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Abstract

Given a certain type of operator on a partial metric space, new Ćirić types, non-unique fixed point theorems,
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1. Introduction and Preliminaries

The existence and uniqueness of fixed points of operators have been a subject of great interest since
the work of Banach [8] on the topic first appeared in 1922. Many similar results for operators on various
types of spaces such as metric spaces, quasi-metric spaces (see e.g. [9, 14]), cone metric spaces (see e.g.
[16, 18]), Menger (statistical metric) spaces (see e.g. [30]), fuzzy metric spaces (see e.g [24]) have been
obtained. In [28],[29], Matthews introduced a new space called Partial metric space (PMS). On this space,
he proved a fixed point theorem which is an analog of the Banach fixed point theorem. Later some interested
authors showed that partial metric spaces have many applications both in mathematics and computer science
(see. e.g.[23, 25, 31, 35, 36]). Recently, some more results on fixed point theory on PMS appeared in
[5, 6, 7, 10, 15, 21, 17, 20, 32, 33].

The definition of partial metric space is given by Matthews (See [28] ) as follows:

Definition 1.1. Let X be a nonempty set and let p : X ×X → [0,∞) satisfy
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(P1) x = y ⇔ p(x, x) = p(y, y) = p(x, y)

(P2) p(x, x) ≤ p(x, y)

(P3) p(x, y) = p(y, x)

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)

for all x, y and z ∈ X. Then the pair (X, p) is called a partial metric space and p is called a partial metric
on X.

The usual metric spaces are closely connected to partial metric spaces. One can easily show that the
function dp : X ×X → R+ defined as

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) (1.1)

satisfies the conditions of a metric on X, therefore it is a (usual) metric on X. Note also that each partial
metric p onX generates a T0 topology τp onX, whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}
where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0. Some fundamental concepts like
convergence, Cauchy sequence, completeness and continuity in a partial metric space are defined as follows
[28].

Definition 1.2. (See e.g.[17, 28, 29])

1. A sequence {xn} in the PMS (X, p) converges to the limit x if and only if p(x, x) = lim
n→∞

p(x, xn).

2. A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if lim
n,m→∞

p(xn, xm) exists and is finite.

3. A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges with respect to τp, to
a point x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm).

4. A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there exists δ > 0 such
that F (Bp(x0, δ)) ⊆ BP (Fx0, ε).

The following three lemmas on partial metric spaces play crucial roles in the proof of the main results of
this paper. Their proofs are easily accessible in the literature or can be derived by elementary means (see
e.g. [1, 2, 6, 19, 28, 29]).

Lemma 1.3.

1. A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the
metric space (X, dp).

2. A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover

lim
n→∞

dp(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) (1.2)

Lemma 1.4. Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then we have
limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

Lemma 1.5. Let (X, p) be a PMS. Then

(A) If p(x, y) = 0 then x = y.

(B) If x 6= y, then p(x, y) > 0.

For our purposes, we need to recall the definition of an orbit of a self-mapping. Let T be a self-mapping
on a partial metric space (X, p). For Y ⊂ X and for each x ∈ X we set (cf.[12])

1. δ(Y ) = sup{p(x, y) : x, y ∈ Y },
2. O(x, n) = {x, Tx, T 2x, · · · , Tnx} for n ∈ N,
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3. O(x,∞) = {x, Tx, T 2x, · · · , } .

Definition 1.6. (cf.[12])

1. Let (X, p) be a PMS. A map T : X → X is called orbitally continuous if

lim
i,j→∞

p(Tnix, Tnjx) = lim
i→∞

p(Tnix, z) = p(z, z) (1.3)

implies
lim

i,j→∞
p(TTnix, TTnjx) = lim

i→∞
p(TTnix, Tz) = p(Tz, Tz) (1.4)

for each x ∈ X.

