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Abstract

We study a class of second-order neutral delay difference equations with positive and negative coeflicients
A(rn<A(xn +p$n—m))) + pnf(xnfk) - Qng(xnfl) =0, n=mng,no+1,...,

where p € R, m,k,l,ng € N, pn,qn,mn € RY, f,g € C(R, R) with zf(x) > 0 and zg(z) > 0 (z # 0). Some
sufficient conditions for the existence of a nonoscillatory solution of the studied equation expressed in terms
of 3% Ruypn < oo and Y. R,q, < oo are obtained, where R, = Zgzno %,n > ng. (©2015 All rights
reserved.

Keywords: Nonoscillatory solution, neutral delay difference equation, second-order, positive and negative
coefficients.
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1. Introduction

This paper is concerned with a second-order neutral delay difference equation with positive and negative
coefficients

A(rp(A(xn + prp—m))) + onf (@n—k) — @ug(xn_1) =0, m=mng,no+1,..., (1.1)

where A stands for the forward difference operator, Az, = xp41—2Zn, p € R, m, k,l,ng € N, P, Gn, ™ €
R*,f,g € C(R,R), zf(x) > 0, and xzg(z) > 0 for all z # 0. Throughout, we suppose that the following
assumptions are satisfied.
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(H1) f and g satisfy local Lipchitz conditions, Lipchitz constants are denoted by L;(A) and Lg(A), where
A is the domain that f and g are defined;
(Hy) R, =>"_ L n>ngp 3% Reps < 00, and 3.°° Ryqs < oo.

S=ng rs’

In recent years, there has been an increasing interest in studying the oscillatory and nonoscillatory be-
havior of various classes of differential, difference, and dynamic equations; see, for instance, the monographs
[1, 2], papers [3, 4, 5] [©, [7, 8, @O, 10 11, 12}, T3], and the references cited therein. Candan [3] investigated a
higher-order nonlinear neutral differential equation

[r(0)a(t) + P0)a(t — )"V + (<) [QuDhgr ((t — 1)) — Qa(t)gal(t — 02)) — F(B] =0, (1.2)

where t > to, n > 2 is an integer, r € C([ty, <), R"), P, f € C([to, o), R), Q; € C([tp,o0), RT), i = 1,2,
and ¢g; € C(R,R), i = 1,2, satisfy the local Lipschitz condition with zg;(z) > 0, ¢ = 1,2 for = # 0.
Using the Banach contraction principle, the author obtained some sufficient conditions for the existence of
nonoscillatory solutions to (1.2)). Cheng [6] studied the existence of nonoscillatory solution of a second-order
linear neutral difference equation

AQ(«TTL + pxn—m) + PnTpn—k — QnTp—| = 07 n = ng,ng + 17 ceey (13)

where p € R, m,k,l,ng € N, pn,qn € RT, and some other special cases of equation ([1.3]) were considered
by Li et al. [9] and Zhang and Zhou [13]. In particular, Cheng [6] established the following result.

Theorem 1.1 (See [6, Theorem 1]). Suppose that p # —1, > sps < 00, and Y. sqs < co. Then equation
(1.3) has a nonoscillatory solution.

To the best of our knowledge, there are few results for second-order nonlinear difference equations with
positive and negative coefficients. Motivated by the ideas exploited in [3] [6], we obtain the global results
(with respect to p), which are some sufficient conditions for the existence of a nonoscillatory solution of
for p # —1. The results obtained extend those reported in [6]. An example is considered to illustrate
the possible applications.

2. Main results

Theorem 2.1. Assume that p # —1 and conditions (Hy) and (H2) are satisfied. Then (1.1]) has a bounded
nonoscillatory solution.

