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Abstract

By means of the lower and upper solutions argument and fixed index theorem in the frame of the ODE tech-
nique, we consider the existence and nonexistence of multiple positive solutions for fourth-order eigenvalue
Sturm-Liouville boundary value problem. Our results significantly extend and improve many known results
including singular and nonsingular cases. c©2016 All rights reserved.
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1. Introduction

In this paper, we will study the existence and nonexistence of positive solutions for the following fourth-
order nonlinear Sturm-Liouville boundary value problem (BVP)

1

p(t)
(p(t)u′′′(t))′ − λg(t)f(u(t)) = 0, 0 < t < 1,

α1u(0)− β1u′(0) = 0, γ1u(1) + δ1u
′(1) = 0,

α2u
′′(0)− β2 lim

t→0+
p(t)u′′′(t) = 0,

γ2u
′′(1) + δ2 lim

t→1−
p(t)u′′′(t) = 0,

(1.1)

where λ > 0 is positive real parameters, αi, βi, δi, γi ≥ 0 (i = 1, 2) are constants, and p ∈ C1((0, 1), (0,+∞)).
Moreover g, p may be singular at t = 0 and/or 1.
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The boundary value problems for ordinary differential equations play a very important role in both
theory and application. They are used to describe a large number of physical, biological and chemical
phenomena. BVP (1.1) is often referred to as the deformation of an elastic beam under a variety of boundary
conditions(see [3, 6, 10, 11, 12, 13]. For example, as λ = 1, BVP (1.1) subject to Lidstone boundary
value conditions u(0) = u(1) = u′′(0) = u′′(1) = 0 are used to model such phenomena as the deflection
of elastic beam simply supported at the endpoints, see [1, 2, 4, 6, 7, 8, 9, 10, 13]. Particularly, when
g(t) = 1, β1 = δ1 = 0, Zhang [11] only discussed existence of positive solutions for BVP (1.1).

The aim of this paper is to consider the existence of positive solutions for the more general Sturm-
Liouville boundary value problem by using the lower and upper solutions argument and fixed index theorem
in the frame of the ODE technique. Here we allow p, g have singularity at t = 0, 1, as far as we know, there
were fewer works to be done. This paper attempts to fill part of this gap in the literature.

This paper is organized as follows. In Section 2, we firstly present some properties of Green’s functions
that are used to define a positive operator. Next we approximate the singular fourth-order boundary value
problem to singular second-order boundary value problem by constructing an integral operator. In Section
3, A sufficient condition for the existence of multiple positive solutions and no positive solutions of BVP
(1.1) will be established. In section 4, we give one example as the application.

2. Preliminaries and Lemmas

In this paper, we all suppose J = [0, 1], R is a real number space, R+ = [0,+∞) and let

C(J,R) = {u : J → R | u(t) continuous},

Ci(J,R) = {u : J → R | u(t) is ith-order continuously differentiable}, i = 1, 2, · · · .

For u = u(t) ∈ C(J,R), let ‖u‖ = max
t∈J
|u(t)|, then E = C(J,R) is a Banach space with the norm ‖ · ‖.

Definition 2.1. A function u(t) is said to be a positive solution of the boundary value problem (1.1) if
u ∈ C2([0, 1], R)

⋂
C3((0, 1), R) satisfies u > 0, pu′′′ ∈ C1((0, 1), R+) and the BVP (1.1).

Definition 2.2. α ∈ C2([0, 1], R)
⋂
C3((0, 1), R), p(t)α′′′(t) ∈ C1((0, 1), R+) is called a lower solution of

BVP (1.1) if 

1

p(t)
(p(t)α′′′(t))

′ − λg(t)f(α(t)) ≥ 0, 0 < t < 1,

α1α(0)− β1α′(0) ≤ 0, γ1α(1) + δ1α
′(1) ≤ 0,

α2α
′′(0)− β2 lim

t→0+
p(t)α′′′(t) ≥ 0,

γ2α
′′(1) + δ2 lim

t→1−
p(t)α′′′(t) ≥ 0.

