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Abstract

In this paper we have proved two theorems in which we have established the existence of coupled fixed
point results in partially ordered complete metric spaces for generalised coupled Banach and Kannan type
mappings. The generalisation has been accomplished by following the line of argument given by Geraghty
[Proc. Amer. Math. Soc., 40 (1973), 604-608] . Here the mapping are assumed to satisfy certain contractive
type inequalities. We have illustrated our result with two examples. First example is presented to show that
our result is a proper generalizations of the corresponding results of Bhaskar et al [Nonlinear Anal. TMA,
65 (7) (2006), 1379-1393]. c©2012. All rights reserved.

Keywords: Partially ordered set, Contractive-type mapping, Mixed monotone property, Coupled fixed
point.
2010 MSC: Primary 54H25; Secondary 54H10.

1. Introduction and Preliminaries

Fixed point theory in recent has developed rapidly in partially ordered metric spaces; that is, metric
spaces endowed with a partial ordering. References [1], [13], [25], [26], [27] are some examples of these works.
Fixed point problems have also been considered in generalisation of metric spaces endowed with partial
orderings as for example in partially order cone metric spaces [23], in partially ordered G-metric spaces [4]
and in partially ordered probabilistic metric spaces [12]. In their paper Bhaskar and Lakshmikantham [16]
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established a coupled contraction mapping principle in partially ordered metric spaces for mappings having
mixed monotone property. An application of their result to differential equations has also been given in
the same work. After the publication of this work, several coupled fixed point results have appeared in the
literature. The work of Bhaskar et. al; was further generalized to coupled coincidence point theorems in [7]
and [24] under two separate sets of sufficient conditions. Several other coupled fixed and coincidence point
results were proved in works like those noted in references [3], [6], [11], [17], [29].

Geraghty [15] introduced an extension of the Banach contraction mapping principle in which the con-
traction constant was replaced by a function having some specified properties. The method applied by
Geraghty was utilized to obtain further new fixed point results works like [2] and [10].

Definition 1.1. [15] Let S is the class of functions β : <+ → [0, 1) with

(i) <+ = {t ∈ </t > 0},

(ii) β(tn)→ 1 implies tn → 0. (1.1)

With the help of the above class of functions Geraghty [15] had established a generalisation of the Banach
contraction principle.

Theorem 1.2. [15] Let (X, d) be a complete metric space and let T : X → X be a mapping satisfying
d(Tx, Ty) ≤ β(d(x, y)).d(x, y), for x, y ∈ X,
where β ∈ S. Then T has a unique fixed point z ∈ X and {Tn(x)} converges to z for each x ∈ X.

A. Amini-Harandi and H. Emami, [2] has shown that the result which Geraghty had been proved in [15]
is also valid in complete partially ordered metric spaces. The following is the result of A. Amini-Harandi
and H. Emami.

Theorem 1.3. [2] Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such
that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such that d(Tx, Ty) ≤
β(d(x, y)).d(x, y), for x, y ∈ X with x ≤ y,
where β ∈ S. Assume that either T is continuous or X satisfies the following condition:

if {xn} is a non decreasing sequence in X such that xn → x, then xn ≤ x ∀n ∈ N .

Besides, suppose that for each x, y ∈ Xthere exists z ∈ X which is comparable to x and y. If there exists
x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.
The essential feature of this line of generalisation is that the contraction constant has been replaced by a
function belonging to the class S. A further extension of the above result has been done in [10].

Kannan type mappings are a class of contractive mappings which are different from Banach contraction.
Like Banach contraction they have unique fixed points in complete metric spaces. However, unlike the
Banach condition, there exist discontinuous functions satisfying the definition of Kannan type mappings.
Following their appearance in [20], [21], many persons created contractive conditions not requiring conti-
nuity of the mappings and established fixed points results of such mappings. Today , this line of research
has a vast literature . Another reason for the importance of Kannan type mappings is that it characterizes
completeness which the Banach contraction principle does not. It has been shown in [30], [32] that the
necessary existence of fixed points for Kannan type mappings implies that the corresponding metric space is
complete. The same is not true with the Banach contractions. There is an example of an incomplete metric
space where every Banach contraction has a fixed point [14]. Kannan type mappings, its generalizations
and extensions in various spaces have been considered in a large number of works some of which appear in
[5], [8], [9], [18], [19], [22], [28], [31].
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Definition 1.4. [20, 21] A mapping T : X → X, where (X, d) is a metric space, is called a Kannan type
mapping if there exists 0 < λ < 1 such that, for all x, y ∈ X, the following inequality holds:

d(Tx, Ty) ≤ λ

2
[d(x, Tx) + d(y, Ty)]. (1.2)

Let (X,�) be a partially ordered set and F : X −→ X. The mapping F is said to be non-decreasing if for
all x1, x2 ∈ X , x1 � x2 implies F (x1) � F (x2) and non-increasing if for all x1 � x2 implies F (x1) � F (x2).