Proof. The proof of Theorem will be divided into five cases, depending on the five different ranges of the
parameter p. Let [7° be the Banach space which is composed of all bounded real sequences x = {:z:n},iL’O:nO
with the norm ||z|| = sup,,>,, [Tn|-

Case 1. p = 1. By (H;) and (H3), one can choose an n, > ng + max{m,k, [} sufficiently large such
that, for all n > n,,

Z(Ru - Rn—l)pu
Z(Ru - Rn—l)Qu <
> (11 1
;(Ru - Rn—l)(pu + QU) < min {La a + 6} )
where o = maxi<z<3{f(2)}, B = maxi<z<3{g(x)}, and L = max{L¢([1,3]), Ly([1,3])}.
We define a bounded, closed, and convex subset S in [0 by

IN
Qm

: (2.1)

IS

S={zx={zp} el :1<z,<3,n>n}.
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Consider the operator T': .S — [5° defined by

[e.e]

00 n+2jm
(Tx), = 2- Z Z (7,1 Z(puf(xu—k) - qug(xu_l))> , M2 Ny,

j=1s=n+(2j-1)m \ ° u=s
(Tx)n,, no<n<n,.

Clearly, T'x,, is a real sequence. It is not difficult to show that 7' is a continuous mapping on S. For every
x = {z,} € S and n > n,, we obtain

o) n+2jm +(25—-1)m
(Tx)n <2+ Z Z Z QMg Loy— l) + Z Zng Loy— l
Jj=1 [s= n+(2j 1)m s=n+(2j—2)m
—2+Z ungwuz —2+szquga:uz
uU=n s=n
=2+ Z(Ru - Rnfl)QUg(:Uu—l) <2+ B Z(Ru - Rnfl)QU <3.
u=n u=n
On the other hand, we have
e n+2jm +(25—-1)m
(Tow>2-3 | Zpuf Tur) + Z Zpuf Tu-r)
J=1 [ s=n+(2j—1)m s=n+(2j—-2)m
22—2 Zpufxuk—2—ZZ Pl (@)
uU=n S= n
o0
=2- Z(Ru - Rnfl)puf(xu—l) >2—-a Z(Ru - Rnfl)pu > 1.
u=n u=n

Thus, we conclude that T'S C S.

Next, we prove that T is a contraction mapping on S. As a matter of fact, for every x,y € S and n > n,,
we get

uU=s

n+2jm 0o
T2y, — Tya| < Z > (: > ul f@uk) = F i) + qulg(@u) — 9(%—0!))

J=1 s=n+(2j— l)m s

SLH'T_QHZEZ(pu“‘Qu LHx_yHZZ pu+Qu
s=n u=s

Uu="n s=n
(o]
= L|lz = yll > (Ru = Rn-1)(pu + qu) = pollz — ],
u=n
which implies that
| Tz — Tyl| < pollz — yll,

where pg = LY 02 (Ry— Rn—1)(pu+4qu). Using (2.1, we have py < 1, and thus 7T is a contraction mapping.
Consequently, T" has a unique fixed = such that (T'x),, = x,, that is,

n+2jm

2_2 Z Z[’Pu f(@u—t) = qug(Tu—t)], 1 > ny,

j=1s=n+(2j—1)m
(Tx)n,, mno<n<n,.

Tp =
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Furthermore, we have

%) n+2jm n+(2j—1)m 1 00
Ty + Tp—m =4 — Z Z + Z 7 Z(puf(l'u—k) - QUg(SUu—l))
j=1 [s=n+(2j—1)m s=n+(2j—2)m S u=s

=4 Z 7‘15 Z(puf(xu—k) - ng(xu—l))‘

Therefore,
A(rn(A(fEn + xnfm))) + pnf(xn—k) - Qng(l‘n—l) =0,
and x,, is obviously a positive solution of ([1.1)). This completes the proof of Case 1.