Definition 2.3. β ∈ C2([0, 1], R)
⋂
C3((0, 1), R), p(t)β′′′(t) ∈ C1((0, 1), R+) is called a upper solution of

BVP (1.1) if 

1

p(t)
(p(t)β′′′(t))

′ − λg(t)f(β(t)) ≤ 0, 0 < t < 1,

α1β(0)− β1β′(0) ≥ 0, γ1β(1) + δ1β
′(1) ≥ 0,

α2β
′′(0)− β2 lim

t→0+
p(t)β′′′(t) ≤ 0,

γ2β
′′(1) + δ2 lim

t→1−
p(t)β′′′(t) ≤ 0.

We notice that if u(t) is a positive solution of the BVP (1.1) and p ∈ C1((0, 1), (0,+∞), then
u(t) ∈ C4(0, 1).
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Now we denote that H(t, s) and G(t, s) are Green’s functions for the following boundary value problem{
−u′′ = 0, 0 < t < 1,

α1u(0)− β1u′(0) = 0, γ1u(1) + δ1u
′(1) = 0

and 

1

p(t)
(p(t)v′(t))′ = 0, 0 < t < 1,

α2v(0)− lim
t→0+

β2p(t)v
′(t) = 0,

γ2v(1) + lim
t→1−

δ2p(t)u
′(t) = 0,

respectively. It is well known that H(t, s) and G(t, s) can be written by

H(t, s) =
1

ρ1

 (β1 + α1s)(δ1 + γ1(1− t)), 0 ≤ s ≤ t ≤ 1,

(β1 + α1t)(δ1 + γ1(1− s)), 0 ≤ t ≤ s ≤ 1
(2.1)

and

G(t, s) =
1

ρ2

 (β2 + α2B(0, s)) (δ2 + γ2B(t, 1)) , 0 ≤ s ≤ t ≤ 1,

(β2 + α2B(0, t)) (δ2 + γ2B(s, 1)) , 0 ≤ t ≤ s ≤ 1,
(2.2)

where ρ1 = γ1β1 + α1γ1 + α1δ1 > 0, B(t, s) =

∫ s

t

dτ

p(τ)
, ρ2 = α2δ2 + α2γ2B(0, 1) + β2γ2 > 0.

It is easy to verify the following properties of H(t, s) and G(t, s)

(I) G(t, s) ≤ G(s, s) < +∞, H(t, s) ≤ H(s, s) < +∞;

(II) G(t, s) ≥ ρG(s, s), H(t, s) ≥ ξH(s, s), for any t ∈ [a, b] ⊂ (0, 1), s ∈ [0, 1], where

ρ = min

{
δ2 + γ2B(b, 1)

δ2 + γ2B(0, 1)
,
β2 + α2B(0, a)

β2 + α2B(0, 1)

}
, (2.3)

ξ = min

{
δ1 + γ1(1− b)

δ1 + γ1
,
β1 + α1a

β1 + α1

}
.

For [a, b] ⊂ (0, 1) which is given by (II), we set

θ1 =

∫ b

a
G(s, s)p(s)g(s)ds, θ2 =

∫ b

a
H(τ, τ)dτ.

Throughout this paper, we adopt the following assumptions
(H1) p ∈ C1((0, 1), (0,+∞)), g ∈ C((0, 1), [0,+∞)) and satisfies

0 <

∫ 1

0

ds

p(s)
< +∞, 0 < e =

∫ 1

0
G(s, s)p(s)g(s)ds < +∞.

(H2) f(u) ∈ C([0,+∞), [0,+∞)) and f is nondecreasing on [0,+∞).
(H3)

f(0) > 0, f∞ = lim
u→+∞

f(u)

u
= +∞.

Now we define an integral operator S : C[0, 1]→ C[0, 1] by

Sv(t) =

∫ 1

0
H(t, τ)v(τ)dτ. (2.4)
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Then S is linear nondecreasing continuous operator and by the expressed of H(t, s), we have
(Sv)′′(t) = −v(t), 0 < t < 1,

α1(Sv)(0)− β1(Sv)′(0) = 0,

γ1(Sv)(1) + δ1(Sv)′(1) = 0.

(2.5)

The following Lemmas play an important role in this paper.

Lemma 2.4. The Sturm-Liouville BVP (1.1) has a positive solution v if and only if v is a positive solution
of the following integral-differential boundary value problem

1

p(t)
(p(t)v′(t))′ + λg(t)f(Sv(t)) = 0, 0 < t < 1,

α2v(0)− lim
t→0+

β2p(t)v
′(t) = 0,

γ2v(1) + lim
t→1−

δ2p(t)v
′(t) = 0,

(2.6)

where S is given in (2.4).

