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Abstract

In this article, we establish the existence of multiple unbounded positive solutions to the boundary value
problem of the nonlinear singular fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < α < 2,[
I2−α

0+
u(t)

]′∣∣∣
t=0

= 0,

u(1) = 0.

Our analysis relies on the well known fixed point theorems in the cones in Banach spaces. Here f is singular
at t = 0 and t = 1. c©2012. All rights reserved.
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1. Introduction

Fractional differential equations have many applications in modeling of physical and chemical processes
and in engineering and have been of great interest recently. In its turn, mathematical aspects of studies on
fractional differential equations were discussed by many authors, see the text books [1,2] and papers [3-10]
and the references therein.
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The use of cone theoretic techniques in the study of solutions to boundary value problems has a rich and
diverse history. In [3], the authors studied the existence of positive solutions (continuous and nonnegative
on [0, 1]) of the following boundary value problem for fractional differential equation{

Dα
0+x(t) + f(t, x(t)) = 0, t ∈ (0, 1), 1 < α < 2,

x(0) = x(1) = 0,

where f : [0, 1] × [0,∞) → [0,∞) is a continuous function, Dα
0+ (Dα for short) is the Riemann-Liouville

fractional derivative of order α.
One notes that the problem

u′′(t) + 1 = 0, u′(0) = u(1) = 0

has bounded solution, however, the generalized boundary value problem for fractional differential equation
Dα

0+u(t) + 1 = 0, t ∈ (0, 1), 1 < α < 2,[
I2−α

0+
u(t)

]′∣∣∣
t=0

= 0,

u(1) = 0,

has solution

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
ds+ tα−2

∫ 1

0

(1− s)α−1

Γ(α)
ds,

which is unbounded.
In papers [6,7,9,10], the existence of positive solutions (continuous and nonnegative on [0, 1]) of boundary

value problems for fractional differential equations were studied, but there exists no paper concerned with the
existence of unbounded positive solutions of boundary value problems for fractional differential equations.

Motivated by this reason, in this paper, we discuss the existence of multiple unbounded positive solutions
to the boundary value problem of the nonlinear fractional differential equation of the form

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < α < 2,[
I2−α

0+
u(t)

]′∣∣∣
t=0

= 0,

u(1) = 0,

(1.1)

where Dα
0+ (Dα for short) is the Riemann-Liouville fractional derivative of order α, and f : (0, 1)× [0,∞)→

[0,∞) such that f(t, tα−2x) is continuous on (0, 1)× [0,∞). f is singular at t = 0 and t = 1.
We obtain the existence results for two and three positive solutions of BVP(1.1) by using the fixed point

theorems in the cones in Banach spaces.

2. Preliminary results

For the convenience of the reader, we present here the necessary definitions from fixed point theory and
fractional calculus theory. These definitions and results can be found in the literatures [11].
Definition 2.1. Let X be a real Banach space. The nonempty convex closed subset P of X is called a
cone in X if ax ∈ P for all x ∈ P and a ≥ 0, x ∈ X and −x ∈ X imply x = 0.
Definition 2.2. A map ψ : P → [0,+∞) is a nonnegative continuous concave or convex functional map
provided ψ is nonnegative, continuous and satisfies

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y),

or
ψ(tx+ (1− t)y) ≤ tψ(x) + (1− t)ψ(y),

for all x, y ∈ P and t ∈ [0, 1].
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Definition 2.3. An operator T : X → X is completely continuous if it is continuous and maps bounded
sets into pre-compact sets.

Let ψ be a nonnegative functional on a cone P of a real Banach space X. Define the sets by

Pr = {y ∈ P : ||y|| < r},
P (ψ; a, b) = {y ∈ P : a ≤ ψ(y), ||y|| < b},
P (ψ, d) := {x ∈ P : ψ(x) < d}.

