

Π (0)p−1 − λ1 max
x∈[0,l]

ζ (x)
.

When q = max {p, q} > 1, we can deduce from (3.17) that

Π′ (t) ≥ −λ1

Π +

min
x∈[0,l]

g (x)

max
x∈[0,l]

ζ (x)
Πq

 ,
which implies that, for any positive weight function g (x), Π (t) tends to infinity in a finite time provided
that

Π (0) >

 max
x∈[0,l]

ζ (x)

min
x∈[0,l]

g (x)


1
q−1

.

The proof of Theorem 1.4 is complete.
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4. Blow-up set and uniform blow-up profile

In this section, we will discuss the blow-up set and the uniform blow-up profile of the blow-up solution
for problem (1.1). Throughout this section, we assume that p > 1, q = 1 and N ≤ 1. From Theorem 1.4,
we see that the solution u (x, t) of problem (1.1) blows up in finite time for sufficiently large initial data. In
addition, we denote T the blow-up time.

From (H1)− (H5), we know that there exist a sufficiently small positive constant ε1 and a nonnegative
function w0ε (x) such that
(1) w0ε ∈ C2+χ (ε, l − ε) ∩ C [ε, l − ε] with χ ∈ (0, 1) and ε ∈ (0, ε1].

(2) w0ε (ε) =
∫ l−ε
ε f (x)w0ε (x) dx and w0ε (l − ε) =

∫ l−ε
ε g (x)w0ε (x) dx.

(3) w0ε (x) < u0 (x) for x ∈ (ε, 2ε) ∪ (l − 2ε, l − ε), and w0ε (x) = u0 (x) for x ∈ [2ε, l − 2ε].
(4) (xαw0εx)x ≤ 0 for x ∈ (ε, l − ε).
(5) w0ε is non-increasing with respect to ε in (0, ε1]. Moreover

lim
x→ε+

[
(xαw0εx)x +

∫ l−ε

ε
wp0εdx

]
= lim

x→(l−ε)−

[
(xαw0εx)x +

∫ l−ε

ε
wp0εdx

]
= 0.

(6) (xαw0εx)x +
∫ l

0 w
p
0εdx ≥ 0 for ε ∈ (0, ε1] and x ∈ (ε, l − ε).

It is obvious that
lim
ε→0+

w0ε (x) = u0 (x) .

Now, we consider the following regularized problem
wεt = (xαwεx)x +

∫ l−ε
ε wpεdx, (x, t) ∈ (ε, l − ε)× (0,+∞) ,

wε (ε, t) =
∫ l−ε
ε f (x)wε (x, t)dx, t ∈ (0,+∞) ,

wε (l − ε, t) =
∫ l−ε
ε g (x)wε (x, t)dx, t ∈ (0,+∞) ,

wε (x, 0) = w0ε (x) , x ∈ [0, l] .

(4.1)

Then it is not difficult to show that there exists a unique solution wε (x, t) for problem (4.1). In addition,
from the arguments of Section 2 in [24], it follows that

lim
ε→0+

wε (x, t) = u (x, t) ,

where u (x, t) is the solution of problem (1.1).

Lemma 4.1. Suppose that hypotheses (H1) − (H5) hold, and assume that p > 1, q = 1 and N ≤ 1. Then
(xαux)x ≤ 0 holds for (x, t) ∈ IT .

Proof. Taking η = (xαwεx)x, then from (4.1), we have

ηt =

{
xα
[
(xαwεx)x +

∫ l

0
wpε

]
x

}
x

= (xαηx)x (4.2)

holds for any (x, t) ∈ (ε, l − ε)× (0, T ). On the other hand, for any t ∈ (0, T ), we have

η (ε, t) =

∫ l−ε

ε
f (x)wεt (x, t) dx−

∫ l−ε

ε
wpε (x, t) dx

=

∫ l−ε

ε
f (x)

(
(xαwεx)x +

∫ l−ε

ε
wpε (x, t) dx

)
dx−

∫ l−ε

ε
wpε (x, t) dx

=

∫ l−ε

ε
f (x) η (x, t) dx+

(∫ l−ε

ε
f (x) dx− 1

)∫ l−ε

ε
wpε (x, t) dx.