Proof. In fact, if u is a positive solution of (1.1), let u = Sv, then v = −u′′. This implies u′′ = −v is a
solution of (2.6). Conversely, if v is a positive solution of (2.6). Let u = Sv, by (2.5), u′′ = (Sv)′′ = −v.
Thus u = Sv is a positive solution of (1.1). This completes the proof of Lemma 2.4.

Now, for the given [a, b] ⊂ (0, 1), ρ as above in (II), we introduce

K = {u ∈ C[0, 1] : u(t) ≥ ρu(s), t ∈ [a, b], s ∈ [0, 1]}.

It is easy to check that K is a cone in C[0, 1] and for u(t) ∈ K, t ∈ [a, b], we have u(t) ≥ ρ‖u‖.
Next, for any λ ∈ (0,+∞), we define an operator A, Tλ given by

Av(t) =

∫ 1

0
G(t, s)p(s)g(s)f(Sv(s))ds, t ∈ [0, 1], (2.7)

Tλv(t) = λAv(t),∀ v ∈ K. (2.8)

Clearly, v is a solution of the BVP (2.6) if and only if u = Sv is a fixed point of the operator Tλ, therefor,
by Lemma 2.4, u = Sv is also a solution of the BVP (1.1).

Through direct calculation, by (II) and for v ∈ K, t ∈ [a, b], s ∈ J , we have

Tλv(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Sv(s))ds

≥ λρ
∫ 1

0
G(s, s)p(s)g(s)f(Sv(s))ds

= ρTλv(s).

So, this implies that TλK ⊂ K.

Lemma 2.5. Assume that (H1), (H2), (H3) hold. Then Tλ : K → K is completely continuous.

Proof. Firstly, The continuity of Tλ is easily obtained. In fact, if vn, v ∈ K and vn → v in the sup norm as
n→∞, then for any t ∈ J , we get

|Tλvn(t)− Tλv(t)| ≤ λmax
s∈J
|f(Svn(t))− f(Sv(t))|

∫ 1

0
G(s, s)p(s)g(s)ds,
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so, by the continuity of f, S, we have

‖Tλvn − Tλv‖ = sup
t∈J
|Tλvn(t)− Tλv(t)| → 0, as n→∞.

This implies that Tλvn → Tλv in the sup norm as n→∞, i.e., Tλ is continuous.
Now, let B ⊂ K is a bounded set. It follows from condition (H2) and the continuity of S that there

exists a positive number L such that ‖f(Sv)‖ ≤ L for any v ∈ B. Then, we can get

‖Tλv(t)‖ ≤ λLe <∞, ∀ t ∈ J, v ∈ B.

So, Tλ(B) ⊂ K is a bounded set in K.
For any ε > 0, by (H1), there exists a δ′ > 0 such that∫ δ′

0
G(s, s)p(s)g(s)ds ≤ ε

6λL
,

∫ 1

1−δ′
G(s, s)p(s)g(s)ds ≤ ε

6λL
.

Let G = max
t∈[δ′,1−δ′]

g(t), P = max
t∈[δ′,1−δ′]

p(t). It follows from the uniformly continuity of G(t, s) on

[0, 1]× [0, 1] that there exists δ > 0 such that

|G(t, s)−G(t′, s)| ≤ ε

3λGPL
, |t− t′| < δ, t, t′ ∈ [0, 1].

Consequently, when |t− t′| < δ, t, t′ ∈ [0, 1], v ∈ B, we have

|Tλv(t)− Tλv(t′)| =
∣∣∣∣λ ∫ 1

0
(G(t, s)−G(t′, s))p(s)g(s)f(Sv(s))ds

∣∣∣∣
≤ λ

∫ δ′

0
|G(t, s)−G(t′, s)|p(s)g(s)|f(Sv(s))|ds

+ λ

∫ 1−δ′

δ′
|G(t, s)−G(t′, s)|p(s)g(s)|f(Sv(s))|ds

+ λ

∫ 1

1−δ′
|G(t, s)−G(t′, s)| · |p(s)| · |g(s)| · |f(Sv(s))|ds

≤ 2λL

∫ δ′

0
G(s, s)p(s)g(s)ds+ 2λL

∫ 1

1−δ′
G(s, s)p(s)g(s)ds

+ λGPL

∫ 1

0
|G(t, s)−G(t′, s)|ds

≤ ε.