Lemma 2.1. Let T : P c → P c be a completely continuous operator and let ψ be a nonnegative continuous
concave functional on P such that ψ(y) ≤ ||y|| for all y ∈ P c. Suppose that there exist 0 < a < b < d ≤ c
such that

(E1) {y ∈ P (ψ; b, d)|ψ(y) > b} 6= ∅ and ψ(Ty) > b for y ∈ P (ψ; b, d);
(E2) ||Ty|| < a for ||y|| ≤ a;
(E3) ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.
Then T has at least three fixed points y1, y2 and y3 such that ||y1|| < a, b < ψ(y2) and ||y3|| > a with

ψ(y3) < b.
Lemma 2.2. Suppose P is a cone in a real Banach space X, α, γ : P → I0 be two continuous increasing
functionals, θ : P → I0 be a continuous functional and there exist positive numbers M, c > 0 such that

(i) T : P (γ, c)→ P is a completely continuous operator;
(ii) θ(0) = 0 and γ(x) ≤ θ(x) ≤ α(x), ||x|| ≤Mγ(x) for all x ∈ P (γ, c);
(iii) there exist constants 0 < a < b < c such that θ(λx) ≤ λθ(x) for all λ ∈ [0, 1] and x ∈ ∂P (θ, b);
(iv) γ(Tx) > c for all x ∈ ∂P (γ, c); θ(Tx) < b for all x ∈ ∂P (θ, b); P (α, a) 6= ∅ and α(Tx) > a for all

x ∈ ∂P (α, a);
then T has two fixed points x1, x2 in P (γ, c) such that

α(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Lemma 2.3. Suppose P is a cone in a real Banach space X, α, γ : P → I0 be two continuous increasing
functionals, θ : P → I0 be a continuous functional and there exist positive numbers M, c > 0 such that (i),
(ii) and (iii) in Lemma 2.4 hold and

(iv) γ(Tx) < c for all x ∈ ∂P (γ, c); θ(Tx) > b for all x ∈ ∂P (θ, b); P (α, a) 6= ∅ and α(Tx) < a for all
x ∈ ∂P (α, a);

then T has two fixed points x1, x2 in P (γ, c) such that

α(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Definition 2.4. The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,∞) → R is
given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided that the right-hand side exists.
Definition 2.5. The Riemann-Liouville fractional derivative of order α > 0 of a continuous function
f : (0,∞)→ R is given by

Dα
0+f(t) =

1

Γ(n− α)

dn+1

dtn+1

∫ t

0

f(s)

(t− s)α−n+1
ds,

where n− 1 < α ≤ n, provided that the right-hand side is point-wise defined on (0,∞).
Lemma 2.4. Let n− 1 ≤ α < n, u ∈ C0(0, 1)

⋂
L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where Ci ∈ R, i = 1, 2, . . . n.
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Lemma 2.5. The relations
Iα0+I

β
0+ϕ = Iα+β

0+ ϕ, Dα
0+I

α
0+ = ϕ

are valid in following case
Reβ > 0, Re(α+ β) > 0, ϕ ∈ L1(0, 1).

Lemma 2.6. Suppose that h : (0, 1)→ R satisfying that there exist constants M > 0, k < 1 and σ ∈ (0, α)
such that

|h(t)| ≤ M

tk(1− t)σ
, t ∈ (0, 1).

Then u is a solution of 
Dαu(t) + h(t) = 0, 0 < t < 1,[
I2−α

0+
u(t)

]′∣∣∣
t=0

= 0,

u(1) = 0

(2.1)

if and only if

u(t) =
1

Γ(α)

[∫ t

0

(
tα−2(1− s)α−1 − (t− s)α−1

)
h(s)ds+ tα−2

∫ 1

t
(1− s)α−1h(s)ds

]
. (2.2)

Proof. We may apply Lemma 2.4 to reduce BVP(2.1) to an equivalent integral equation

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+ c1t

α−1 + c2t
α−2

for some ci ∈ R, i = 1, 2. By the assumption imposed on h, we know that∣∣∣∣∫ t

0

(t− s)α−1

Γ(α)
h(s)ds

∣∣∣∣ ≤ ∫ t

0

(t− s)α−1

Γ(α)
|h(s)|ds

≤
∫ t

0

(t− s)α−1

Γ(α)

M

sk(1− s)σ
ds ≤M

∫ 1

0

(1− s)α−1

Γ(α)

1

sk(1− s)σ
ds

=
M

Γ(α)

∫ 1

0
(1− s)α−σ−1s−kds =

M

Γ(α)
B(α− σ, 1− k).