2. A PMS (X, p) is called orbitally complete if every Cauchy sequence {Tnix}∞i=1 converges in (X, p),
that is, if

lim
i,j→∞

p(Tnix, Tnjx) = lim
i→∞

p(Tnix, z) = p(z, z) (1.5)

Remark 1.7. It is clear that orbital continuity of T implies orbital continuity of Tm for any m ∈ N.

The concept of non-unique fixed point was introduced by Ćirić (see [12, 11]). Following him, many interesting
papers have appeared (see e.g. [3, 4, 13, 22, 26, 27, 34, 37]) The aim of this paper present some non-unique
fixed point theorems in the context of partial metric spaces.

2. Main Results

In this section we give some non-unique fixed point theorems for partial metric spaces.

Theorem 2.1. Let (X, p) be a partial metric space. Let T : X → X be an orbitally continuous self-mapping
on X where X is T -orbitally complete. If T satisfies the inequality

min{p(Tx, Ty), p(x, Tx), p(y, Ty)} ≤ kp(x, y) (2.1)

for all x, y ∈ X and for some k ∈ (0, 1), then for each x ∈ X the sequence {Tnx} converges to a fixed point
of T .

Proof. Take an arbitrary x0 ∈ X. Let us define the sequence

xn+1 = Txn, n = 0, 1, 2, . . . . (2.2)

If there exists a positive integer n such that xn = xn+1, then xn is a fixed point of T . Hence we are done.
Suppose that xn 6= xn+1 for each n = 0, 1, 2, · · · . Substituting x = xn and y = xn+1 in (2.1) we obtain

the inequality
min{p(Txn, Txn+1), p(xn, Txn), p(xn+1, Txn+1)} ≤ kp(xn, xn+1)

which implies that
min{p(xn, xn+1), p(xn+1, xn+2)} ≤ kp(xn, xn+1). (2.3)

Since we assume k ∈ [0, 1), the inequality (2.3) implies that p(xn+1, xn+2) ≤ kp(xn, xn+1) for every n =
0, 1, 2, · · · . Thus, we get

p(xn+1, xn+2) ≤ kp(xn, xn+1) ≤ k2p(xn−1, xn) ≤ · · · ≤ kn+1p(x0, x1). (2.4)

We claim that {xn} is a Cauchy sequence. Without loss of generality assume that n > m. Then, using (2.4)
and the triangle inequality (P4) for partial metric we have

0 ≤ p(xn, xm) ≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm)
−[p(xn−1, xn−1) + p(xn−2, xn−2) + · · · p(xm+1, xm+1)]
≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm)
≤ [kn−1 + kn−2 + · · · km]p(x0, x1)

= km
1− kn−m

1− k
p(x0, x1).
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Hence, lim
n,m→∞

p(xn, xm) = 0. That is, {xn} is a Cauchy sequence in (X, p). By Lemma 1.3, {xn} is also

Cauchy in (X, dp). In addition, since (X, p) is complete, (X, dp) is also complete. Thus there exists z ∈ X
such that xn → z in (X, dp). Moreover, by Lemma 1.3

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0 (2.5)

which implies that
lim
n→∞

dp(z, xn) = 0. (2.6)

Next we will show that z is the fixed point of T . Notice that we have p(z, z) = 0 due to (2.6). Substituting
x = xn and y = z in (2.1) we obtain

min{p(Txn, T z), p(xn, Txn), p(z, Tz)} ≤ kp(z, xn).

Then it follows that

min{p(xn+1, T z), p(xn, xn+1), p(z, Tz)} ≤ kp(z, xn). (2.7)

Taking limit as n→∞, we obtain
p(z, Tz) ≤ 0

using (2.6) and Lemma 1.4. Thus, p(z, Tz) = 0. Using (1.1), we end up with

0 ≤ dp(z, Tz) = 2p(z, Tz)− p(z, z)− p(Tz, Tz) = −p(Tz, Tz) ≤ 0.

Hence, dp(z, Tz) = 0. In particular, we obtain z = Tz, which completes the proof.

