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Abstract

In this paper, first we convert the non-linear matrix Lyapunov system into a Kronecker product matrix
system with the help of Kronecker product of matrices. Then, we obtain sufficient conditions for Ψ-
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1. Introduction

The importance of Matrix Lyapunov systems, which arise in a number of areas of control engineering
problems, dynamical systems, and feedback systems are well known. In this paper we focus our attention
to the first order non-linear matrix Lyapunov systems of the form

X ′(t) = A(t)X(t) +X(t)B(t) + F (t,X(t)), (1.1)

where A(t), B(t) are square matrices of order n, whose elements aij , bij , are real valued continuous functions
of t on the interval R+ = [0,∞), and F (t,X(t)) is a continuous square matrix of order n defined on
(R+ × Rn×n), such that F (t, O) = O, where Rn×n denote the space of all n× n real valued matrices.
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Akinyele [1] introduced the notion of Ψ-stability, and this concept was extended to solutions of ordinary
differential equations by Constantin [2]. Later Morchalo [6] introduced the concepts of Ψ-(uniform) stability,
Ψ-asymptotic stability of trivial solutions of linear and non-linear systems of differential equations. Further,
these concepts are extended to non-linear volterra integro-differential equations by Diamandescu [[3], [4]].
Recently, Murty and Suresh Kumar [[7], [8]] extended the concepts of Ψ-boundedness, Ψ-stability and Ψ-
instability to matrix Lyapunov systems.

The purpose of our paper is to provide sufficient conditions for Ψ-asymptotic and Ψ-uniform stability of
trivial solutions of the Kronecker product system associated with the non-linear matrix Lyapunov system
(1.1). Here, we extend the concept of Ψ-stability in [7] to Ψ-asymptotic stability for matrix Lyapunov
systems.

The paper is well organized as follows. In section 2 we present some basic definitions and notations
relating to Ψ-(uniform) stability, Ψ-asymptotic stability and Kronecker products. First, we convert the non-
linear matrix Lyapunov system (1.1) into an equivalent Kronecker product system and obtain its general
solution. In section 3 we obtain sufficient conditions for Ψ- asymptotic stability of trivial solutions of
the corresponding linear Kronecker product system. In section 4 we study Ψ-asymptotic stability and
Ψ-uniform stability of trivial solutions of non-linear Kronecker product system. The main results of this
paper are illustrated with suitable examples.

This paper extends some of the results of Ψ-asymptotic stability of trivial solutions of linear equations
(Theorem 1 and Theorem 2)in Diamandescu [4] to matrix Lyapunov systems.

2. Preliminaries

In this section we present some basic definitions and results which are useful for later discussion.
Let Rn be the Euclidean n-dimensional space. Elements in this space are column vectors, denoted by

u = (u1, u2, . . . un)T (T denotes transpose) and their norm defined by

‖u‖ = max{|u1|, |u2|, . . . |un|}.

For a n× n real matrix, we define the norm

|A| = sup
‖x‖≤1

‖Ax‖.

Let Ψk : R+ → (0,∞), k = 1, 2, . . . n, . . .n2,be continuous functions, and let

Ψ = diag[Ψ1,Ψ2, . . .Ψn2 ].

Then the matrix Ψ(t) is an invertible square matrix of order n2 ,for each t ≥ 0.

Definition 2.1. [5] Let A ∈ Rm×n and B ∈ Rp×q then the Kronecker product of A and B written A ⊗ B
is defined to be the partitioned matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB


is an mp× nq matrix and is in Rmp×nq.

Definition 2.2. [5] Let A = [aij ] ∈ Rm×n, we denote

Â = V ecA =


A.1
A.2
.
.
A.n

 , where A.j =


a1j

a2j

.