This implies that Tλ(B) is equicontinuous set on J .
Therefore, it is easy to check by Arzela-ascoli Theorem that Tλ : K → K is completely continuous. The

proof is complete.

Lemma 2.6 ([5]). Let E be a real Banach space, K ⊂ E be a cone, and Ω be a boundary open set in E.
Suppose A : K

⋂
Ω→ Kis a completely continuous operator. If

Au 6= µu, ∀ u ∈ K ∩ ∂Ω, µ ≥ 1.

Then the fixed point index i(A,K
⋂

Ω,K) = 1.

Lemma 2.7 ([5]). Let K be a positive cone in real Banach space E. Suppose A : Ω
⋂
K → K is a completely

continuous operator and satisfies:
‖Au‖ ≥ ‖u‖, u ∈ ∂Ω ∩K.

Then fixed point index i(A,Ω
⋂
K,K) = 0.
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3. Main results

In this section, we will give our main results. Let

Σ = {(λ, u) | (λ, u) ∈ R+ ×K, λ > 0, u 6= θ, u = Tλu},

Λ = {λ | λ ∈ R+, λ > 0, there exists u 6= θ such that (λ, u) ∈ Σ}.

Theorem 3.1. Suppose that conditions (H1)− (H3) are satisfied. Then, for λ sufficiently small, BVP (2.6)
has at least one positive solution; i.e., for λ sufficiently small, BVP (1.1) has at least one positive solution.
In addition, for λ sufficiently large, BVP (2.6) has no positive solution; i.e., for λ sufficiently large, BVP
(1.1) has no positive solution.

Proof. For l > 0, let d(l) = sup
u∈K,‖u‖=l

f(Su(s)). Combine (H3), there exist r > 0 such that d(r) > 0.

Let λ1 =
r

d(r)e
and set K1 = {u ∈ K : ‖u‖ ≤ r}. Then for λ ∈ (0, λ1) and u ∈ ∂K1, we have

Tλu(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Su(s))ds

≤ λ
∫ 1

0
G(s, s)p(s)g(s)d(r)ds

≤ λ1d(r)

∫ 1

0
G(s, s)p(s)g(s)ds

= λ1d(r)e = r = ‖u‖,

Therefore,
‖Tλu‖ ≤ ‖u‖, u ∈ ∂K1.

On the other hand, since (H3), (2.4) and the property of limits, we can have lim
u→∞

f(Su)

u
= +∞. Then,

there exists H big enough such that f(Su) ≤ mu, t ∈ [a, b], u ≥ H, where m > 0 is choose so that

λmρ2
∫ 1

0
G(s, s)p(s)g(s)ds ≥ 1.

Let R ≥ r +
H

ρ
≥ H and set K2 = {u ∈ K : ‖u‖ ≤ R}. Then for u ∈ ∂K2, by (II), we have

Tλu(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Su(s))ds

≥ λ
∫ b

a
G(t, s)p(s)g(s)f(Su(s))ds

≥ λρ2m
∫ 1

0
G(s, s)p(s)g(s)ds‖u‖

≥ ‖u‖,

Therefore,
‖Tλu‖ ≥ ‖u‖, u ∈ ∂K2.

Then, by the fixed-point theorem of cone expansion and compression, there has at least one positive
fixed point u∗ ∈ K2\(K1) for the BVP (2.6).
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To prove the nonexistence part. we note by lim
u→∞

f(Su)

u
= +∞, there exist % > 0 such that

f(Su) ≥ %u, ∀ u ≥ 0.

We suppose that u ∈ K be a positive solution for BVP (1.1). Now choose λ big enough such that λ%ρ2θ1 > 1.
Then, we have

u(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Su(s))ds

≥ λ%
∫ b

a
G(t, s)p(s)g(s)u(s)ds

≥ λ%ρ2
∫ b

a
G(s, s)p(s)g(s)ds‖u‖

≥ λρ2%θ1‖u‖ > ‖u‖, ∀ t ∈ [a, b].

It is a contradiction.
Now, by Lemma 2.4 we see that u∗ = Sv∗ is a position solution of BVP (1.1) for λ sufficiently small,

whereas for λ sufficiently large, BVP (1.1) has no positive solution. The proof is completed.

