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Abstract

The object of this paper is to establish a generalized form of Banach contraction principle for a cone metric
space which is not necessarily normal. This happens to be a generalization of all different forms of Banach
contraction Principle, which have been arrived at in L. G. Huang and X. Zhang [L. G. Huang and X.
Zhang, J. Math. Anal. Appl 332 (2007), 1468-1476] and Sh. Rezapour, R. Hamlbarani [Sh. Rezapour, R.
Hamlbarani, J. Math. Anal. Appl. 345 (2008) 719-724] and D. Ilic, V. Rakocevic [D. Ilic, V. Rakocevic,
Applied Mathematics Letters 22 (2009), 728-731]. It also results that the theorem on quasi contraction of
Ciric [L. J. B. Ciri¢, Proc. American Mathematical Society 45 (1974), 999-1006]. for a complete metric
space also holds good in a complete cone metric space. All the results presented in this paper are new.
(©2012. All rights reserved.
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1. Introduction

There has been a number of generalizations of metric space. One such generalization is a cone metric
space. In the second half of previous century a lot of work has been done in a K-metric space, which is in
the setting of cone in a real normed linear space and variously defined notions of convergence and a Cauchy
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sequence [13]. However, another school in U.S.S.R [7, [8, @, [I0] worked in K- metric space in the setting of
a Banach space B and a closed cone in it in the name of a generalized metric space or a SKS metric space.
Recently, in [3] Huang and Zhang defined cone metric space in the same setting of a real Banach space E
ordered with a closed cone P in it with intP # ® defining convergence and a Cauchy sequence with respect
to interior points of P. In this space they replaced the set of real numbers of a metric space by an ordered
Banach Space and gave some fundamental results for a self map satisfying a contractive condition assuming
the normality of cone metric space.

Recently, Rezapour and Hamlbarani [I1] omitted the assumption of normality in cone metric space, which is
a milestone in developing fixed point theory in cone metric space.In [5], the authors introduced the concept
of a compatible pair of self maps in a cone metric space and established a basic result for a non-normal cone
metric space with an example, while in [6] weakly compatible maps have been studied. In this paper we
are proving a common fixed point theorem for a sequence of self maps satisfying a generalized contractive
condition for a non-normal cone metric space. It results in a generalized form of Banach contraction principle
in this space.

2. Preliminaries

Definition 2.1. [3] Let E be a real Banach space and P be a subset of E. P is called a cone if

(i) P is a closed, nonempty and P # {0};

(1) a,b€ R,a,b>0,z,y € P imply ax + by € P;

(131) x € Pand —x € P imply x = 0.

Given a cone P C E, we define a partial ordering “ <7 in E by z < y if y — x € P. We write z < y to
denote < y but x # y and << y to denote y — x € P, where P° stands for the interior of P .

P is called normal if for some M > 0 for z,y € E,0 < z < y implies

lz]] < Myl

Proposition 2.2. Let P be a cone in a real Banach space E . If for a € P and a < ka, for some k € [0,1)
then a = 0.

Proof: For a € P,k € [0,1) and a < ka gives (kK — 1)a € P implies —(1 — k)a € P. Therefore by (ii) we
have —a € P, as 1/(1 — k) > 0. Hence a = 0, by (i4i).

Proposition 2.3. [J] Let P be a cone is a real Banach space E with non-empty interior If for a € E and
a << c, for all c € P°, then a = 0.

Remark 2.4. [I1] AP° C P°, for A > 0 and P° + P C P°.

Definition 2.5. [3] Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the
mapping d : X x X — FE satisfies:

(a) 0<d(z,y), for all z,y € X and d(x,y) =0, if and only if z = y;

(b) d(z,y) =d(y,z), for all z,y € X;

(¢) d(z,y) <d(z,z)+d(z,y), for all x,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P is normal , then (X, d)
is said to be a a normal cone metric space.

Example 2.6. [3] Let £ = R2 P = {(z,y) € E: 2 > 0,y > 0} and X = R . For z,y € R define
d(z,y) = |z — y|(1,«) where a > 0 is some fixed constant. Then (X, d) is a cone metric space.