.
amj

 (1 ≤ j ≤ n) .
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Regarding properties and rules for Kronecker product of matrices we refer to Graham [5].
Now by applying the Vec operator to the non-linear matrix Lyapunov system (1.1) and using the above

properties, we have

X̂ ′(t) = H(t)X̂(t) +G(t, X̂(t)), (2.1)

where H(t) = (BT ⊗ In) + (In ⊗A) is a n2 × n2 matrix and G(t, X̂(t)) = V ecF (t,X(t)) is a column matrix
of order n2.
The corresponding linear homogeneous system of (2.1) is

X̂ ′(t) = H(t)X̂(t). (2.2)

Definition 2.3. The trivial solution of (2.1) is said to be Ψ-stable on R+ if for every ε > 0 and every
t0 in R+, there exists δ = δ(ε, t0) > 0 such that any solution X̂(t) of (2.1) which satisfies the inequality
‖Ψ(t0)X̂(t0)‖ < δ, also satisfies the inequality ‖Ψ(t)X̂(t)‖ < ε for all t ≥ t0.

Definition 2.4. The trivial solution of (2.1) is said to be Ψ-uniformly stable on R+, if δ(ε, t0) in Defini-
tion 2.3 can be chosen independent of t0.

Definition 2.5. The trivial solution of (2.1) is said to be Ψ-asymptotically stable on R+, if it is Ψ-stable
on R+ and in addition, for any t0 ∈ R+, there exists a δ0 = δ0(t0) > 0 such that any solution X̂(t) of (2.1)
which satisfies the inequality ‖Ψ(t0)X̂(t0)‖ < δ0, satisfies the condition lim

t→∞
Ψ(t)X̂(t) = 0.

The following example illustrates the difference between the Ψ-stability and Ψ-asymptotic stability.

Example 2.1. Consider the non-linear matrix Lyapunov system (1.1) with

A(t) =

[ t
t2−1

0

0 2t

]
, B(t) =

[
0 et
−t
t2−1

0

]
and

F (t,X(t)) =

[
1+t(x2−3x1)

t2−1
−etx1 − tx2

t2−1
+ x2

tx4
t2−1
− 2tx3 − x3 x2

4 sec t− x4 tan t− 2tx4 − etx3

]
.

Then the solution of (2.1) is

X̂(t) =


1

(t+1)
√
t2−1

e−t

et
− cos t
t

 .
Consider

Ψ(t) =


t+ 1 0 0 0

0 et 0 0
0 0 e−t 0
0 0 0 t


for all t ≥ 0, we have

Ψ(t)X̂(t) =


1√
t2−1

1
1

− cos t

 .
It is easily seen from the Definitions 2.3 and 2.5, the trivial solution of the system (2.1) is Ψ-stable on R+,
but, it is not Ψ-asymptotically stable on R+.
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Lemma 2.1. Let Y (t) and Z(t) be the fundamental matrices for the systems

X ′(t) = A(t)X(t), (2.3)

and
[XT (t)]′ = BT (t)XT (t) (2.4)

respectively. Then the matrix Z(t)⊗Y (t) is a fundamental matrix of (2.2) and every solution of (2.2) is of
the form X̂(t) = (Z(t)⊗ Y (t))c, where c is a n2-column vector.

Proof. For proof, we refer to Lemma 1 of [7].

Theorem 2.1. Let Y (t) and Z(t) be the fundamental matrices for the systems (2.3) and (2.4), then any
solution of (2.1), satisfying the initial condition X̂(t0) = X̂0, is given by

X̂(t) = (Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))X̂0

+

t∫
t0

(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))G(s, X̂(s))ds. (2.5)

Proof. First, we show that any solution of (2.1) is of the form
X̂(t) = (Z(t)⊗ Y (t))c+ X̃(t), where X̃(t) is a particular solution of (2.1) and is given by

X̃(t) =

t∫
t0

(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))G(s, X̂(s))ds.

Here we observe that, X̂(t0) = (Z(t0) ⊗ Y (t0))c = X̂0, c = (Z−1(t0) ⊗ Y −1(t0))X̂0. Let u(t) be
any other solution of (2.1), write w(t) = u(t) − X̃(t), then w satisfies (2.2), hence w = (Z(t) ⊗ Y (t))c,
u(t) = (Z(t)⊗ Y (t))c+ X̃(t).

Next, we consider the vector X̃(t) = (Z(t)⊗Y (t))v(t), where v(t) is an arbitrary vector to be determined,
so as to satisfy equation (2.1). Consider

X̃ ′(t) = (Z(t)⊗ Y (t))′v(t) + (Z(t)⊗ Y (t))v′(t)

⇒ H(t)X̃(t) +G(t, X̂(t)) = H(t)(Z(t)⊗ Y (t))v(t) + (Z(t)⊗ Y (t))v′(t)

⇒ (Z(t)⊗ Y (t))v′(t) = G(t, X̂(t))

⇒ v′(t) = (Z−1(t)⊗ Y −1(t))G(t, X̂(t))

⇒ v(t) =

∫ t

t0

(Z−1(s)⊗ Y −1(s))G(s, X̂(s))ds.