Example 2.2. Let X = R+ and p(x, y) = max{x, y} then (X, p) is a PMS (See e.g. [28, 29].) Suppose

T : X → X such that Tx = x2

1+3x for all x ∈ X. Without loss of generality assume x ≥ y. Then

p(Tx, Ty) = max
{

x2

1+3x ,
y2

1+3y

}
= x2

1+3x

p(Tx, x) = max
{

x2

1+3x , x
}

= x

p(y, Ty) = max
{
y, y2

1+3y

}
= y

p(x, y) = max{x, y} = x

min{p(Tx, Ty), p(x, Tx), p(y, Ty)} = min{ x2

1 + 3x
, x, y} = min{ x2

1 + 3x
, y} (2.8)

For k = 1
2 , all conditions of Theorem 2.1. Indeed, if min{ x2

1+3x , y} = x2

1+3x ≤
x
2 . If min{ x2

1+3x , y} = y then

y ≤ x2

1+3x and hence y ≤ x2

1+3x ≤
x
2 . Notice that x = 0 is the fixed point of T .

Theorem 2.3. Let T : X → X be an orbitally continuous mapping on T -orbitally complete PMS (X, d)
and ε > 0. Suppose that there exists a point x0 ∈ X such that p(x0, T

n(x0)) < ε for some n ∈ N and that T
satisfies the condition

0 < p(x, y) < ε⇒ min{p(x, T (x)), p(T (x), T (y)), p(T (y), y)} ≤ kp(x, y) (2.9)

for all x, y ∈ X and for some k < 1. Then, T has a periodic point.

Proof. Set M = {n ∈ N : p(x, Tn(x)) < ε : for x ∈ X}. By the assumption of the theorem M 6= ∅. Let
m = minM and x ∈ X such that p(x, Tm(x)) < ε. There are two cases to consider: m = 1 or m ≥ 2.

Suppose that m = 1, that is, p(x, T (x)) < ε. By replacing y = T (x) in (2.9), one can get

min{p(x, T (x)), p(T (x), T (T (x))), p(T (T (x)), T (x))} ≤ kp(x, T (x)).
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The case p(x, T (x)) ≤ kp(x, T (x)) provides a contraction due to the fact that k < 1. Thus, p(T (x), T (T (x))) =
p(T (x), T 2(x)) ≤ kp(x, T (x)). As in the proof of Theorem 2.1, one can consider the iterative sequence
xn+1 = T (xn), x = x0, and observe that Tz = z for some z ∈ X.

Suppose m ≥ 2. This is equivalent to stating that the condition

p(T (y), y) ≥ ε (2.10)

holds for each y ∈ X. Then, from p(x, Tm(x)) < ε and (2.9) it follows that

min{p(x, T (x)), p(T (x), T (Tm(x))), p(T (Tm(x)), Tm(x))} ≤ kp(x, Tm(x)).

Since Tm(x) ∈ X, one has p(T (Tm(x)), Tm(x)) = p(T (w), w) when we rename Tm(x) = w. Regarding
(2.10), we obtain p(T (w), w) = p(T (Tm(x)), Tm(x)) ≥ ε and p(T (x), x) ≥ ε. Thus,

min{p(x, T (x)), p(T (x), T (Tm(x))), p(T (Tm(x)), Tm(x))} = p(T (x), Tm+1(x)).

In particular,
p(T (x), Tm+1(x)) ≤ kp(x, Tm(x)).

Recursively, one can get

p(T 2(x), Tm+2(x)) ≤ p(T (x), Tm+1(x)) ≤ k2p(x, Tm(x)).

Proceeding in this way, for each s ∈ N, one can obtain

p(T s(x), Tm+s(x)) ≤ p(T s−1(x), Tm+s−1(x)) ≤ · · · ≤ ksp(x, Tm(x)).

Thus, for the recursive sequence xn+1 = Tm(xn) where x0 = x,

p(xn, xn+1) = p(Tnm(x0), T
(n+1)m(x0)) = p(Tnm(x0), T

m+nm(x0)) ≤ knmp(x0, Tm(x0)).