Definition 1.5. [16] Let (X,�) be a partially ordered set and F : X×X −→ X. The mapping F is said to
have the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
non-increasing in its second argument; that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y) � F (x2, y)
and

y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1) � F (x, y2).

Definition 1.6. [16] An element (x, y) ∈ X × X, is called a coupled fixed point of the mapping F :
X ×X −→ X if F (x, y) = x and F (y, x) = y.

The following coupled contraction mapping theorem was established by Bhaskar et al [16].

Theorem 1.7. [16] Let (X, �) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Assume that X has the following property:
1. if a non-decreasing sequence {xn} −→ x, then xn � x, for all n,
2. if a non-increasing sequence {yn} −→ y, then y � yn, for all n.
Let F : X ×X −→ X be a mapping having the mixed monotone property on X. Assume that there exists a
k ∈ [0, 1) such that for x, y, u, v ∈ X with x � u, y � v the following inequality holds

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)]. (1.3)

If there exists x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (x0, y0), then there exist x, y ∈ X such that
x = F (x, y) and y = F (y, x).

In the present work, following the idea of Geraghty [15], we established two coupled coincidence point
theorems to generalize Banach and Kannan type contractions in partially ordered metric spaces. Two
illustrative examples are given. One of our theorems extends the work of Bhaskar et. al [16].

2. Main Results

Theorem 2.1. Let (X, �) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X×X −→ X be a mapping such that F has the mixed monotone property
and satisfies

d(F (x, y), F (u, v)) ≤ β(
d(x, u) + d(y, v)

2
)(
d(x, u) + d(y, v)

2
), (2.1)

for all x, y, u, v ∈ X with x � u and y � v and β ∈ S. Also suppose that
(a) F is continuous or
(b) X has the following properties:

i) if a non-decreasing sequence {xn} −→ x, then xn � x, for all n ≥ 0, (2.2)

ii) if a non-increasing sequence {yn} −→ y, then yn � y, for all n ≥ 0. (2.3)

If there are x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then there exist x, y ∈ X such that
x = F (x, y) and y = F (y, x), that is, F has a coupled fixed point in X.
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Proof. By the condition of the theorem there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0).
We define x1, y1 ∈ X as x1 = F (x0, y0) and y1 = F (y0, x0). Then x1 � x0 and y1 � y0. I n the same
way, using the mixed monotone property of F we define x2 = F (x1, y1) and y2 = F (y1, x1). Then x2 =
F (x1, y1) � F (x0, y1) � F (x0, y0) = x1 and y2 = F (y1, x1) � F (y1, x0) � F (y0, x0) = y1. Continuing the
above procedure we have two sequences {xn} and {yn} in X such that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for all n ≥ 0. (2.4)

Due to the mixed monotone property of F, we have,

x0 � F (x0, y0) = x1 � F (x1, y1) = x2 � ... � xn = F (xn−1, yn−1) � xn+1 = F (xn, yn) � ... (2.5)

and
y0 � F (y0, x0) = y1 � F (y1, x1) = y2... � yn = F (yn−1, xn−1) � yn+1 = F (yn, xn) � ... . (2.6)

From (2.1), (2.4), (2.5) and (2.6), for all n ≥ 1, it follows that

d(xn, xn+1) = d(F (xn−1, yn−1), F (xn, yn))

≤ β(
d(xn−1, xn) + d(yn−1, yn)

2
)(
d(xn−1, xn) + d(yn−1, yn)

2
)

and
d(yn+1, yn) = d(F (yn−1, xn−1), F (yn, xn))

≤ β(
d(yn−1, yn) + d(xn−1, xn)

2
)(
d(yn−1, yn) + d(xn−1, xn)

2
).