Hence the desired expression follows immediately.

3. Ψ-asymptotic stability of linear systems

In this section we study the Ψ-asymptotic stability of trivial solutions of linear system (2.2).

Theorem 3.1. Let Y (t) and Z(t) be the fundamental matrices of (2.3) and (2.4). Then the trivial solution
of (2.2) is Ψ-asymptotically stable on R+ if and only if lim

t→∞
Ψ(t)(Z(t)⊗ Y (t)) = 0.
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Proof. The solution of (2.2) with the initial point at t0 ≥ 0 is

X̂(t) = (Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))X̂(t0), for t ≥ 0.

First, we suppose that the trivial solution of (2.2) is Ψ-asymptotically stable on R+. Then, the trivial
solution of (2.2) is Ψ-stable on R+ and for any t0 ∈ R+, there exists a δ0 = δ(t0) > 0 such that any solution
X̂(t) of (2.2) which satisfies the inequality ‖Ψ(t0)X̂(t0)‖ < δ0, and satisfies the condition lim

t→∞
Ψ(t)X̂(t) = 0.

Therefore, for any ε > 0 and t0 ≥ 0, there exists a δ0 > 0 such that
‖Ψ(t0)X̂(t0)‖ < δ0 and also satisfies

‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)Ψ(t0)X̂(t0)‖ < ε for all t ≥ tε,t0 .

Let v ∈ Rn2
be such that ‖v‖ ≤ 1. For X̂(t0) = δ0

2 Ψ−1(t0)v, we have

‖Ψ(t0)X̂(t0)‖ < δ0 and hence,

‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0)
δ0

2
Ψ−1(t0)v‖ < ε

⇒ ‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)‖ < 2ε

δ0

⇒ |Ψ(t)(Z(t)⊗ Y (t))| ≤ 2ε

δ0|(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|
,

for t ≥ tε,t0 . Therfore, lim
t→∞

Ψ(t)(Z(t)⊗ Y (t)) = 0.

Conversely, suppose that lim
t→∞

Ψ(t)(Z(t) ⊗ Y (t)) = 0. Then, there exists M > 0 such that |Ψ(t)(Z(t) ⊗
Y (t))| ≤ M for t ≥ 0. From (i) of Theorem 3 [7], it follows that the trivial solution of (2.2) is Ψ-stable on
R+. For any X̂(t0) ∈ Rn2

, we have

lim
t→∞

Ψ(t)X̂(t) = lim
t→∞

Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))X̂(t0) = 0.

Thus, the trivial solution of (2.2) is Ψ-asymptotically stable on R+.

The above Theorem 3.1 is illustrated by the following example.

Example 3.1. Consider the linear homogeneous matrix Lyapunov system corresponding to (1.1) with

A(t) =

[ 1
t+1 0

0 −1
t+1

]
, B(t) =

[
1 0
0 −2

]
.

Then the fundamental matrices of (2.3), (2.4) are

Y (t) =

[
t+ 1 0

0 1
t+1

]
, Z(t) =

[
et 0
0 e−2t

]
.

Now the fundamental matrix of (2.2) is

Z(t)⊗ Y (t) =


et(t+ 1) 0 0 0

0 et

t+1 0 0

0 0 (t+ 1)e−2t 0

0 0 0 e−2t

t+1

 .
Consider

Ψ(t) =


e−2t

t+1 0 0 0

0 e−t

t+1 0 0

0 0 e2t

(t+1)2
0

0 0 0 e2t√
t+1





M.S.N.Murty, G.Suresh Kumar, J. Nonlinear Sci. Appl. 5 (2012), 115–125 120

for all t ≥ 0, we have

Ψ(t)(Z(t)⊗ Y (t)) =


e−t 0 0 0
0 1

(t+1)2
0 0

0 0 1
t+1 0

0 0 0 1

(t+1)
3
2


It is easily seen from Theorem 3.1 , the system (2.2) is Ψ-asymptotically stable on R+.