Case 2. p € (0,1). By virtue of conditions (H;) and (Hz), we can choose an ny > ng + max{m,k, [}
sufficiently large such that

a1

iRP <p—(1—N1)

o0
1—p—pNi — M
3 Ryqo < — 2P0 (2.2)
s=n 51

ZRS(pS+qS) < L
1
S=n

hold for all n > n;, where Ny > M; > 0,1 - Ny <p < (1 —M;)/(1+ N1), a1 = maxp,<qa<n, {f(2)},
51 = maXMISxSNl{g(:r)}, and L1 = max{Lf([Ml,Nl]),Lg([Ml,Nﬂ)}. Set

Ay ={z={z,} €l : My <z, < Ni,n>ng}.

Define an operator T : Ay — I3 by

;

1—p—pxp_m+ Rp_1 Z (psf<$s—k) - QSg(:US—l))

s=n—1
(Tz), = n—2
+ Z Rs(psf(xsfk) - ng(CUsfl)), n > ni,
s=n1

(Tx)n,, 1no<n<mng.

For every z € Ay and n > ni, we have

00 n—2
(Tx)n <l-pt+aR,1 Z Ps + Z Rps
s=n—1 s=n1i

o
Sl—p-i-mZRspsSNL

s=ni

Furthermore, we get

[e's) n—2
(Tx)n >1—-p—pNi1—Rpq Z QSg(xsfl) - Z qu‘sg(xsfl)

s=n—1 s=n1

oo
>1—p—pN1 - Z Ryqs > My,

s=n1
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and hence T'A; C A;.
Now, for x,y € Ay and n > ny, we obtain

S
|T$n - Tyn‘ < p’l'nfm - ynfm| + Rp—1 Z ps|f(xs—k) - f(ys—k)|

s=n—1
o] n—2
+ Rp1 Z QS‘g(xsfl) - g(ysfl)’ + Z Rsps|f(xsfk) - f(ysfk)’
s=n—1 s=n1
n—2
+ Z Rsqs|g(zs—1) — 9(ys—1)|

s=n1

00
SpHx _yH +L1H$ - yH Z Rs(ps +QS)

s=n1
= qillz —yll;
where G =p+ L1 322, Rs(ps + qs) < 1 due to (2.2). This immediately yields
| Tz — Tyl < qil|z —yll,
and so T is a contraction mapping. Consequently, 7' has a unique fixed z, which is obviously a positive
solution of . This completes the proof of Case 2.

Case 3. p € (1,00). From (H;) and (H3), one can choose an ng > ng + max{m, k, [} sufficiently large such
that

o0
1—p(1-— N:
E Rsps < p( 2)7
e))]
s=n

qu < (1= Ms)p — (14 No)
=~ SYS = 62 b

D Ralpsta:) <
2
S=nN

hold for all n > ng, where No > My > 0, (1 — Ma)p > 1+ Na, p(1 — No) < 1, e = maxp,<a<n, {f(2)},
B2 = maxa,<o<n,{9(2)}, and Ly = max{Ls([M2, No]), Lg([M2, N2])}. Set

Ay ={x = {z,} €y, : Mo < 2, < Noyn > ng}.
Define an operator T : Ay — [0 as

( 11 1 =
1——-— —Tptm T *Rn+m71 Z (psf(xs—k) - QSg(xs—l))
p p p s=n+m—1
(Tx)n — n+m-—2
+ 5 Z Rs(psf(xsfk) - QSg(xsfl)% n > ng,

s=ngy

(Tx)n,, mno<n<ng.