Let, for all n ≥ 0,

an = d(xn, xn+1), bn = d(yn, yn+1) and δn+1 = d(xn, xn+1) + d(yn, yn+1). (2.7)

Then from the above two inequalities, for all n ≥ 1,

δn+1 = d(xn+1, xn) + d(yn+1, yn) ≤ β(
d(yn−1, yn) + d(xn−1, xn)

2
)(d(yn−1, yn) + d(xn−1, xn))

≤ β(
d(yn−1, yn) + d(xn−1, xn)

2
) δn (2.8)

≤ δn.

Therefore the sequence {δn} is a monotone decreasing sequence of non-negative real numbers. Hence there
exists δ ≥ 0 such that lim

n→∞
δn = δ.

Assume δ > 0. (2.9)

Then from (2.8) we have
δn+1

δn
≤ β(

d(yn−1, yn) + d(xn, xn−1)

2
) < 1.

Letting n→∞ in the above inequality, and using (2.9), we get

lim
n→∞

β(
d(yn−1, yn) + d(xn, xn−1)

2
) = 1.

By virtue of (1.1), this implies that

lim
n→∞

{d(xn−1, xn) + d(yn−1, yn)} = lim
n→∞

δn = 0
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which is a contraction with (2.9). Hence

lim
n→∞

an = lim
n→∞

d(xn−1, xn) = 0 and lim
n→∞

bn = lim
n→∞

d(yn−1, yn) = 0. (2.10)

Next we show that {xn} and {yn} are Cauchy sequences. If possible, let at least one of {xn} and {yn} be
not a Cauchy sequence. Then there exists ε > 0 and sequences of natural numbers {m(k)} and {l(k)} for
which

m(k) > l(k) ≥ k,

and such that for all k ≥ 1, either d(xl(k), xm(k)) ≥ ε or d(yl(k), ym(k)) ≥ ε. Then for all k ≥ 1,

dk = d(xl(k), xm(k)) + d(yl(k), ym(k)) ≥ ε. (2.11)

Now corresponding to l(k) we can choose m(k) to be the smallest positive integer for which (2.11) holds.
Then, for all k ≥ 1,

d(xl(k), xm(k)−1) + d(yl(k), ym(k)−1) < ε. (2.12)

Further from (2.7), (2.11) and (2.12), for all k ≥ 1, we have

ε ≤ dk = d(xl(k), xm(k)) + d(yl(k), ym(k))

≤ d(xl(k), xm(k)−1) + d(xm(k)−1, xm(k)) + d(yl(k), ym(k)−1) + d(ym(k)−1, ym(k))

= d(xl(k), xm(k)−1) + d(yl(k), ym(k)−1) + am(k)−1 + bm(k)−1 < ε+ am(k)−1 + bm(k)−1.

Taking the limit as k →∞, and using (2.10) we have

lim
k→∞

dk = ε. (2.13)

From (2.1), (2.4), (2.5), and (2.6), for all k ≥ 1, we obtain

d(xl(k)+1, xm(k)+1) = d(F (xl(k), yl(k)), F (xm(k), ym(k)))

≤ β(
d(xl(k), xm(k)) + d(yl(k), ym(k))

2
)(
d(xl(k), xm(k)) + d(yl(k), ym(k))

2
). (2.14)

Also from (2.1), (2.4), (2.5), and (2.6), for all k ≥ 0, we have

d(yl(k)+1, ym(k)+1) = d(F (yl(k), xl(k)), F (ym(k), xm(k)))

≤ β(
d(yl(k), ym(k)) + d(xl(k), xm(k))

2
)(
d(yl(k), ym(k)) + d(xl(k), xm(k))

2
). (2.15)

Again, for all k ≥ 1, we have

dk = d(xl(k), xm(k)) + d(yl(k), ym(k)) ≤ d(xl(k), xl(k)+1) + d(xl(k)+1, xm(k)+1) + d(xm(k)+1, xm(k))

+d(yl(k), yl(k)+1) + d(yl(k)+1, ym(k)+1) + d(ym(k)+1, ym(k))

≤ d(xl(k)+1, xm(k)+1) + d(yl(k)+1, ym(k)+1) + d(xl(k), xl(k)+1) + d(xm(k)+1, xm(k))

+d(yl(k), yl(k)+1) + d(ym(k)+1, ym(k))

and

d(xl(k)+1, xm(k)+1) + d(yl(k)+1, ym(k)+1) ≤ d(xl(k)+1, xl(k)) + d(xl(k), xm(k)) + d(xm(k), xm(k)+1)