So u(t) is well defined and is continuous on (0, 1]. Then We get

t2−αu(t) = −t2−α
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+ c1t+ c2

and

[I2−α
0 u(t)]′ = −

∫ t

0
h(s)ds+ c1Γ(α).

Then
[
I2−α

0 u(t)
]′∣∣∣
t=0

= 0 implies c1 = 0. u(1) = 0 implies that

c2 =

∫ 1

0

(1− s)α−1

Γ(α)
h(s)ds.

Therefore, the unique solution of BVP(2.1) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+

tα−2

Γ(α)

∫ 1

0
(1− s)α−1h(s)ds.

Then (2.2) holds. Reciprocally, let u satisfy (2.2). Then[
I2−α

0+
u(t)

]′∣∣∣
t=0

= 0, u(1) = 0,

furthermore, we have Dαu(t) = −h(t). The proof is complete.
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Lemma 2.7. Suppose that β ∈ (0, 1) and h : (0, 1) → [0,∞) satisfying that there exist constants M > 0,
k < 1 and σ ∈ (0, α) such that

h(t) ≤ M

tk(1− t)σ
, t ∈ (0, 1).

If u is the solution of BVP(2.1), then

inf
t∈(0,β]

t2−αu(t) ≥ (1− β2−α) sup
t∈(0,1]

t2−αu(t). (2.3)

Proof. One sees from Lemma 2.6 that u satisfies (2.2). Let

G(t, s) =
1

Γ(α)

{
tα−2(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1, t 6= 0,
tα−2(1− s)α−1, 0 < t ≤ s ≤ 1.

It is easy to see that
Γ(α)t2−αG(t, s) ≤ (1− s)α−1 for all t, s ∈ (0, 1]. (2.4)

On the other hand, we have

Γ(α)t2−αG(t, s) ≥ (1− β2−α)(1− s)α−1, t ∈ (0, β], s ∈ (0, 1]. (2.5)

It follows from (2.2) that u(t) =
∫ 1

0 G(t, s)h(s)ds ≥ 0. Hence

min
t∈(0,β]

t2−αu(t) =

∫ 1

0
min
t∈(0,β]

t2−αG(t, s)h(s)ds

≥
∫ 1

0
(1− β2−α)

(1− s)α−1

Γ(α)
h(s)ds

≥ (1− β2−α)

∫ 1

0
t2−αG(t, s)h(s)ds.

Hence
min
t∈(0,β]

t2−αu(t) ≥ (1− β2−α) sup
t∈(0,1]

t2−αu(t).

Then (2.3) holds. The proof is completed.

For our construction, we let

X = {x ∈ C(0, 1] : there exists the limit lim
t→0

t2−αx(t)}

with the norm ‖u‖ = supt∈(0,1] |t2−αu(t)| for u ∈ X. Then X is a Banach space. We seek solutions of
BVP(1.1) that lie in the cone

P =

{
u ∈ X : u(t) ≥ 0, t ∈ (0, 1], inf

t∈(0,β]
t2−αu(t) ≥ (1− β2−α)||u||

}
.

Define the operator T on P by

(Tu)(t) =

∫ 1

0
G(t, s)f(s, u(s))ds.

Lemma 2.8. Suppose that x→ f(t, tα−2x) is continuous on (0, 1)× [0,∞) and satisfies that
• for each r > 0 there exist constants Mr > 0, k < 1 and σ ∈ (0, 1) such that

f(t, tα−2x) ≤ Mr

tk(1− t)σ
for all t ∈ (0, 1), |x| ≤ r.