For every z € Ay and n > no, we get

1 1 00 1 n+m—2
(Tx)n <1l--+ *CVQRn—&—m—l Z Ps + —Qo Z Rgsps
p p s=n+m—1 p s=n2

1 1 &
§1_5+EQQZR8pSSN2'

S=ng
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Furthermore, we have

1 1 1 00 1 n+m—2
(Tdf)n >1————-Ng— *ﬂQRn-‘rm—l Z ds — — B2 Z Rsqs
p p p s=n+m—1 p s=n2
11 R
Zl—E—ENZ—*ﬁ2 ZRSQSZMQ’

S=ng
and thus T'As C Ay. Since Az is a bounded, closed, and convex subset of 7, we have to prove that T' is a
contraction mapping on As to apply the contraction principle.
Now, for x,y € A2 and n > ng, we obtain
1 1 >
|T$n - Tyn| < *|l‘n+m - yn+m| + —Roym—1 Z ps|f(l's—k) - f(ys—k)|
p p s=n+m—1

00 n+m—2

1 1
+ ERn-‘rm—l Z QS’g({Bsfl) - g(ysfl)‘ + 5 Z Rsps,f(xsfk) - f(ysfk)‘
s=n+m—1 sS=ng
1 n+m—2
5 > Regslg(@st) — g(ys)|
s=na

o0
< eyl + - Lall — yll 3 Rolps + )
p p o=
= Gollz —yll,
which yields
1Tz =Tyl < gal|z —yl|-
From (2.3), we have ¢» = 1/p(1 + Lo¥2, Rs(ps + qs)) < 1. Therefore, T' is a contraction mapping.

Consequently, T' has a unique fixed z, which is obviously a positive solution of (|1.1]). The proof of Case 3
is complete.

Case 4. p € (—1,0). Combining (H;) and (Hz2), we can choose an ng > ng + max{m, k, [} sufficiently large
such that

iRP _(+pNs—(1+p)
s=n B a3 ’

o0
1+p— Ms(1+

> R < T2 IBUED), (2.4)
s=n 3
o0

1+
> Rsps +45) < Lp
sS=n 3

hold for all n > ng, where M3 and N3 are positive constants satisfying 0 < Mz < 1 < Ns,
a3 = maxnp<o<n;{f(2)}, B3 = maxan<e<n;{g(2)}, and Ly = max{L([Ms, Ns]), Ly([M3, N3])}. Set

Az ={z ={z,} €l : M3 < 2, < N3, n>np}.
Define an operator T : A3 — [ by

(

14+p—pxpn—m+ Rp_1 Z (psf(xsfk) - QSg(‘,L'Sfl))

s=n—1
(Tz), = n-2
+ Z Rs(psf(xs—k) - QSg(xs—l))a n = ng,
s=n3

(Tz)pg, mo<mn<ng.
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For every z € A and n > n3, we have

o) n—2
(Tx)n S 1 +p _pNS + CV?)]%n—l Z Ps + a3 Z Rsps

s=n—1 s=ng
o)
<1+4p—pNs+asz > Reps < Ns.
s=ns

Furthermore, we conclude that

0o n—2
(Tl‘)n >1+p—pMs— Ry Z QSQ(SUS—I) - Z Rstg(xs—l)

s=n—1 s=ng3

o0
>1+p—pMs—fB3 Y Regs > M,

s=n3s

and thus T'As C As.
Next, we prove that T is a contraction mapping on As. In fact, for every x,y € A3 and n > n3, we have

)
‘Txn - Tyn‘ < _p’xn—m - yn—m’ + Rn—l Z ps’f(xsfk) - f(ysfkﬂ

s=n—1
00 n—2
+ Rp1 Z q5|g(xs—l) - g(ys—l)’ + Z Rsps|f(xs—k) - f(ys—k)’
s=n—1 s=ng3
n—2
+ Z Rs‘]s|g($s—l) - g(ys—l)|
s=n3

o0
< —plle = yll + Lolle = oIl 3 Rulps+ )

s=ns
= Gs||lz — yll.

This immediately yields
1Tz —Tyl| < gsllz —yll,

where g3 = —p + L3 Z;ins Rs(ps + gs) < 1 due to (2.4)), which implies that T is a contraction mapping.

Consequently, T" has a unique fixed x, which is obviously a positive solution of (1.1). This completes the
proof of Case 4.