Remark 3.1. Ψ-asymptotic stability need not imply classical asymptotic stability.

The Remark 3.1 is illustrated by the following example.

Example 3.2. Consider the linear homogeneous matrix Lyapunov system corresponding to (1.1) with

A(t) =

[
1 −1
1 1

]
, B(t) =

[
−1 0
0 −1

]
.

Then the fundamental matrices of (2.3), (2.4) are

Y (t) =

[
et sin t et cos t
−et cos t et sin t

]
, Z(t) =

[
e−t 0
0 e−t

]
.

Now the fundamental matrix of (2.2) is

Z(t)⊗ Y (t) =


sin t cos t 0 0
− cos t sin t 0 0

0 0 sin t cos t
0 0 − cos t sin t

 .
Clearly the system (2.2) is stable, but it is not asymptotically stable on R+. Consider

Ψ(t) =


1
t+1 0 0 0

0 1
t+1 0 0

0 0 1√
t+1

0

0 0 0 1√
t+1


for all t ≥ 0, we have

Ψ(t)(Z(t)⊗ Y (t)) =


sin t
t+1

cos t
t+1 0 0

− cos t
t+1

sin t
t+1 0 0

0 0 sin t√
t+1

cos t√
t+1

0 0 − cos t√
t+1

sin t√
t+1

 .
Thus, from Theorem 3.1 the system (2.2) is Ψ-asymptotically stable on R+.

Theorem 3.2. Let Y (t), Z(t) be the fundamental matrices of (2.2), (2.4). If there exists a continuous

function φ : R+ → (0,∞) such that
∞∫
0

φ(s)ds =∞, and a positive constant N satisfying

∫ t

0
φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|ds ≤ N, for all t ≥ 0

then, the linear system (2.2) is Ψ-asymptotically stable on R+.
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Proof. Let b(t) = |Ψ(t)(Z(t)⊗ Y (t))|−1 for t ≥ 0. From the identity(∫ t

0
φ(s)b(s) ds

)
Ψ(t)(Z(t)⊗ Y (t))

=

∫ t

0
φ(s)Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)Ψ(s)(Z(s)⊗ Y (s))b(s) ds,

it follows that(∫ t

0
φ(s)b(s) ds

)
|Ψ(t)(Z(t)⊗ Y (t))|

≤
∫ t

0
φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)||Ψ(s)(Z(s)⊗ Y (s))|b(s) ds.

Thus, the scalar function a(t) =
∫ t

0 φ(s)b(s)ds satisfies the inequality

a(t)b−1(t) ≤ N, for t ≥ 0.

We have a′(t) = φ(t)b(t) ≥ N−1φ(t)a(t) for t ≥ 0. It follows that

a(t) ≥ a(t1)e
N−1

∫ t
t1
φ(s) ds

, for t ≥ t1 > 0

and hence
|Ψ(t)(Z(t)⊗ Y (t))| = b−1(t) ≤ Na−1(t1)e

−N−1
∫ t
t1
φ(s) ds

, for t ≥ t1 > 0 .

Since |Ψ(t)(Z(t)⊗ Y (t))| is a continuous function on the compact interval [0, t1], there exists a positive
constant M such that |Ψ(t)(Z(t)⊗ Y (t))| ≤M for t ≥ 0. Therefore, the trivial solution of (2.2) is Ψ-stable
on R+, and also from

∞∫
0

φ(s)ds =∞, it follws that lim
t→∞

Ψ(t)(Z(t)⊗ Y (t)) = 0.

Hence by using Theorem 3.1, system (2.2) is Ψ-asymptotically stable.

4. Ψ-asymptotic stability of non-linear systems

In this section we obtain sufficient conditions for Ψ-asymptotic stability and Ψ-uniform stability of trivial
solutions of non-linear system (2.1).

Theorem 4.1. Suppose that

(i) The fundamental matrices Y (t) and Z(t) of (2.3), (2.4) are satisfying the condition∫ t

0
φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|ds ≤ N, for all t ≥ 0

where N is a positive constant and φ is a continuous positive function on R+ such that
∫∞

0 φ(s)ds =∞.