Furthermore, we can get the next more precise result by using the lower and upper solutions argument
and fixed index theorem.

Theorem 3.2. Suppose that conditions (H1) − (H3) are satisfied. Then, there exists a λ∗ ∈ R with
0 < λ∗ < +∞ such that

(1) the BVP (1.1) has no solution when λ > λ∗.
(2) the BVP (1.1) has at least one positive solution when λ = λ∗.
(3) the BVP (1.1) has at least two positive solutions when 0 < λ < λ∗.

In order to obtain the proof of Theorem 3.1, we first give the following Lemmas.

Lemma 3.3. Suppose that conditions (H1), (H2), (H3) hold. Then set Λ is nonempty.

Proof. By the definition of operator Tλ and the compact of operator A, we know that for any r > 0, we can
choose an adequately small positive number λ0 > 0 such that

λ0 sup
u∈Kr

‖Au‖ < r, where Kr = {u ∈ K : ‖u‖ < r}.

Therefore,
Tλ0u 6≥ u, u ∈ ∂Kr. (3.1)

On the other hand, by (H3), we can choose an appropriately big positive number R > r > 0 such that

f(u) ≥ σu, ∀ u ≥ ξρθ2R, (3.2)

where σ satisfies
λ0σξρ

2θ1θ2 > 1. (3.3)

Then, let KR = {u ∈ K : ‖u‖ < R} and for any t ∈ [a, b], u ∈ ∂KR, by (3.2), (3.3), we have

Tλ0u(t) = λ0Au(t) = λ0

∫ 1

0
G(t, s)p(s)g(s)f(Su(s))ds

≥ λ0
∫ b

a
G(t, s)p(s)g(s)f

(∫ b

a
H(s, τ)u(τ)dτ

)
ds

≥ λ0ρ
∫ b

a
G(s, s)p(s)g(s)f

(
ξρ

∫ b

a
H(τ, τ)dτ‖u‖

)
ds

≥ λ0ρ2σξθ1θ2‖u‖

> ‖u‖.
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Therefore,
Tλ0u 6≤ u, u ∈ ∂KR. (3.4)

Then, by (3.1), (3.4) and the fixed-point theorem of cone expansion and compression, Tλ has at least
one positive fixed point u∗ ∈ KR\(Kr). The proof is completed.

Lemma 3.4. Suppose that conditions (H1), (H2) hold. And also suppose that there is a positive solution
at the point λ1. Then for any 0 < λ ≤ λ1, there is a positive solution of BVP (1.1).

Proof. Suppose that v1 is the positive solution of BVP (2.6) at the point λ1. Then, v1 and θ are the upper
solution and lower solution od BVP (2.6) for 0 < λ ≤ λ1.

In fact, for 0 < λ ≤ λ1, we have

1

p(t)
(p(t)v′′′1 (t))′ + λg(t)f(Sv1(t)) = −λ1g(t)(fSv1(t)) + λg(t)f(Sv1(t))

= (λ− λ1)g(t)(fSv1(t)) ≤ 0, 0 < t < 1,

α1v1(0)− β1v′1(0) = 0, γ1v1(1) + δ1v
′
1(1) = 0,

α2v
′′
1(0)− β2 lim

t→0+
p(t)v′′′1 (t) = 0,

γ2v
′′
1(1) + δ2 lim

t→1−
p(t)v′′′1 (t) = 0,

This means that v1(t) is an upper solution of BVP (2.6). Obviously, v0 ≡ θ, t ∈ J is a lower solution of
BVP (2.6).

Because Tλ : K → K is completely continuous, then therefore exist v∗(t) ∈ [θ, v1] such that v∗ = Tλv∗.
Therefore, BVP (2.6) has a positive solution for any 0 < λ ≤ λ1.

Now, by Lemma 2.4 we see that u∗ = Sv∗ is a position solution of BVP (1.1) for any 0 < λ ≤ λ1. The
proof is completed.

Lemma 3.5. Suppose that conditions (H1), (H2), (H3) hold. Then set Λ has upper bound. And if
λ∗ = sup Λ, there exist u∗ such that λ∗ ∈ Λ and (λ∗, u∗) ∈ Σ.