+d(yl(k)+1, yl(k)) + d(yl(k), ym(k)) + d(ym(k), ym(k)+1)

≤ dk + d(xl(k)+1, xl(k)) + d(xm(k)+1, xm(k)) + d(yl(k)+1, yl(k))

+d(ym(k), ym(k)+1).
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Taking the limit as k →∞ in the above two inequalities, using (2.10) and (2.13), we have

lim
k→∞
{d(xl(k)+1, xm(k)+1) + d(yl(k)+1, ym(k)+1)} = ε. (2.16)

Adding (2.14), (2.15), and using the notation of (2.11), we have,

d(xl(k)+1, xm(k)+1) + d(yl(k)+1, ym(k)+1) ≤ 2.β(
dk
2

)(
dk
2

) ≤ dk (Since β ∈ S).

Letting k → ∞ in the above inequality, using (2.13) and (2.16) we obtain ε ≤ limk→∞ β(
dk
2

).ε ≤ ε,

which implies limk→∞ β(
dk
2

) = 1. Since β ∈ S, it follows that limk→∞ dk = limk→∞{d(xl(k), xm(k)) +

d(yl(k), ym(k))} = 0, which, by the virtue of (2.13), contradicts the fact that ε > 0. Therefore, {xn} and {yn}
are Cauchy sequences in X and hence they are convergent in the complete metric space (X, d). Let

xn → x as n→∞ (2.17)

and
yn → y as n→∞. (2.18)

Next we prove that x = F (x, y) and y = F (y, x).
Let condition (a) of the theorem 2.1 hold, that is, F is continuous. From (2.4), (2.17) and (2.18) we have
respectively

x = lim
n→∞

xn+1 = F ( lim
n→∞

xn, lim
n→∞

yn) = F (x, y)

and
y = lim

n→∞
yn+1 = F ( lim

n→∞
yn, lim

n→∞
xn) = F (y, x).

Let condition (b) of the theorem 2.1 hold.
From (2.5), (2.6), (2.17) and (2.18) we have that {xn} is non-decreasing such that xn → x and {yn} is
non-increasing such that yn → y as n→∞. Then by (2.2) and (2.3) we have, for all n ≥ 0,

xn � x and yn � y. (2.19)

Then by (2.1), and using (2.19), for all n ≥ 0, we have

d(F (x, y), xn+1) = d(F (x, y), F (xn, yn))

≤ β(
d(x, xn) + d(y, yn)

2
)(
d(x, xn) + d(y, yn)

2
) ≤ (

d(x, xn) + d(y, yn)

2
) (Since β ∈ S).

Taking n→∞ in the above inequality, and using (2.17), we have d(F (x, y), x) = 0, that is, x = F (x, y).
Similarly, we have y = F (y, x).
Thus we have proved that F has a coupled fixed point in X. This completes the proof of the theorem.

Our next theorem is a Kannan type coupled fixed point result.

Theorem 2.2. Let (X, �) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X×X −→ X be a mapping such that F has the mixed monotone property
and satisfies

d(F (x, y), F (u, v)) ≤ β(M(x, y, u, v)).(M(x, y, u, v)), (2.20)

where, M(x, y, u, v) =
d(x, F (x, y)) + d(y, F (y, x)) + d(u, F (u, v)) + d(v, F (v, u))

4
for all x, y, u, v ∈ X with x � u and y � v and β ∈ S, . Also suppose that
(a) F is continuous or
(b) X has the properties noted in (2.2) and (2.3).
If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then there exist x, y ∈ X such that
x = F (x, y) and y = F (y, x), that is, F has a coupled fixed point in X.
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Proof. Following the proof of the theorem (2.1) we have two sequences {xn} and {yn} given by (2.4) and
satisfying (2.5) and (2.6). Then {xn} is an increasing sequence and {yn} is a decreasing sequence in X. Now
by (2.1), (2.4), (2.5) and (2.6) and the fact that β ∈ S, we have for all n ≥ 1,

d(xn+1, xn) = d(F (xn, yn), F (xn−1, yn−1))

≤ β(M(xn, yn, xn−1, yn−1))(M(xn, yn, xn−1, yn−1))

and
d(yn+1, yn) = d(F (yn, xn), F (yn−1, xn−1))

≤ β(M(yn, xn, yn−1, xn−1))(M(yn, xn, yn−1, xn−1))