Then T : P → P is well defined and is completely continuous.
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Proof. We divide the proof into four steps.
Step 1. We prove that T : P → P is well defined.
For u ∈ P , we find u(t) ≥ 0 for all t ∈ (0, 1] and there exits r > 0 such that

||u|| = sup
t∈(0,1]

|t2−αu(t)| < r.

Then there exist constants Mr > 0, k < 1 and σ ∈ (0, α) such that

0 ≤ f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ Mr

tk(1− t)σ
(2.6)

for all t ∈ (0, 1). Since f is nonnegative, by (2.2), we know that (Tu)(t) ≥ 0 for all t ∈ (0, 1]. By Lemma
2.6, we know that Tu ∈ C0(0, 1].

On the other hand, the definition of T , (2.4) and (2.6) imply that

t2−α|(Tu)(t)| =

∣∣∣∣∫ 1

0
t2−αG(t, s)f(s, u(s))ds

∣∣∣∣
≤

∫ 1

0

(1− s)α−1−σ

Γ(α)
(1− s)σf(s, sα−2s2−αu(s))ds

≤
∫ 1

0

(1− s)α−1−σ

Γ(α)
Mrs

−kds

≤ Mr

Γ(α)
B(α− σ, 1− k).

By (2.2), we know that

t2−αu(t) =
t2−α

Γ(α)

∫ t

0

(
tα−2(1− s)α−1 − (t− s)α−1

)
f(s, u(s))ds+

1

Γ(α)

∫ 1

t
(1− s)α−1f(s, u(s))ds.

It is easy to show that limt→0 t
2−α(Tu)(t) = 1

Γ(α)

∫ 1
0 (1− s)α−1f(s, u(s))ds. By the method used in Lemma

2.7 (replace h by f), we get

inf
t∈(0,β]

t2−α(Tu)(t) ≥ (1− β2−α) sup
t∈(0,1]

t2−α(Tu)(t).

So Tu ∈ P . So T : P → P is well defined.
Step 2. T is continuous.
Let {yn} be a sequence such that yn → y in P . Let

max

{
sup
t∈(0,1]

t2−α|yn(t)|, sup
t∈(0,1]

t2−α|y(t)|

}
≤ r.

Then there exist constants Mr > 0, k < 1 and σ ∈ (0, α) such that f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ M
tk(1−t)σ

for all t ∈ (0, 1). Then for t ∈ (0, 1], we have

t2−α|(Tyn)(t)− (Ty)(t)| =

∣∣∣∣∫ 1

0
t2−αG(t, s)f(s, yn(s))ds−

∫ 1

0
t2−αG(t, s)f(s, y(s))ds

∣∣∣∣
≤

∫ 1

0
t2−αG(t, s)|f(s, yn(s))− f(s, y(s))|ds

≤ 2
1

Γ(α)

∫ 1

0
(1− s)α−1 Mr

sk(1− s)σ
ds

≤ 2
Mr

Γ(α)
B(α− σ, 1− k).
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Since
f(t, tα−2x)

is continuous in x, we have
||Tyn − Ty|| → 0

as n→∞.
Step 3. T maps bounded sets into bounded sets in P .
It suffices to show that for each l > 0, there exists a positive number L > 0 such that for each

x ∈M = {y ∈ P : ||y|| ≤ l}

, we have
||Ty|| ≤ L.

For y ∈M , we have
sup
t∈(0,1]

t2−α|y(t)| ≤ l.

Then there exist constants Mr > 0, k < 1 and σ ∈ (0, α) such that f(t, y(t)) = f(t, tα−2t2−αy(t)) ≤ Ml

tk(1−t)σ
for all t ∈ (0, 1).

By the definition of T , we get

t2−α|(Ty)(t)| =

∫ 1

0
t2−αG(t, s)f(s, y(s))ds

≤ 1

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

≤ 1

Γ(α)

∫ 1

0
(1− s)α−1 Ml

sk(1− s)σ
ds

=
Ml

Γ(α)
B(α− σ, 1− k).

It follows that

||Ty|| ≤ Ml

Γ(α)
B(α− σ, 1− k) for each y ∈ {y ∈ P : ||y|| ≤ l}.