(4.3)
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By the assumption N ≤ 1, we can claim from (4.3) that

η (ε, t) ≤
∫ l−ε

ε
f (x) η (x, t) dx, t ∈ (0, T ) . (4.4)

Applying the analogous arguments, we can also verify that

η (l − ε, t) ≤
∫ l−ε

ε
g (x) η (x, t) dx (4.5)

holds for all t ∈ (0, T ).
Moreover, noticing that η (x, 0) = (xαw0εx)x ≤ 0 holds for x ∈ (ε, l − ε). Then, maximum principle tells

us that η (x, t) = (xαwεx)x ≤ 0 holds for all (x, t) ∈ (ε, l − ε)× (0, T ). In addition, by the arbitrariness of ε,
we know that (xαux)x ≤ 0 holds in IT . The proof of Lemma 4.1 is complete.

In what follows, for the sake of simplicity, we denote

ψ (t) =

∫ l

0
up (x, t) dx and Ψ (t) =

∫ t

0
ψ (τ) dτ.

Proof of Theorem 1.5. First, for any given open interval (l1, l2) ⊂⊂ (0, l), let m = inf
x∈(l1,l2)

µ (x), where µ (x)

is the unique positive solution of the following boundary value problem{
− (xαµx)x = 1, 0 < x < l,
µ (0) = µ (l) = 0.

(4.6)

In fact, µ (x) can be expressed in an explicit form that

µ (x) =
1

2− α
x1−α (l − x) , x ∈ [0, l] .

Lemma 4.1 leads us to get that∫ l

0
udx = −

∫ l

0
u (xαµx)x dx = −

∫ l

0
µ (xαux)x dx ≥ −m

∫ l2

l1

(xαux)x dx,

and hence, we obtain

0 ≤ lim
t→T
−m

∫ l2

l1

(xαux)x
ψ (t)

dx ≤ lim
t→T

∫ l
0 udx∫ l

0 u
pdx
≤ 0,

which implies that

lim
t→T

∫ l2

l1

(xαux)x
ψ (t)

dx = 0.

From the arbitrariness of (l1, l2), one can infer that

lim
t→T

(xαux)x
ψ (t)

= 0 a.e. in (0, l) . (4.7)

Now, integrating the first equation in problem (1.1) from 0 to t, then for (x, t) ∈ IT , we get

u (x, t)− u0 (x) =

∫ t

0
(xαux (x, s)x) ds+ Ψ (t) . (4.8)

Since lim
t→T
‖u (·, t)‖∞ =∞, then from Lemma 4.1 and (4.8), one can immediately deduce that

lim
t→T

Ψ (t) =∞. (4.9)
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It follows from (4.7) and (4.9) that

lim
t→T

∫ t
0 (xαux (x, s)x) ds

Ψ (t)
= 0 a.e. in (0, l) . (4.10)

Dividing both sides of (4.8) by Ψ (t) and letting t→ T , we see that

lim
t→T

u (x, t)

Ψ (t)
= 1 a.e. in (0, l) , (4.11)

which means that the solution u (x, t) of problem (1.1) blows up at almost everywhere in (0, l). The proof
of Theorem 1.5 is complete.

Proof of Theorem 1.6. Equation (4.11) tells us that

u (x, t) ∼ Ψ (t) a.e. in (0, l) as t→ T. (4.12)

When t is sufficiently closed to T , by employing (4.8) and (4.9), we know that there exists a constant M
such that

0 ≤ u (x, t)

Ψ (t)
≤M (4.13)

holds for all x ∈ (0, l). Up to now, Lebesgue’s dominated convergence theorem can be used to get

Ψ′ (t) = ψ (t) =

∫ l

0
up (x, t) dx ∼ lΨp (t) as t→ T. (4.14)

Integrating (4.14) over (t, T ), one has

Ψ (t) ∼ [l (p− 1) (T − t)]−
1
p−1 as t→ T. (4.15)

Combining (4.12) and (4.15), we can easily obtain that

u (x, t) ∼ [l (p− 1) (T − t)]−
1
p−1 as t→ T. (4.16)

The proof of Theorem 1.6 is complete.
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