Let, for all n ≥ 1,

an = d(xn+1, xn), bn = d(yn+1, yn) and δn+1 = d(xn+1, xn) + d(yn+1, yn). (2.21)

Then adding the above two inequalities and using (2.21), for all n ≥ 1, we have

δn+1 = d(xn+1, xn) + d(yn+1, yn) ≤ 2.β(M(xn, yn, xn−1, yn−1))(M(xn, yn, xn−1, yn−1))

where, M(xn, yn, xn−1, yn−1) =
d(xn, xn+1) + d(yn, yn+1) + d(xn−1, xn) + d(yn−1, yn)

4

=
δn + δn+1

4
(by (2.21)).

Therefore, for all n ≥ 1, it follows that

δn+1 ≤ β(M(xn, yn, xn−1, yn−1)) (
δn + δn+1

2
) (2.22)

≤ δn + δn+1

2
, since β ∈ S,

that is, δn+1 ≤ δn.

Therefore the sequence {δn} is a monotone decreasing sequence of non-negative real numbers. Hence there
exists δ ≥ 0 such that lim

n→∞
δn = δ.

Assume δ > 0. (2.23)

. Then by (2.22) we have
δn+1

(
δn + δn+1

2
)

≤ β(M(xn, yn, xn−1, yn−1)) < 1.

Letting n→∞ in the above inequality, and using (2.23), we get

lim
n→∞

β(M(xn, yn, xn−1, yn−1)) = 1, (2.24)

Due to (1.1) the above limit in (2.24) implies that

lim
n→∞

{d(xn, xn+1) + d(yn, yn+1) + d(xn−1, xn) + d(yn−1, yn)} = lim
n→∞

{δn+1 + δn} = 0.

But this contradicts (2.23). Hence

lim
n→∞

an = lim
n→∞

d(xn+1, xn) = 0 and lim
n→∞

bn = lim
n→∞

d(yn+1, yn) = 0. (2.25)

Next we show that {xn} and {yn} are Cauchy sequences. If possible, let at least one of {xn} and {yn} be
not a Cauchy sequence. Then there exists ε > 0 and sequences of natural numbers {m(k)} and {l(k)} for
which

m(k) > l(k) ≥ k,
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and such that for all k ≥ 1, either d(xl(k), xm(k)) ≥ ε or d(yl(k), ym(k)) ≥ ε. Then for all k ≥ 1,

dk = d(xl(k), xm(k)) + d(yl(k), ym(k)) ≥ ε. (2.26)

Now corresponding to l(k) we can choose m(k) to be the smallest positive integer for which (2.26) holds.
Then,

d(xl(k), xm(k)−1) + d(yl(k), ym(k)−1) < ε. (2.27)

Further from (2.21), (2.26) and (2.27), for all k ≥ 0, we have

ε ≤ dk = d(xl(k), xm(k)) + d(yl(k), ym(k))

≤ d(xl(k), xm(k)−1) + d(xm(k)−1, xm(k)) + d(yl(k), ym(k)−1) + d(ym(k)−1, ym(k))

= d(xl(k), xm(k)−1) + d(yl(k), ym(k)−1) + am(k)−1 + bm(k)−1 < ε+ am(k)−1 + bm(k)−1.

Taking the limit as k →∞, and using (2.25) we have

lim
k→∞

dk = ε. (2.28)

From (2.4), (2.5), (2.6) and (2.20), for all k ≥ 0, we obtain

d(xl(k), xm(k)) = d(F (xl(k)−1, yl(k)−1), F (xm(k)−1, ym(k)−1))

≤ β(M(xl(k)−1, yl(k)−1, xm(k)−1, ym(k)−1))(M(xl(k)−1, yl(k)−1, xm(k)−1, ym(k)−1)). (2.29)

Also by (2.4), (2.5), (2.6) and (2.20), for all k ≥ 0, we have

d(yl(k), ym(k)) = d(F (yl(k)−1, xl(k)−1), F (ym(k)−1, xm(k)−1))

≤ β(M(yl(k)−1, xl(k)−1, ym(k)−1, xm(k)−1))(M(yl(k)−1, xl(k)−1, ym(k)−1, xm(k)−1)). (2.30)

Adding (2.29) and (2.30), we have,

dk = d(xl(k), xm(k)) + d(yl(k), ym(k))