(ii) The function G satisfies the condition

‖Ψ(t)G(t, X̂(t))‖ ≤ α(t)‖Ψ(t)X̂(t)‖

for every vector valued continuous function X̂ : R+ → Rn2
, where α is a continuous non-negative

function on R+ such that

q = sup
t≥0

α(t)

φ(t)
<

1

N
.
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Then, the trivial solution of equation (2.1) is Ψ-asymptotically stable on R+.

Proof. From the first assumption of the theorem, Theorems 3.1 and 3.2, we have

lim
t→∞
|Ψ(t)(Z(t)⊗ Y (t))| = 0,

hence there exists a positive constant M such that

|Ψ(t)(Z(t)⊗ Y (t))| ≤M, for all t ≥ 0.

From the second assumption of the theorem, we have

α(t)

φ(t)
≤ sup

t≥0

α(t)

φ(t)
= q <

1

N
.

For a given ε > 0 and t0 ≥ 0, we choose δ = min{ε, (1−qN)ε
M |(Z−1(t0)⊗Y −1(t0))Ψ−1(t0)|}. Let X̂0 ∈ Rn

2
such that

||Ψ(t0)X̂0)|| < δ.
For τ > t0 and t ∈ [t0, τ ]. Consider

‖Ψ(t)X̂(t)‖ ≤ ‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)Ψ(t0)X̂(t0)‖

+

∫ t

t0

|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))|‖Ψ(s)G(s, X̂(s))‖ds

≤ |Ψ(t)(Z(t)⊗ Y (t))||(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|‖Ψ(t0)X̂0‖

+

∫ t

t0

φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)

φ(s)
‖Ψ(s)X̂(s)‖ds

< M |(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ +Nq sup
t0≤t≤τ

‖Ψ(t)X̂(t)‖.

Therefore,
sup

t0≤t≤τ
‖Ψ(t)X̂(t)‖ ≤ (1−Nq)−1M |(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ < ε.

It follows that the trivial solution of equation (2.1) is Ψ-stable on R+. To prove, the trivial solution of
(2.1) is Ψ-asymptotically stable, we must show further that lim

t→∞
‖Ψ(t)X̂(t))‖ = 0.

Suppose that lim
t→∞

sup ‖Ψ(t)X̂(t))‖ = λ > 0. Let θ be such that qN < θ < 1, then there exists t1 ≥ t0

such that ||Ψ(t)X̂(t)|| < λ
θ for all t ≥ t1. Thus for t > t1, we have

‖Ψ(t)X̂(t)‖ ≤ |Ψ(t)(Z(t)⊗ Y (t))||(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|‖Ψ(t0)X̂(t0)‖

+

∫ t

t0

|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|‖Ψ(s)G(s, X̂(s))‖ds

< |Ψ(t)(Z(t)⊗ Y (t))||(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ

+

∫ t1

t0

|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)‖Ψ(s)X̂(s)‖ds

+

∫ t

t1

φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)

φ(s)
‖Ψ(s)X̂(s)‖ds

< |Ψ(t)(Z(t)⊗ Y (t))||(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ
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+

∫ t1

t0

|Ψ(t)(Z(t)⊗ Y (t))||(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)‖Ψ(s)X̂(s)‖ds

+

∫ t

t1

φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|qλ
θ
ds

≤ |Ψ(t)(Z(t)⊗ Y (t))| {|(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ

+

∫ t1

t0

|(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)‖Ψ(s)X̂(s)‖ds}+
Mqλ

θ
.

From lim
t→∞
|Ψ(t)(Z(t)⊗ Y (t))| = 0, it follows that there exists T > 0, sufficiently large, such that

|Ψ(t)(Z(t)⊗ Y (t))| <
λ− Mqλ

θ

2Q
for all t ≥ T,

where
Q = |(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|δ

+

∫ t1

t0

|(Z−1(s)⊗ Y −1(s))Ψ−1(s)|α(s)‖Ψ(s)X̂(s)‖ds.

Thus, for t ≥ T we have

‖Ψ(t)X̂(t)‖ <
λ− Mqλ

θ

2
+
Mqλ

θ

<
λ+ Mqλ

θ

2
.

It follows from the definition of θ

λ ≤
λ+ Mqλ

θ

2
< λ

which is a contradiction. Therefore
lim
t→∞
‖Ψ(t)X̂(t)‖ = 0.