Proof. For any λ ∈ Λ, we suppose that uλ is the positive solution of BVP (1.1) at the point λ. By (H2),
(H3), there exist % > 0 such that

f(u) ≥ %u, ∀ u ≥ 0. (3.5)

Then,

uλ(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Suλ(s))ds

≥ λ
∫ b

a
G(t, s)p(s)g(s)f

(∫ b

a
H(s, τ)u(τ)dτ

)
ds

≥ λρ
∫ b

a
G(s, s)p(s)g(s)f

(
ξρ

∫ b

a
H(τ, τ)dτ‖u‖

)
ds

≥ λρ2%ξθ1θ2‖u‖, ∀ t ∈ [a, b].

i.e.,
‖u‖ ≥ uλ(t) ≥ λρ2%ξθ1θ2‖u‖,

therefore,

λ ≤
[
ρ2%ξθ1θ2

]−1
,

So, set Λ has upper bound.
Suppose λ∗ = sup Λ. Next we will show that λ∗ ∈ Λ.
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For λ∗ = sup Λ, there exist λn ∈ Λ such that λn → λ, as n → +∞. And for λn ∈ Λ, there exist
un ∈ K\{θ} such that (λn, un) ∈ Σ. Then, {un} is bounded.

In fact, if not, there exist {unk} ⊂ {un} such that unk → +∞, as k → +∞. Then, by (2.4) (II), for any
s ∈ [a, b], unk ∈ K, we have

Sunk(s) =

∫ 1

0
H(s, τ)unk(τ)dτ ≥ ξθ2‖unk‖. (3.6)

By (H2), (H3), we can choose an appropriately big positive number ε > 0 and positive integer N > 0
such that for any s ∈ [a, b],

f(Sunk(s)) ≥ f (ξθ2‖unk‖) ≥ εξθ2‖unk‖, ∀ k ≥ N, (3.7)

λnkεξρ
2θ1θ2 > 1. (3.8)

Therefore, by (3.6), (3.7), (3.8), we have

‖unk‖ ≥ unk(s) = λnk

∫ 1

0
G(t, s)p(s)g(s)f(Sunk(s))ds

≥ λnkεξρ2θ1θ2‖unk‖ > ‖unk‖, ∀ k ≥ N,

this is a contrafactual. So {un} is sequence compact set. Therefore, there exist u∗ ∈ K\{θ} and {uni} ⊂ {un}
such that {uni} ⊂ {u∗}, i→ +∞, and uni(s) = Tλnk

uni(s) = λnkAuni(s).
Then, it is easy to see by the completely continuous of Tλnk

that u∗ = Tλ∗u
∗ = λ∗Au∗, i.e., u∗ is the

fixed point of Tλ∗ , i.e., λ∗ ∈ Λ and (λ∗, u∗) ∈ Σ. The proof is completed.

Lemma 3.6. Suppose that conditions (H1), (H2), (H3) hold and 0 < λ < λ∗. Then there have at least two
positive fixed point of Tλ, i.e., there exist at least two positive solutions of BVP (1.1).

Proof. By Lemma 3.5, we suppose that v∗ is the positive solution of BVP (2.6) at the point λ∗. For any
0 < λ < λ∗, we can obtain that there exist ε∗ > 0 such that for any 0 < ε ≤ ε∗, u∗ε(t) = u∗(t) + ε, t ∈ [0, 1]
is a upper solution of BVP (2.6) at the point λ.

In fact, for v∗ε(t) = v∗(t) + ε, t ∈ [0, 1], by (H2), we have

1

p(t)
(p(t)(v∗ε(t))

′′′)′ + λg(t)f(Sv∗ε(t))

=
1

p(t)
(p(t)(v∗(t))′′′)′ + λg(t)f(Sv∗(t) + ε)

= −λ∗g(t)(fSv∗(t)) + λg(t)f(Sv∗(t) + ε)

= (λ− λ∗)g(t)(f(Sv∗(t) + ε)− f(Sv∗(t))) ≤ 0,

and
α1v

∗
ε(0)− β1(v∗ε)′(0) = aε ≥ 0, γ1v

∗
ε(1) + δ1(v

∗
ε)
′(1) = cε ≥ 0,

α2(v
∗
ε)
′′(0)− β2 lim

t→0+
p(t)(v∗ε)

′′′(t) = 0,

γ2(v
∗
ε)
′′(1) + δ2 lim

t→1−
p(t)(v∗ε)

′′′(t) = 0,

This means that v∗ε(t) is an upper solution of BVP (2.6).
Let Ω = {u ∈ C(J,R)| − ε < v(t) < v∗ε(t), t ∈ [0, 1]}, then Ω is bounded open in C(J,R) and θ ∈ Ω.