Example 2.7. Let E = C%[0,1] with the norm || f|| = ||fllcc + || f/|lcc. Consider the cone P ={f € E: f >
0}. Then P is not a normal cone as shown in [11]. Taking X = {1,1/2,1/3...} we defined: X x X — P
by d(X, 1) = fun, where fu,(t) = |2 — L[|t for all ¢ € [0,1] . Then (X,d) is a non-normal cone metric
space.(X,d) is not a metric space as it is not normal.
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Definition 2.8. [3] Let (X, d) be a cone metric space with respect to a cone in a real Banach space F with
non-empty interior. Let {z,} be a sequence in X and x € X. If for every ¢ € E with 0 << c there is a
positive integer N, such that for all n > N, d(x,,z) << ¢, then the sequence {z,} is said to converges to
x, and z is called limit of {z,} . We write lim, 0o, = x or x,, = T, a8 N — 00.

Definition 2.9. [3] Let (X, d) be a cone metric space with respect to a cone with nonempty interior in a
real Banach space E. Let {x,} be a sequence in X. If for any ¢ € E with 0 << ¢ there is a positive integer
N, such that for all n,m > N,,d(z,,x,) << ¢, then the sequence {z,} is said to be a Cauchy sequence in
X.

In the following (X, d) will stand for a cone metric space with respect to a cone P with P? # ¢ in a real
Banach space E and < is partial ordering in E with respect to P

Remark 2.10. It follows from above definitions that if {z2,} is a subsequence of a Cauchy sequence {z,} in
a cone metric space (X, d) and z9, — 2z then x,, — z.

Definition 2.11. [3] Let (X, d) be a cone metric space. If every Cauchy sequence in X is convergent in X,
then X is called a complete cone metric space.

Proposition 2.12. Let (X,d) be a cone metric space and P be a cone in a real Banach space E. If u <
v,V << w then u << w.

Lemma 2.13. Let (X, d) be a cone metric space and P be a cone in a real Banach space E and k1, ko, k > 0
are some fized real numbers. If x, — =,y, — y in X and for some a € P

(1.1) ka < kid(xy, )+ kad(yn,y), for alln > N, for some integer N,

then a = 0.

Proof As x, — z, and y,, — y for ¢ € PY there exists a positive integer N, such that

CEDE d(xn, ), ﬁ — d(yn,y) € P°, for all n. > N,.
Therefore by Remark [2.4] we have
XglJer — kid(zp, x), i) +k ) — kad(yn,y) € P°, for all n > N,.

gain by adding and Remark [2.4] we have
¢ — k1d(zp, ) — kad(yn,y) € P° for all n > max{N, N.}.
From (1.1) and Proposition we have ka << ¢, for each ¢ € P’. By Proposition , we have a = 0, as
k> 0.

3. MAIN RESULTS

Theorem 3.1. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E. Let {T,} be a sequence of self maps on X satisfying:

(3.1.1) For some A\, u, 8,0, 5 € [0,1) with A+ p+d+2a <1, orelse \+u+d+26 <1, forallz,y € X
d(Tiz, Tyy) < Md(Tiw,x) + pd(Tyy,y) + dd(z,y) + ad(z, Ty) + Bd(Tiz,y).

For xg € X, let x,, = Tpxp—1, for all n. Then the sequence {x,} converges in X and its limit u is a common
fized point of all the maps of the sequence {T,,}. This fixed point is unique if 6 + a+ B < 1.

Proof. We show that {z,} is a Cauchy sequence in X.
Step I: Taking x = zy,—1,y = zp and i = n,j =n+ 1 in (3.1.1) we get,
d(Tnxn—lan—i—lxn) < )\d(T Tn—1,TLn— 1) + Nd( n—l—lxnawn) + 5(xn 1;wn)+
ad(xnfla Tn+1xn) + ﬁd(Tnxnfla 'Tn)
As x, = T,,x,_1, we have

d(xn, $n—&—l) < Ad(xny xn—l) + ,de(xn—l—lv xn) + 5(1571—17 xn) + ad(l'n—la xn—i—l) + ,Bd(l‘n, xn)u
< )\d(.Tn, $n71) + ,Ud(xn+1> wn) + 5(1%717 wn) + a[d(-fnfl’ xn) + d(iﬁn, xn+1)]-
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Writing d(xy, Tp+1) = dp, we have
dp < Ady—1 + pdy, + ddp—1 + a[dn + dn—l]’
i.e.
(1 — K= a)dn = ()\ +0+ a)dn—la
which implies

dn < hdp—1, (3.1)
if h = Q04
As A+ + 6 + 2a < 1 we obtain that h < 1.
Now
dn < hdn_l < h2dn_2 < h3dn_3 <...< hndo, where do = d(flfo,xl).
Also
A(Tntps Tn) < A(Tntps Tntp—1) + A Tntp—1, Tntp—2) + - .. + d(Tnt1,Tn),
i e.