By using the triangle inequality (P4), for any s ∈ N, one can get,

p(xn, xn+s) ≤ [p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+s−1, xn+s)]

= knm
[
1 + km + ...+ k(s−1)m

]
p(x0, T

m(x0))

≤ knm

1−km p(x0, T
m(x0))

(2.11)

Thus,
lim
n→∞

p(xn, xn+s) = 0

So {xn} is a Cauchy sequence in X. Since X is T -orbitally complete, there is some z ∈ X such that

lim
n→∞

p(Tmn(x0), z) = lim
n→∞

p(xn, z) = p(z, z) = 0. (2.12)

Regarding Remark 1.7, the orbital continuity of T implies that

p(Tm(z), Tm(z)) = limn→∞ p(T
m(Tnm(x0)), T

mz) = limn→∞ p(T
m(Tnm(x0)), T

m(Tnm(x0)))

= limn→∞(T (n+1)m(x0), T
mz) = limn→∞(T (n+1)m(x0), T

(n+1)m(x0)),
= limn→∞ p(xn+1, T

mz) = limn→∞ p(xn+1, xn+1)
= p(z, Tmz) = p(z, z)

Thus p(Tm(z), Tm(z)) = p(z, Tmz) = p(z, z). Regarding (P1), the point z is a periodic point of T .

Theorem 2.4. Let T : X → X be an orbitally continuous mapping on PMS (X, d). Suppose that T satisfies
the condition

min{p(x, T (x)), p(T (x), T (y)), p(T (y), y)} < p(x, y) (2.13)

for all x, y ∈ X, x 6= y. If the sequence {Tn(x0)} has a cluster point z ∈ X for some x0 ∈ X, then z is a
fixed point of T .
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Proof. Suppose Tm(x0) = Tm−1(x0) for some m ∈ N, then Tn(x0) = Tm(x0) = z for all n ≥ m. It is clear
that z is a required point.

Suppose Tm(x0) 6= Tm−1(x0) for all m ∈ N. Since {Tn(x0)} has a cluster point z ∈ X, one can write
limi→∞ T

ni(x0) = z. By replacing x and y with Tn−1(x0) and Tn(x0), respectively, in (2.13),

min{p(Tn−1(x0), T (Tn−1(x0))), p(T (Tn−1(x0)), T (Tn(x0))), p(T (Tn(x0)), T
n(x0))}

< p(Tn−1(x0), T
n(x0))

(2.14)

The inequality p(Tn−1(x0), T
n(x0)) < p(Tn−1(x0), T

n(x0)) does not hold. Thus, (2.14) is equivalent to
p(Tn(x0), T

n+1(x0)) < p(Tn−1(x0), T
n(x0)) which shows that the sequence

{p(Tn(x0), T
n+1(x0))}∞1 (2.15)

is decreasing and bounded below. Hence {p(Tn(x0), T
n+1(x0))}∞1 is convergent. By T -orbital continuity,

lim
i→∞

p(Tni(x0), T
ni+1(x0)) = p(z, Tz). (2.16)

Using {p(Tni(x0), T
ni+1(x0))}∞1 ⊂ {p(Tn(x0), T

n+1(x0))}∞1 and (2.16), we have

lim
n→∞

p(Tn(x0), T
n+1(x0)) = p(z, Tz). (2.17)

Considering the fact {p(Tni+1(x0), T
ni+2(x0))}∞1 ⊂ {p(Tn(x0), T

n+1(x0))}∞1 together with the limits
limi→∞ T

ni+1(x0) = Tz, limi→∞ T
ni+2(x0) = T 2z and (2.17) show that

p(Tz, T 2z) = p(z, Tz). (2.18)

Assume Tz 6= z, that is, p(z, Tz) > 0. So, one can replace x and y with z and Tz, respectively, in(2.13) to
obtain

{p(z, T (z)), p(T (z), T (T (z))), p(T (T (z)), T (z))} < p(z, T (z)). (2.19)

which yields that p(Tz, T 2z) < p(z, Tz). But this contradicts (2.18). Thus, Tz = z.