≤ 2.β(M(xl(k)−1, yl(k)−1, xm(k)−1, ym(k)−1))(M(xl(k)−1, yl(k)−1, xm(k)−1, ym(k)−1)). (2.31)

Further, by (2.25),
lim
k→∞

M(xl(k)−1, yl(k)−1, xm(k)−1, ym(k)−1)

= lim
k→∞

d(xl(k)−1, xl(k)) + d(yl(k)−1, yl(k)) + d(xm(k)−1, xm(k)) + d(ym(k)−1, ym(k))

4
= 0. (2.32)

Taking k →∞ in (2.31), and using (2.28) and (2.32), we obtain ε = 0, which is a contradiction. Therefore,
{xn} and {yn} are Cauchy sequences in X and hence they are convergent in the complete metric space
(X, d). Let

xn → x as n→∞ (2.33)

and
yn → y as n→∞. (2.34)

Next we prove that x = F (x, y) and y = F (y, x).
Let condition (a) of the theorem 2.2 hold, that is, F is continuous. From (2.4), (2.30) and (2.31) we have

respectively
x = lim

n→∞
xn+1 = F ( lim

n→∞
xn, lim

n→∞
yn) = F (x, y),

and
y = lim

n→∞
yn+1 = F ( lim

n→∞
yn, lim

n→∞
xn) = F (y, x).
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Let condition (b) of the theorem 2.2 hold.
Using (2.5), (2.6), (2.33) and (2.34) we have that {xn} is non-decreasing such that xn → x and {yn} is
non-increasing such that yn → y as n→∞. Then by (2.2) and (2.3) we have, for all n ≥ 0,

xn � x and yn � y. (2.35)

By the virtue of (2.35), and since β ∈ S, from (2.20), for all n ≥ 0, we have

d(F (x, y), xn+1) = d(F (x, y), F (xn, yn))

≤ β(
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
)

(
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
)

< (
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
). (2.36)

Similarly, due to (2.35) and the fact that β ∈ S, from (2.20), for all n ≥ 0, we have

d(F (y, x), yn+1) = d(F (y, x), F (yn, xn))

≤ β(
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
)

(
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
)

< (
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
). (2.37)

Adding (2.36) and (2.37), for all n ≥ 0, we obtain

d(F (x, y), xn+1) + d(F (y, x), yn+1) < 2.(
d(x, F (x, y)) + d(y, F (y, x)) + d(x, xn+1) + d(y, yn+1)

4
)

Taking n→∞ , and using (2.25), (2.33) and (2.34), we have

d(F (x, y), x) + d(F (y, x), y) ≤ (
d(F (x, y), x) + d(F (y, x), y)

2
),

which implies that d(F (x, y), x) + d(F (y, x), y) = 0, that is, x = F (x, y) and y = F (y, x).
Thus (x, y) is a coupled fixed point of F in X. This completes the proof of the theorem 2.2.

Remark 2.3. Since inequality (2.20) bears the same idea of Kannan’s inquality described in (1.2), we recog-
nised (2.20) as a coupled Kannan type inequality.

3. Example

In this section we have two examples which illustrated the results of theorems 2.1 and 2.2 respectively.

Example 3.1. Let X = [0, 1]. Then (X,�) is a partially ordered set with x � y whenever x ≥ y. Let
d(x, y) = |x− y| for x, y ∈ [0, 1].

Then (X,d) is a complete metric space.
Let F : X ×X → X be defined as

F (x, y) =

{
1
2 [(x− y)− 1

2(x− y)2], if x, y ∈ [0, 1], x ≥ y,
0, if x < y.

Let β : [0,∞)→ [0, 1) be defined as
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β(t) =

{
1− t, if t ≤ 1,
α < 1, if t > 1.

For the two points, x0 = 0 and y0 = c > 0 in X we have x0 = 0 = F (x0, y0) and y0 = c > c
2 [1 − c

2 ] =
F (y0, x0).

Let x � u and y � v (equivalently u ≥ x and y ≥ v ). The inequality (2.1) is trivially satisfied except
in the following two cases.

Case-1 x ≥ y and u ≥ v (x � y and u � v).
Then d(F (x, y), F (u, v)) = d(12 [(x− y)− 1

2(x− y)2], 12 [(u− v)− 1
2(u− v)2])

= 1
2(u− v)− 1

4(u− v)2 − 1
2(x− y) + 1

4(x− y)2

= 1
2 [(u− x) + (y − v)]− 1

4 [{(u− v) + (x− y)}{(u− v)− (x− y)}]

≤ 1
2 [(u− x) + (y − v)]− 1

4 [{(u− v)− (x− y)}2]

= 1
2 [(u− x) + (y − v)]− 1

4 [{(u− x) + (y − v)}2].