d(l'ner, l'n) < dn+p71 + dn+p72 + -4 dy.
=dp+dpt1+ ... dn+p_1
=h"[1+h+h2+R3+... .+ hP Ydy,
< h'do/(1—h),
as h < 1 and P is closed. Thus we obtain that

d(zpqp, Tn) < h"do/(1 — h). (3.2)

Now for ¢ € P?, there exists r > 0 such that ¢ —y € P, if ||y|| < r. Choose a positive integer N, such that
for all n > N, ||h"dy/(1 — h)|| < r, which implies ¢ — h"dy/(1 —h) € P® and h"dy/(1 — h) — d(zn1p, Tn) € P,
using .
So we have ¢ — d(Zytp,2y) € PY, for all n > N, and for all p, by Proposition m . This implies
d(xpqp, xn) << ¢, for all n > N, for all p. Hence {x,} is a Cauchy sequence in X, which is complete.
Let z,, — u.
Step II: For an arbitrary fixed m we show that T,,u = u.
Now,
d(Thu,u) < d(Tnu, Thnxn—1)+ d(Thxn—1,u),
=d(xn,u) + d(Tymu, Tpxn—1).
Using (3.1.1) with x = 2,_1,y = u,i = n and j = m we have
d(Tmu,u) < d(xp,u) + Md(Thzn—1,Tn-1) + pd(Thu, u)
+dd(u, xp—1) + ad(Thu, 2p—1) + Bd(u, Tpzp—1)
= d(zp,u) + pd(Tru,u) + Ad(xn, Tn_1)
+od(u, xp—1) + ad(Tpu, Tp—1) + Bd(u, z,,),
< d(xp,u) + pd(Tru,u) + Nd(x,, w) + d(u, 25p—1)]
+dd(u, xp—1) + a[d(Thnu,u) + d(u, zn,—1)] + Bld(u, ).
So
1—p—a]ldThu,u) < [p+d+ald(xnp—1,u)+[1+ A+ Bld(u, ).
As {z,} = u,{zpn-1} = u, and 1 — p — a > 0, using Lemma we have d(Tu,u) = 0, and we get
Tnu = u. Thus u is a common fixed point of all the maps of the sequence {T,,}.
Step III (Uniqueness): Let T,z = z, for all n, be another common fixed point of all the maps of the
sequence {71, } . Now
d(z,u) = d(Tyz, Thu).
Taking x = z and y = w with i = j = n in (3.1.1) we get
d(z,u) < Ad(Thz, 2z) + pd(Thu,w) + dd(z,u) + ad(z, Tyu) + Bd(Tyz, u),
which gives
d(z,u) < (5 + o+ B)d(z, u).
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As § + a+ 8 < 1, using Proposition we have d(z,u) = 0i. e. u = z. Thus u is the unique com-
mon fixed point of all the maps of the sequence {7, }. To see the sufficiency of the alternate condition
A+ p+90+28 <1, in step I we choose © = u,y = x,,—1 withi =n+1 and 7 = n in (3.1.1) to obtain
(1= A= B)dn < (j1+ 0+ B)dp—1. Thus dy, < h'dy_y, where b = LEEE <1,

Again in step I we choose x = w,y = xp—17 = m,j = n in (3.1.1) receiving (1 — X — B)d(T,(u),u) < ...

and we get T,,u = u, Vm. OJ

Theorem 3.2. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E. Let {A,} be a sequence of self maps in X satisfying:

(3.2.1) For some A\, p,0,c, 3 € [0,1) with A+ p+0+2a <1, orelse \+pu+06+28<1landd+a+p <1,
there exists positive integer m;, for each i, such that for all x,y € X

d(AT", AT y) < M(AT ;@) + pd(A77y,y) + 6(x,y) + ad(x, AJ7y) + Bd(A]"z,y). Then all the maps of
the sequence {A,} have a unique common fixed point in X.

Proof. In view of (3.2.1) and using Theorem all the maps of the sequence {A;"} have a unique common
fixed point, say z. Hence A"z = z, for all i. Now A"z = z, implies A]"' A1z = Ayz. Taking = Ayz,y =
z,i=1and j = 2 in (3.2.1) we have A;z = z. Continuing in similar way it follows that A;z = z, for all
i.Thus z is a common fixed point of all the maps of the sequence {4;}. Its uniqueness follows from the fact
that A;z = z, implies A"z = z, for all i. O

Example 3.3. (of Theorem [3.2) Let X = [0,1],E = R?>,P = {(z,y) € R? : 2 > 0,y > 0} C R? be a
cone in E. Fix a real number v > 0. We define d : X x X — E by d(z,y) = |z — y|(1,7). Then (X,d) is a
complete cone metric space. Define {A,} on X as follows:

A, (x) :{ 0,1 ifr €0, =]

i3 Otherwise.
Taking m; = 2, for all i. Then the maps A%, A3, A3, ... satisfy the condition (3.2.1) for A=y =§ = %5 and
a=p0p= %. Hence by Theorem 3.2, all the maps of the sequence {A,} have a unique common fixed point
(u=0)in X.