So T maps bounded sets into bounded sets in P .
Step 4. T maps bounded sets into pre-compact sets.
Let M = {y ∈ P : ||y|| ≤ l} be a bounded set in X. We prove that {t2−αTu(t) : u ∈ M} is equi-

continuous on compact sub interval of (0, 1] and is equi-convergent at t = 0.
Firstly, let t1, t2 ∈ [a, b] ⊂ (0, 1] with 0 < a < b ≤ 1, t1 < t2 and

y ∈M = {y ∈ P : ||y|| ≤ l}

defined in Step 3. For y ∈M , we have
sup
t∈(0,1]

t2−α|y(t)| ≤ l.

Then there exist constants Mr > 0, k < 1 and σ ∈ (0, α) such that

f(t, y(t)) = f(t, tα−2t2−αy(t)) ≤ Ml

tk(1− t)σ

for all t ∈ (0, 1). By the definition of T , we have

(Ty)(t) = −
∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds+

tα−2

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds.
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We have

Γ(α)|t2−α1 (Ty)(t1)− t2−α2 (Ty)(t2)|

=

∣∣∣∣t2−α2

∫ t2

0
(t2 − s)α−1f(s, y(s))ds− t2−α1

∫ t1

0
(t1 − s)α−1f(s, y(s))ds

∣∣∣∣
≤ |t2−α1 − t2−α2 |

∫ t2

0
(t2 − s)α−1|f(s, y(s))|ds

+t2−α1

∫ t2

t1

(t2 − s)α−1|f(s, sα−2s2−αy(s))|ds

+t2−α1

∫ t1

0
[|(t2 − s)α−1 − (t1 − s)α−1|]|f(s, sα−2s2−αy(s))|ds

≤ |t2−α1 − t2−α2 |
∫ 1

0
(1− s)α−1 Ml

sk(1− s)σ
ds

+

∫ t2

t1

(1− s)α−1 Ml

sk(1− s)σ
ds

+

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]

Ml

sk(1− s)σ
ds

≤ |t2−α1 − t2−α2 |MlB(α− σ, 1− k) +Ml

∫ t2

t1

(1− s)α−σ−1s−kds

+Ml

∫ t1

0
(t2 − t1)α−1 1

sk(1− s)σ
ds

≤ |t2−α1 − t2−α2 |MlB(α− σ, 1− k) +Ml

∫ t2

t1

(1− s)α−σ−1s−kds

+Ml(t2 − t1)α−1

∫ t1

0

1

sk(t1 − s)σ
ds

= |t2−α1 − t2−α2 |MlB(α− σ, 1− k) +Ml

∫ t2

t1

(1− s)α−σ−1s−kds

+Ml(t2 − t1)α−1t1−σ−k1

∫ 1

0
(1− w)−σw−kdw

≤ |t2−α1 − t2−α2 |MlB(α− σ, 1− k) +Ml

∫ t2

t1

(1− s)α−σ−1s−kds

+Ml(t2 − t1)α−1 max
{
a1−σ−k, b1−σ−k

}
B(1− σ, 1− k).

As t1 → t2, the right-hand side of the above inequality tends to zero uniformly. So {t2−αTu(t) : u ∈ M} is
equi-continuous on [a, b].

Secondly, we have∣∣∣∣t2−α(Ty)(t)− 1

Γ(α)

∫ 1

0
(1− s)α−1f(s, y(s))ds

∣∣∣∣
≤ t2−α

∫ t

0

(t− s)α−1

Γ(α)
|f(s, sα−2s2−αy(s))|ds

≤ t2−α
∫ 1

0

(1− s)α−1

Γ(α)

Ml

sk(1− s)σ
ds = t2−αMl

B(α− σ, 1− k)

Γ(α)
.

The right-hand side of the above inequality tends to zero uniformly as t→ 0. Then {t2−αTu(t) : u ∈M} is
equi-convergent at t = 0.
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Therefore, TM is compact. From above discussion, T is completely continuous. The proof is complete.