Case 5. p € (—o0,—1). From (H;) and (H2), one can choose an n4 > ng + max{m, k,[} sufficiently large
such that

iRsps o =+ 1N = 1)

Ba ’
;qus it +pi(41 — M) (2.5)

00 C(pa1
ZRs<ps +QS) < (]z)
s=n 4

hold for all n > ny4, where M, and N, are positive constants satisfying 0 < My < 1 < Ny,
Qg = maXM4§1‘SN4{f(x)}7 By = ma’XMALSiUSNél{g(‘r)}’ and Ly = maX{Lf([M47 N4])7Lg([M47 N4])} Set

Ay =A{x={zp} €l : My <z < Ny, 0> g}
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Define an operator T : Ay — [0 as

o0

1 1 1
1+ ]; — ECEn—&—m + ERn—‘rm—l Z (psf(ars_k) — ng(fCS_l))

s=n+m—1

T n = n+m—2
( x) + - Z RS(st(xS—k) - qsg(xs_l)), n > ng,

s=n4

( (T2)ny, 1o <n < ng.

For every = € A4 and n > ny, we get

1 1 1 00 1 n+m—2
(Tx)n <14+-—-Ny— *B4Rn+m—1 Z qs — —Ba Z Ryqs
PP p s=n+m—1 p S§=Tn4
11 1 &
<1+-—-Ni—=B4 > Reqs < Ny
p p s=n4
Furthermore, we have
1 1 1 0o 1 n+m—2
(T2)p > 1+~ = —My+ —asRpim1 D, ps+-as Y Rips
p p p s=n+m—1 p s=ny

1 1 -
21+*—*M4+*044ZRSQSZM47
p p p

S=n4

and so T'Ay C Ay. Since Ay is a bounded, closed, and convex subset of [7°, we have to prove that T'is a
contraction mapping on A4 to apply the contraction principle.
Now, for x,y € A4 and n > n4, we have
1 1 >
|T:L'n - Tyn| < _];|xn+m - yn+m| - ];Rnerfl Z ps|f(l‘s—k) - f(ys—k:)|

s=n+m—1

00 n+m-—2
1 1
- ERn—&-m—l Z QS’g(xsfl) - g(ysfl)‘ - 5 Z Rsps’f(xsfk) - f(ysfkﬂ
s=n+m—1 S=n4
1 n+m—2
-5 > Regslg(wst) = 9(ys—)|
s=ny

1 1 s
< —EHx—yH - §L4Hx—y|! > R(ps + qs)

S=n4

= qullz —yll.

This immediately implies that
1Tz — Ty|| < Gallz — yll.

By virtue of (2.5)), we get g4 = 1/p(—=1 — L4332, Rs(ps + ¢s)) < 1, which proves that 7" is a contraction
mapping. Consequently, 7" has a unique fixed x, which is obviously a positive solution of (L.1)). This
completes the proof of Case 5. Therefore, the proof of Theorem is complete. O

Remark 2.2. One can easily see that Theorem [2.1|includes Theorem [1.1| when 7, = 1 and f(u) = g(u) = u.
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3. Applications

Example 3.1. Consider a second-order difference equation

where p = 1, 7, = 1/, f(2) = 2, g(x) = 2,

and

A(rpA(xy + Tp—1)) + PnTp—2 — qnxf’l_2 =0, n=2,3,..., (3.1)

3

B 2(n—2)
Pn = )t Dn(n — 1)(2n — 3)

8(n —2)3
(n+2)(n+1n(n—1)(2n — 3)3"

Gn =

It is easy to verify that

Rn:Z:S:Z.S:;(nth)(nl),

s=2 s=2

o0 oo
ZRnpn < 00, and Zann < 0.

n=2 n=2

Therefore, conditions (H;) and (Hs) are satisfied. By Theorem [2.1] equation (3.1)) has a bounded nonoscil-
latory solution. As a matter of fact, the sequence {z,} = {2+ 1/n} is a nonoscillatory solution of (3.1).
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