Taking Ty =Ty, =T3=---=T,_1 =T, =--- = A in Theorem we get the following general form of
Banach contraction principal in a cone metric space which is not necessarily normal

Theorem 3.4. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real
Banach space E and A be a self map in X satisfying:

(3.4.1) For some \,u,d,a, 3 € [0,1) with A+ pu+d+2a <1, orelse \+pu+0+28<1, forallz,ye X
d(Az, Ay) < Md(Az,z) + pd(Ay,y) + 6(z,y) + ad(z, Ay) + pd(Az,y).

Then for each z in X the sequence {A"xz} converges in X and its limit u is a fixed point of A.This fized
point is unique if § + o+ B < 1.

In [3] L. G. Huang , X. Zhang and in [I1] Sh. Rezapour, R. Hamlbarani proved following various forms
of Banach contraction Principle in a normal Cone metric space and in a cone metric space respectively :
Theorem 1[3] and Theorem 2.3[11] : Let (X, d) be a complete cone metric space, Suppose the mapping
T: X x X — X satisfies the contractive condition
d(Tz,Ty) < kd(z,y), for all z,y € X,
where k € [0,1) is a constant. Then T has a unique fixed point in X. For each z € X, the iterative sequence
{T™z} converges to the fixed point.

Theorem 3[3] and Theorem 2.6 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping
T:X x X — X satisfies the contractive condition

d(Tz,Ty) < kld(Tz,z) + d(Ty,y)] for all z,y € X,

where k € [0,1/2) is a constant. Then T" has a unique fixed point in X. And for z € X, the iterative sequence
{T™z} converges to the fixed point.
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Theorem 4 [3] and Theorem 2.7 [11]: Let (X, d) be a complete cone metric space. Suppose the mapping
T: X x X — X satisfies the contractive condition

d(Tz,Ty) < k[d(Tz,y) + d(Ty,z)] for all z,y € X,

where k € [0,1/2) is a constant. Then T has a unique fixed point in X. For each 2 € X, the iterative
sequence {T™z} converges to the fixed point.

Theorem 2.8 [11I]: Let (X,d) be a complete cone metric space. Suppose the mapping 7 : X x X — X
satisfies the contractive condition

d(Tz,Ty) < kd(x,y) + ld(y, Tx) for all x,y € X,

where k, 1 € [0,1) are constants. Then T has a fixed point in X. Also the fixed point of T is unique whenever
E+1<1.

Remark 3.5. Above Theorems of [3] and [I1] follow from Theorem of this paper by taking :

(a) A=p=a=p=0and =k,

(b)A=p=kand 0 =a=p=0,

(c)A=p=d0=0and a=p =k, and

(A=p=a=0,0=k,and =1

respectively in it.

Precisely, Theorem [3.4] synthesizes and generalizes all the results of [3Jand [IT] for a non-normal cone metric
space. Theorem is a general form of Banach contraction principle in a complete cone metric space which
is not necessarily normal.

Definition 3.6. [4] (Quasi contraction)A self-map f on a cone metric space (X,d) is said to be a quasi
contraction if for a fixed A € (0,1),d(fx, fy) < Au for every x,y € X, where

u € {d(z,y),d(z, fx),d(y, fy),d(x, fy),d(y, fr)}.

Theorem 2.1 [4]: Let (X,d) be a complete cone metric space and P be a normal cone. Then a quasi
contraction f has a unique fixed point in X and for each x € X the iterative sequence {f"(z)} converges to
the fixed point.

Remark 3.7. Keeping one of the constants {«, 3,7, 9, u} non-zero and all others equal to zero in Theorem
, it follows that the above result of [4] is true even for non-normal complete cone metric space.

Remark 3.8. Tt has been established in L. J. B. Ciric [2] that a quasi contraction has a unique fixed point in
a complete metric space. It follows from the above Remark that the result of [2] is also true for a complete
cone metric space even if it is non-normal.
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