3. Main Results

In this section, we prove the main results. Let M = B(α−σ,1−k)
Γ(α) , W = 1−β2−α

Γ(α)

∫ β
0 (1− s)α−σ−1s−kds.

Theorem 3.1. Suppose that f : (0, 1)× [0,∞)→ [0,∞) is continuous, f(t, 0) 6≡ 0 on (0, 1) and satisfies
• there exist constants k < 1, σ ∈ (0, 1), e1, e2 and c such that

0 < e1 < e2 <
e2

1− β2−α < c, Wc > Me2,

and
(D1) f(t, tα−2u) ≤ c

M
1

tk(1−t)σ for t ∈ (0, 1), u ∈ [0, c];

(D2) f(t, tα−2u) ≤ e1
M

1
tk(1−t)σ for t ∈ (0, 1) and u ∈ [0, e1];

(D3) f(t, tα−2u) ≥ e2
W

1
tk(1−t)σ for t ∈ (0, β] and u ∈

[
e2,

e2
β

]
.

Then BVP(1.1) has at least three unbounded positive solutions x1, x2 and x3 satisfying

sup
t∈(0,1]

t2−αx1(t) < e1, inf
t∈(0,β]

t2−αx2(t) > e2 (3.1)

and
sup
t∈(0,1]

t2−αx3(t) > e1, inf
t∈(0,β]

t2−αx3(t) < e2. (3.2)

Proof. Define the functional ψ by

ψ(x) = inf
t∈(0,β]

t2−αx(t) for x ∈ P.

It is easy to see that ψ is a nonnegative convex continuous functional on the cone P . ψ(y) ≤ ||y|| for all
y ∈ P . For x ∈ P , it follows from Lemma 2.8 that TP ⊆ P and T : P → P is completely continuous.

Corresponding to Lemma 2.1, choose

d =
e2

1− β2−α , b = e2, a = e1.

Then 0 < a < b < d < c. We divide the remainder of the proof into five steps.
Step 1. Prove that T (Pc) ⊂ Pc.
For x ∈ Pc, one has ||x|| ≤ c. Then

0 ≤ t2−αx(t) ≤ c, t ∈ (0, 1].

It follows from (D1) that

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ c

M

1

tk(1− t)σ
, t ∈ (0, 1).

Then Tx ∈ P implies that

||Tx|| = sup
t∈(0,1]

t2−α(Tx)(t)

= sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

≤ sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)

c

M

1

sk(1− s)σ
ds

≤ 1

Γ(α)

c

M

∫ 1

0
(1− s)α−1 1

sk(1− s)σ
ds

=
1

Γ(α)

c

M
B(α− σ − 1, 1− k) = c.
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Then Tx ∈ Pc, Hence T (Pc). This completes the proof of Step 1.
Step 2. Prove that

{y ∈ P (ψ; b, d)|ψ(y) > b} =

{
y ∈ P

(
ψ; e2,

e2

1− β2−α

)
: ψ(y) > e2

}
6= ∅

and ψ(Ty) > b = e2 for y ∈ P
(
ψ; e2,

e2
1−β2−α

)
.

It is easy to see that {x ∈ P
(
ψ; e2,

e2
1−β2−α

)
, ψ(x) > e2} 6= ∅. For x ∈ P

(
ψ; e2,

e2
1−β2−α

)
, then ψ(x) ≥ e2

and ||x|| ≤ e2
1−β2−α . Then

inf
t∈(0,β]

t2−αx(t) ≥ e2, sup
t∈(0,1]

t2−αx(t) ≤ e2

1− β2−α .

Hence
e2 ≤ t2−αx(t) ≤ e2

1− β2−α , t ∈ (0, β].

Hence (D3) implies that

f(t, x(t)) ≥ e2

W

1

tk(1− t)σ
, t ∈ (0, β].

Since Ty ∈ P . We get

ψ(Tx) = inf
t∈(0,β]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

> inf
t∈(0,β]

∫ β

0
t2−αG(t, s)f(s, x(s))ds

≥
∫ β

0
(1− β2−α)

(1− s)α−1

Γ(α)
f(s, x(s))ds

≥ (1− β2−α)

∫ β

0

(1− s)α−1

Γ(α)

e2

W

1

sk(1− s)σ
ds

= e2.