Thus, the trivial solution of (2.1) is Ψ-asymptotically stable on R+.

Example 4.1. Consider the non-linear matrix Lyapunov system (1.1) with

A(t) =

[ 1
t+1 0

0 −1
t+1

]
, B(t) =

[
1 0
0 1

]
, and F (t,X(t)) =

[
sin(x1)
4(t+1)

x3
8(t+1)

x2
2(t+1)

sin(x4)
6(t+1)

]
.

The fundamental matrices of (2.3), (2.4) are

Y (t) =

[
t+ 1 0

0 1
t+1

]
, Z(t) =

[
et 0
0 et

]
.

Therefore, the fundamental matrix of (2.2) is

Z(t)⊗ Y (t) =


et(t+ 1) 0 0 0

0 et

t+1 0 0

0 0 (t+ 1)et 0

0 0 0 et

t+1

 .
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Consider

Ψ(t) =


e−t

(t+1)2
0 0 0

0 e−t 0 0

0 0 e−t

(t+1)2
0

0 0 0 e−t


for all t ≥ 0, then we have

Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s) =

(
s+ 1

t+ 1

)
I4.

Taking φ(t) = 1
t+1 , for all t ≥ 0. Clearly φ(t) is continuous on R+ and

∞∫
0

φ(s)ds =∞. Also

∫ t

0
φ(s)|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|ds =

t

t+ 1
≤ 1, for all t ≥ 0.

Further, the matrix G satisfies condition (ii), with α(t) = 1
2(t+1) , α(t) is a continuous non-negative function

on R+ and satisfies

q = sup
t≥0

α(t)

φ(t)
=

1

2
<

1

N
= 1.

Thus, from Theorem 4.1, the trivial solution of non-linear system (2.1) is
Ψ-asymptotically stable on R+.

Theorem 4.2. Let Y (t), Z(t) be the fundamental matrices of (2.3), (2.4) respectively satisfying the condition

|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)| ≤ L,

for all 0 ≤ s ≤ t <∞, where L is a positive number. Assume that the function G satisfies

‖Ψ(t)G(t, X̂(t))‖ ≤ α(t)‖Ψ(t)X̂(t))‖, 0 ≤ t <∞

and for every X̂ ∈ Rn2
, where α(t) is a continuous non-negative function such that β =

∫∞
0 α(s)ds < ∞.

Then, the trivial solution of (2.1) is Ψ-uniformly stable on R+.

Proof. Let ε > 0 and δ(ε) = ε
2Le
−Lβ. For t0 ≥ 0 and X̂0 ∈ Rn2

be such that ‖Ψ(t0)X̂0‖ < δ(ε), we have

‖Ψ(t)X̂(t)‖ ≤ ‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)Ψ(t0)X̂(t0)‖

+

∫ t

t0

‖Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)Ψ(s)G(s, X̂(s))‖ds

≤ |Ψ(t)(Z(t)⊗ Y (t))(Z−1(t0)⊗ Y −1(t0))Ψ−1(t0)|‖Ψ(t0)X̂0)‖

+

∫ t

t0

|Ψ(t)(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))Ψ−1(s)|‖Ψ(s)G(s, X̂(s))‖ds

≤ L‖Ψ(t0)X̂0‖+ L

∫ t

t0

α(s)‖Ψ(s)X̂(s)‖ds.

By Gronwall’s inequality

‖Ψ(t)X̂(t)‖ ≤ L‖Ψ(t0)X̂0‖e
L
∫ t
t0
α(s)ds

≤ Lδ(ε)eLβ < ε,

for all t ≥ t0. This proves that the trivial solution of (2.1) is Ψ-uniformly stable on R+.
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Example 4.2. In Example 4.1, taking

F (t,X(t)) =

[
x1

(t+1)2
sin(x3)
(t+1)2

sin(x2)
(t+1)2

x4
(t+1)2

]
.

Then the conditions of Theorem 4.2 are satisfied with L = 1 and α(t) = 1
(t+1)2

. Clearly, α(t) is continuous

non-negative function and
∞∫
0

α(s)ds = 1. Therefore, from Theorem 4.2 the trivial solution of (2.1) is Ψ-

uniformly stable on R+.
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