Theorem 2.5. Let T : X → X be an orbitally continuous mapping on T -orbitally complete PMS (X, p) and
ε > 0. Suppose that T satisfies the condition

if 0 < p(x, y) < ε, then min{p(x, T (x)), p(T (x), T (y)), p(T (y), y)} < p(x, y) (2.20)

for all x, y ∈ X. If for some x0 ∈ X, the sequence {Tn(x0)}∞n=1 has a cluster point of z ∈ X, then z is a
periodic point of T .

Proof. Set limi→∞ T
ni(x0) = z, that is, for any ε > 0 there exists N0 ∈ N such that p(Tni(x0), z) <

ε
2K for

all i > N0. Hence, by triangle inequality (P4),

p(Tni(x0), T
ni+1(x0)) ≤ p(Tni(x0), z) + p(z, Tni+1(x0)) < ε

Let us define the set
M = {j ∈ N : p(Tn(x0), T

n+j(x0)) < ε for some n ∈ N}

which is non-empty by the assumption of the theorem. Let m = minM . We need to consider two cases:
either p(Tn(x0), T

n+m(x0)) = 0 for some n ∈ N or p(Tn(x0), T
n+m(x0)) > 0 for all n ∈ N. In the first case,

we have z = Tn(x0) = Tn+m(x0) = Tm(Tn(x0)) = Tm(z). Therefore the assertion of the theorem follows.
Suppose p(Tn(x0), T

n+m(x0)) > 0 for all n ∈ N. Let r ∈ N be such that p(T r(x0), T
r+m(x0)) < ε. If

m = 1, then replacing x and y with Tn(x0) and Tn+1(x0), respectively, in (2.20) one can obtain that

min{p(Tn(x0), T (Tn(x0))), p(T (Tn(x0)), T (Tn+1(x0))), p(T (Tn+1(x0)), T
n+1(x0))}

< p(Tn(x0), T
n+1(x0))

(2.21)
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Since the case p(Tn(x0), T
n+1(x0)) < p(Tn(x0), T

n+1(x0)) is impossible, the inequality in (2.21) turns into

p(Tn+1(x0), T
n+2(x0)) < p(Tn(x0), T

n+1(x0)),

that is, {p(Tn(x0), T
n+1(x0))} is decreasing for n ≥ r. Thus, by a routine calculation, one can conclude

that Tz = z.
Assume that m ≥ 2, that is, for every n ∈ N,

p(Tn(x0), T
n+1(x0)) ≥ ε. (2.22)

By the orbital continuity of T , limi→∞ T
ni+r(x0) = T r(z) and (2.22), one can get

p(T r(z), T r+1(z)) = lim
i→∞

p(Tni+r(x0), T
ni+r+1(x0)) ≥ ε. (2.23)

for every r ∈ N. Regarding (2.20) with the assumption 0 < p(T j(x0), T
j+m(x0)) < ε one can obtain,

min{p(T j(x0), T
j+1(x0)), p(T

j+1(x0), T
j+m+1(x0)), p(T

j+m(x0), T
j+m+1(x0))}

< p(T j(x0), T
j+m(x0))

Thus, due to (2.22), we find p(T j+1(x0), T
j+m+1(x0)) < p(T j(x0), T

j+m(x0)) < ε. Continuing this process
yields that

· · · < p(T j+2(x0), T
j+m+2(x0)) < p(T j+1(x0), T

j+m+1(x0)) < p(T j(x0), T
j+m(x0)) < ε. (2.24)

Hence, the sequence {p(Tn(x0), T
n+m(x0)) : n ≥ j} is decreasing and thus is convergent. Notice that

the subsequence {p(Tni(x0), T
ni+m(x0)) : i ∈ N} and {p(Tni+1(x0), T

ni+1+m(x0)) : i ∈ N} are convergent
to d(z, Tmz) and d(Tz, Tm+1z), respectively. By the orbital continuity of T and limi→∞ T

ni(x0) = z, one
can get

p(T (z), Tm+1(z)) = p(z, Tm(z)) = lim
n→∞

p(Tn(x0), T
n+m(x0)). (2.25)