This completes the proof of Step 2.
Step 3. Prove that ||Ty|| < a = e1 for y ∈ P with ||y|| ≤ a.
For x ∈ Pe1 , we have

sup
t∈(0,1]

t2−αx(t) ≤ e1 = a.

It follows from (D2) and Tx ∈ P that

f(t, x(t)) ≤ e1

M

1

tk(1− t)σ
, t ∈ (0, 1].

The proof is similar to that of Step 1. Then ||Ty|| < e1 for ||y|| ≤ e1. This completes that proof of Step 3.
Step 4. Prove that ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.
For x ∈ P (ψ; b, c) = P (ψ, e2, c) and ||Tx|| > d = e2

1−β2−α , then

inf
t∈(0,β]

t2−αx(t) ≥ e2, sup
t∈(0,1]

t2−α(Tx)(t) ≥ e2

1− β2−α and ||x|| = sup
t∈(0,1]

t2−αx(t) ≤ c.
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Hence we have from Tx ∈ P that

ψ(Tx) = inf
t∈(0,β]

t2−α(Tx)(t)

= (1− β2−α) sup
t∈(0,1]

(Tx)(t)

≥ (1− β2−α)
e2

1− β2−α

= b.

This completes the proof of Step 4.
From above steps, (E1), (E2) and (E3) of Lemma 2.1 are satisfied. Then, by Lemma 2.1, T has three

fixed points x1, x2 and x3 ∈ Pc such that

||x1|| < a, ψ1(x2) > b, ||x3|| ≥ a, ψ1(x3) ≤ b,

i.e., x1, x2 and x3 satisfy (3.1) and (3.2).
Finally, we prove that xi(i = 1, 2, 3) are unbounded. In fact, f(t, 0) 6≡ 0 on (0, 1) implies that xi(t) 6≡ 0.

We have

inf
t∈(0,β]

t2−αxi(t) ≥ (1− β2−β) sup
t∈(0,1]

t2−αxi(t).

So
xi(t) ≥ tα−2(1− β2−β) sup

t∈(0,1]
t2−αxi(t), t ∈ (0, β].

Then limt→0 xi(t) =∞. So xi is bounded. Hence BVP(1.1) has at least three unbounded positive solutions.
The proof is complete.

Theorem 3.2. Suppose that f : (0, 1)× [0,∞)→ [0,∞) is continuous, f(t, 0) 6≡ 0 on (0, 1) and satisfies
• there exist positive numbers k < 1, σ ∈ (0, 1), a < b < c such that Wb > Ma, and
(E1) f(t, tα−2u) ≥ c

W
1

tk(1−t)σ for t ∈ (0, β], u ∈ [c, c/(1− β2−α)];

(E2) f(t, tα−2u) ≤ b
M

1
tk(1−t)σ for t ∈ (0, 1) and u ∈ [0, b];

(E3) f(t, tα−2u) ≥ a
W

1
tk(1−t)σ for t ∈ [β, 1) and u ∈

[
(1− β2−α)a, a

]
.

Then BVP(1.1) has at least two unbounded positive solutions x1 and x2 satisfying

sup
t∈(0,1]

t2−αx1(t) > a, sup
t∈(0,1]

t2−αx1(t) < b, (3.3)

and
sup
t∈(0,1]

t2−αx2(t) > b, inf
t∈(0,β]

t2−αx2(t) < c. (3.4)

Proof. Define the nonnegative, increasing and continuous functionals γ, θ, α : P → I by

γ(x) = inf
t∈(0,β]

t2−αx(t), x ∈ P,

θ(x) = sup
t∈(0,1]

t2−αx(t), x ∈ P,

α(x) = sup
t∈(0,1]

t2−αx(t), x ∈ P.