Therefore,
d(F (x, y), F (u, v))) ≤ 1

2 [(u− x) + (y − v)]− 1
4 [(u− x) + (y − v)]2

=

[
(u− x) + (y − v)

2

]
−
[

(u− x) + (y − v)

2

]2
=

(
1−

[
(u− x) + (y − v)

2

])[
(u− x) + (y − v)

2

]
= β(

d(x, u) + d(y, v)

2
)(
d(x, u) + d(y, v)

2
).

Case-2 x < y and u ≥ v (y ≺ x and u � v).
We have, d(F (x, y), F (u, v)) = d(0, 12(u− v)− 1

4(u− v)2) = 1
2(u− v)− 1

4(u− v)2

= 1
2(u− v + x− x)− 1

4(u− v + x− x)2

< 1
2(u− x− v + y)− 1

4(u− v + y − x)2 (since y > x)

= 1
2 [(u− x) + (y − v)]− 1

4 [(u− x) + (y − v)]2.
Then,

d(F (x, y), F (u, v)) < 1
2 [(u− x) + (y − v)]− 1

4 [(u− x) + (y − v)]2

=

[
(u− x) + (y − v)

2

]
−
[

(u− x) + (y − v)

2

]2
=

(
1−

[
(u− x) + (y − v)

2

])[
(u− x) + (y − v)

2

]
= β(

d(x, u) + d(y, v)

2
)(
d(x, u) + d(y, v)

2
).

Thus in both of the above two cases inequality (2.1) is satisfied. Also the functions F and β satisfy all
the conditions required by them in theorem 2.1. Then, by an application of theorem2.1, F has a coupled
fixed point. Here (0, 0) is a coupled fixed point of F in X.

Example 3.2. Let X = [0, 1]. Then X with the usual order ”≤” be a partially ordered set. Let d be the
usual metric on X. Then (X, d) is a complete metric space.

We define F : X ×X → X as

F (x, y) =

{
1
16 , if x ≥ 1

2 and y < 1
2 ,

0, otherwise.
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Let β(t) =

{
1− t

8
, if t ≤ 1,

α < 1, if t > 1.

Then all the properties required by F and β in the theorem 2.2 are satisfied.
The inequality (2.20) is trivially satisfied except in the following two cases.
Case-1: x ∈ [12 , 1], y ∈ [0, 12) . and u, v ∈ [12 , 1]

d(F (x, y), F (u, v)) = 1
16

Now
d(x, F (x, y)) + d(y, F (y, x)) + d(u, F (u, v)) + d(v, F (v, u))

4
=
x− 1

16 + y + u+ v

4

Then the inequality (2.20) becomes 1
16 ≤ (

x− 1
16 + y + u+ v

4
)−

(x− 1
16 + y + u+ v)2

32
.

Since 3
2 ≤ x+y+u+v ≤ 7

2 , the right hand side of the above inequality is bounded below by 0.35, Hence
(2.20) is satisfied.
Case-2: x ∈ [12 , 1], y ∈ [0, 12) and u, v ∈ [0, 12 ]

d(F (x, y), F (u, v)) = 1
16

Therefore, 1
16 ≤ (

x− 1
16 + y + u+ v

4
)−

(x− 1
16 + y + u+ v)2

32
.

Since 1
2 ≤ x+ y + u+ v ≤ 5

2 , therefore the value of the right hand side is greater than 1
16 , which shows

that (2.20) is satisfied.
This shows that theorem 2.2 is applicable to this example Here (0, 0) is a coupled fixed point of F in X.

Remark: If, in particular, we consider the function β(t) = k, 0 < k < 1, then the inequality (2.1)
reduces to inequality (1.3), thus the result of Bhaskar et al; is a special case of theorem 2.1.
Then result of T. Gnana Bhaskar and V. Lakshmikantham in [16] is not applicable to example 3.1. Further
inequality (1.3) is not satisfied for the choice of x = 0, y = 0, u = c and v = 0. This shows that the result of
theorem 2.1 is an actual improvement over the corresponding results of Bhaskar et. al [16].
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