Obviously, Tλ : K ∩ Ω→ K is completely continuous.
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Suppose u ∈ K ∩ ∂Ω, then there exist t0 ∈ [0, 1] such that u(t0) = v∗ε(t0). So, by (H2), (2.4) and Lemma
3.5, we have

Tλu(t0) ≤ Tλv∗ε(t0) < Tλ∗v
∗
ε(t0) ≤ v∗ε(t0) = u(t0) ≤ µu(t0), ∀ µ ≥ 1.

Therefore, we have
Tλu 6= µu, u ∈ K ∩ ∂Ω, µ ≥ 1,

so, by Lemma 2.6, we have

i(Tλ,K
⋂

Ω,K) = 1. (3.9)

On the other hand, by (H3), we can choose an appropriately big positive number R′ > 0 such that

f(u) ≥ σu, ∀ u ≥ ξρθ2R′, (3.10)

where σ satisfies
λσξρ2θ1θ2 > 1.

Then, let R = max{R′/ρ, 2‖v∗ε‖} and KR = {u ∈ K : ‖u‖ < R}. And for any t ∈ [a, b], u ∈ ∂KR, by
using the same method as in Lemma 3.5, we have

u 6= Tλu, ∀ u ∈ ∂KR,

Furthermore, if u ∈ ∂KR, then
min
t∈[a,b]

u(t) ≥ ρ‖u‖ ≥ R′.

Thus by (3.10), for any t ∈ [a, b], we have

‖Tλu‖ ≥ Tλu(t) = λAu(t) = λ

∫ 1

0
G(t, s)p(s)g(s)f(Su(s))ds

≥ λ
∫ b

a
G(t, s)p(s)g(s)f

(∫ b

a
H(s, τ)u(τ)dτ

)
ds

≥ λρ
∫ b

a
G(s, s)p(s)g(s)f

(
ξρ

∫ b

a
H(τ, τ)dτ‖u‖

)
ds

≥ λρ2σξ
∫ b

a
H(τ, τ)dτ

∫ b

a
G(s, s)p(s)g(s)ds‖u‖

> ‖u‖.

Therefore, ‖Tλu‖ > ‖u‖, u ∈ K ∩ ∂KR and by Lemma 2.4, we have

i(Tλ,KR,K) = 0. (3.11)

Consequently, by the additivity of the fixed point index,

0 = i(Tλ,KR,K) = i(Tλ,K ∩ Ω,K) + i(Tλ,KR\K ∩ Ω,K).

Therefore, i(Tλ,K
⋂

Ω,K) = 1, i(Tλ,KR\K ∩ Ω,K) = −1, and thus, Tλ have at lease two positive fixed
points on K

⋂
Ω and KR\K ∩ Ω respectively, i.e., by Lemma 2.4, there exist at least two positive solutions

of BVP (1.1). The proof is completed.

Proof of Theorem 3.2. By Lemma 3.3–Lemma 3.6, we can obtain the results of Theorem 3.2. The proof is
completed.

Remark 3.7. In Theorem 3.1, we not only derive an explicit interval of λ such that for any λ in this interval,
the existence of at least one positive solution to the boundary value problem is guaranteed, and the non-
existence of solutions for λ in an appropriate interval is also discussed which is different from the previous
papers. So our conclusion extend and improve the corresponding results of papers.
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4. Application

In the section, in order to illustrate our results, we consider the following concrete fourth-order singular
boundary value problem

Example 4.1. Consider the following singular boundary value problem (SBVP)
15
√
t(1− t)

(
1

15
√
t(1− t)

u
′′′

(t)

)′
+ t

1
2 (1− t)

[
(u+ 1)2 + (u+ 1)3

]
= 0, 0 < t < 1,

u(0)− 3u′(0) = 0, u(1) + 2u′(1) = 0,

3u′′(0)− lim
t→0+

u′′′(t) = 0, u′′(1) + lim
t→1−

u′′′(t) = 0,

(4.1)

where
α1 = γ1 = 1, β1 = 3, δ1 = 2, β2 = γ2 = δ2 = 1, α2 = 3,

p(t) =
1

15
√
t(1− t)

, g(t) = t
1
2 (1− t), f(u) = (u+ 1)2 + (u+ 1)3.