It is easy to see that θ(0) = 0 and
γ(x) ≤ θ(x) ≤ α(x), x ∈ P

and for x ∈ P we have γ(x) ≥ (1− β2−α)||x||, θ(νx) ≤ νθ(x) for all ν ∈ [0, 1] and x ∈ P . From Lemma 2.8,
we have TP ⊂ P and T is completely continuous. Hence (i)-(iii) in Lemma 2.2 hold.
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To obtain two positive solutions of BVP(1.1), it suffices to show that the condition (iv) in Lemma 2.2
holds.

First, we verify that
γ(Tx) > c for alll x ∈ ∂P (γ, c). (3.5)

Since x ∈ ∂P (γ, c), we get inft∈(0,β] t
2−αx(t) = c. Then ||x|| ≤ 1

1−β2−αγ(x) ≤ c
1−β2−α . Then

c ≤ t2−αx(t) ≤ c

1− β2−α for all t ∈ (0, β].

Hence (E1) implies

f(t, x(t)) ≥ c

W

1

tk(1− t)σ
, t ∈ (0, β] .

So we get from Tx ∈ P that

γ(Tx)(t) = inf
t∈(0,β]

t2−α
∫ 1

0
G(t, s)f(s, x(s))ds

>

∫ β

0
(1− β2−α)

(1− s)α−1

Γ(α)
f(s, x(s))ds

≥ (1− β2−α)

∫ β

0

(1− s)α−1

Γ(α)

c

W

1

sk(1− s)σ
ds

≥ c.

Secondly, we prove that
θ(Tx) < b for all x ∈ ∂P (θ, b). (3.6)

Since θ(x) = b, we get supt∈(0,1] t
2−αx(t) = b. Then

t2−αx(t) ≤ b for all t ∈ (0, 1].

Hence (E2) implies

f(t, x(t)) ≤ b

M

1

tk(1− t)σ
, t ∈ (0, 1).

So the definition of T imply

θ(Tx) = sup
t∈(0,1]

t2−α(Tx)(t)

≤ sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

≤ 1

Γ(α)

b

M

∫ 1

0
(1− s)α−1 1

sk(1− s)σ
ds

= b.

Finally, we prove that
P (α, a) 6= ∅, α(Tx) > a for all x ∈ ∂P (α, a). (3.7)

It is easy to see that P (α, a) 6= ∅. For x ∈ ∂P (α, a), we have supt∈(0,1] t
2−αx(t) = a. Then

(1− β2−α)a ≤ t2−αx(t) ≤ a for all t ∈ (0, η] .

Then (E3) implies

f(t, x(t)) ≥ a

W

1

tk(1− t)σ
, t ∈ (0, η) .

Similarly to the first step, we can prove that α(Tx) > a. It follows from above discussion that all conditions
in Lemma 2.2 are satisfied. Then T has two fixed points x1, x2 in P . It is easy to show that xi is unbounded.
So BVP(1.1) has two positive solutions x1 and x2 satisfying (3.3) and (3.4). The proof is complete.
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Theorem 3.3. Suppose that f : (0, 1)× [0,∞)→ [0,∞) is continuous, f(t, 0) 6≡ 0 on (0, 1) and satisfies
• there exist positive numbers k < 1, σ ∈ (0, 1), a < βαb < b < c such that Wc > Mb, and
(E4) f(t, tα−2u) ≤ c

M
1

tk(1−t)σ for t ∈ (0, 1), u ∈ [0, c/(1− β2−α)];

(E5) f(t, tα−2u) ≥ b
W

1
tk(1−t)σ for t ∈ (0, β] and u ∈ [(1− β2−α)b, b];

(E6) f(t, tα−2u) ≤ a
M

1
tk(1−t)σ for t ∈ (0, 1) and u ∈ [0, a].

Then BVP(1.1) has at least two unbounded positive solutions x1 and x2 satisfying (3.3) and (3.4).

Proof. Let the nonnegative, increasing and continuous functionals γ, θ, α : P → I be defined in the proof of
Theorem 3.2. By using Lemma 2.3, the remainder of the proof is similar to that of the proof of Theorem
3.2 and is omitted.
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