Then obviously, ∫ 1

0
g(t)dt = 4/15,

∫ 1

0

1

p(t)
dt = 4, f∞ = +∞,

By computing, we know that the Green’s function are

H(t, s) =
1

6

{
(3 + s) (3− t) , 0 ≤ s ≤ t ≤ 1,

(3 + t) (3− s) , 0 ≤ t ≤ s ≤ 1.

G(t, s) =
1

16


(

1 + 30s
3
2 − 18s

5
2

)(
5− 10t

3
2 + 6t

5
2

)
, 0 ≤ s ≤ t ≤ 1,(

1 + 30t
3
2 − 18t

5
2

)(
5− 10s

3
2 + 6s

5
2

)
, 0 ≤ t ≤ s ≤ 1.

It is easy to note that 0 ≤ G(s, s) ≤ 1 and conditions (H1), (H2), (H3) hold.
Next, by computing, we know that

e =

∫ 1

0
G(s, s)p(s)g(s)ds = 0.08,

we choose r = 3, it follows from a direct calculation that

d(3) = sup
u∈K,‖u‖=3

f

(
3

∫ 1

0
H(s, s)ds

)
= 294.

Let λ1 =
r

d(r)e
= 0.13. Therefore, from Theorem 3.1, when λ ∈ (0, 0.13), BVP (1.1) has at least one

positive solution.
Let [1/4, 3/4] ⊂ (0, 1), from λ%ρ2θ1 > 1, it follows from a direct calculation that λ > 277.95. Then by

Theorem 3.1, BVP (4.1) has no positive solutions when λ > 277.95.

Acknowledgments

The authors are supported by National Natural Science Foundation of China(11071141), the MOE
Layout Foundation of Humanities and Social Sciences (13YJAZH091) and National Social Science Fund
Project (15BJY183).



H. Su, Q. Tuo, J. Nonlinear Sci. Appl. 9 (2016), 219–230 230

References

[1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problem, J. Math. Anal.
Appl., 116 (1986), 415–426.1

[2] R. P. Agarwal, M. Y. Chow, Iterative methods for a fourth order boundary value problem , J. Compu. Appl.
Math., 10 (1984), 203–217.1

[3] G. Bonanno, B. Di Bella, A fourth-order boundary value problem for a Sturm-Liouville type equation, Appl. Math.
Comput., 217 (2010), 3635–2940.1

[4] Y. Cui , J. X. Sun, Y. Zou, Global bifurcation and multiple results for Sturm-Liouville problems, J. Comput. Appl.
Math., 235 (2011), 2185–2192.1

[5] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press Inc., New York, (1988).
2.6, 2.7

[6] Y. S. Liu, Multiple positive solutions of nonlinear singular boundary value problem for fourth-order equations,
Appl. Math. Lett., 17 (2004), 747–757.1

[7] R. Ma, Positive solutions of fourth-order two point boundary value problem, Ann. Differential Equation, 15 (1999),
305–313.1

[8] R. Ma, H. Wang, On the existence of positive solutions of fourth order ordinary differential equation, Appl. Anal.,
59 (1995), 225–231.1

[9] Y. S. Yang, Fourth order two-point boundary value problem, Proc. Amer. Math. Soc., 104 (1988), 175–180.1
[10] J. Yang, Z. Wei, K. Liu, Existence of symmetric positive solutions for a class of Sturm-Liouville-like boundary

value problems , Appl. Math. Comput., 214 (2009), 424–432.1
[11] X. Zhang, Positive solutions for three-point semipositone boundary value problems with convex nonlinearity, J.

Appl. Math. Comp., 30 (2009), 349–367.1
[12] Q. Zhang, F. Y. Li, X. Zhu, Multiple sign-changing solutions to the Sturm-Liouville boundary value problem with

resonance, Appl. Math. Comput., 219 (2012), 1061–1072.1
[13] X. G. Zhang, L. Liu, Eigenvalues of fourth-order singular Sturm-Liouville boundary value problems, Nonlinear

Anal., 68 (2008), 384–392.1


	1 Introduction
	2 Preliminaries and Lemmas
	3 Main results
	4  Application