Therefore, one can conclude that p(z, Tmz) < ε from (2.24) and (2.25). If p(z, Tmz) = 0, then Tmz = z.
Thus, the desired result is obtained. Suppose p(z, Tmz) > 0. Apply (2.20),

min{p(z, T (z)), p(T (z), T (Tm(z))), p(T (Tm(z)), Tm(z))} < p(z, Tmz) < ε (2.26)

Taking (2.23), (2.26) into the account yields that p(T (z), Tm+1(z)) < p(z, Tmz) which contradicts with
(2.25). Thus, p(z, Tmz) = 0, and so Tmz = z.

Theorem 2.6. Let T : X → X be an orbitally continuous mapping on T -orbitally complete PMS (X, p).
Suppose that T satisfies the condition

min{[p(x, T (x))]2, p(x, y)p(T (x), T (y)), [p(T (y), y)]2} ≤ kp(x, T (x))p(T (y), y) (2.27)

for all x, y ∈ X and for some k < 1. Then, for each x ∈ X, the iterated sequence {Tn(x)} converges to a
fixed point of T .

Proof. As in the proof of Theorem 2.9, fix x0 ∈ X and define the sequence {xn} in the following way: For
n ≥ 1 set x1 = T (x0) and recursively xn+1 = T (xn) = Tn+1(x0). It is clear that the sequence xn is Cauchy
when the equality xn+1 = xn holds for some n ∈ N. Consider the case xn+1 6= xn for all n ∈ N. By replacing
x and y with xn−1 and xn, respectively, in (2.27), one can get

min{[p(xn−1, T (xn−1))]
2, p(xn−1, xn)p(T (xn−1), T (xn)), [p(T (xn), xn)]2}

≤ kp(xn−1, T (xn−1))p(T (xn), xn).
(2.28)
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Since k < 1, the case p(xn−1, xn)p(xn, xn+1) ≤ kp(xn−1, xn)p(xn, xn+1) gives a contradiction. Thus, one
gets

p(xn, xn+1) ≤ kp(xn−1, xn).

Recursively, one can observe that

p(xn, xn+1) ≤ kp(xn−1, xn) ≤ k2p(xn−2, xn−1) ≤ · · · ≤ knp(x0, T (x0)).

By a routine calculation performed as in the proof of Theorem 2.9, one can show that T has a fixed point.

Theorem 2.7. Let X be a non-empty set endowed in two partial metrics p and ρ. Let T be a mapping of
X into itself. Suppose that

(i) X is orbitally complete space with respect to p,

(ii) p(x, y) ≤ ρ(x, y) for all x, y ∈ X,

(iii) T is orbitally continuous with respect to p,

(iv) T satisfies:

min{[ρ(T (x), T (y))]2, ρ(x, y)ρ(T (x), T (y)), [ρ(y, T (y))]2} ≤ kρ(x, T (x)), ρ(y, Ty) (2.29)

for all x, y ∈ X, where 0 ≤ k < 1.

Then T has a fixed point in X.

Proof. As in the proof of Theorem 2.9, fix x0 ∈ X and define the sequence {xn} in the following way: For
n ≥ 1 set x1 = T (x0) and recursively xn+1 = T (xn) = Tn+1(x0). Replacing x, y with xn−1, xn,respectively,
in (2.29), one can get

min{[ρ(T (xn−1), T (xn))]2, ρ(xn−1, xn)ρ(T (xn−1), T (xn)), [ρ(xn, T (xn))]2}
≤ kρ(xn−1, T (xn−1)), ρ(xn, T (xn)).

(2.30)

Because of the inequality kρ(xn−1, T (xn−1)), ρ(xn, T (xn)) ≤ kρ(xn−1, T (xn−1)), ρ(xn, T (xn)), the expression
in (2.30) is equivalent to ρ(xn, xn+1) ≤ kρ(xn−1, xn). Recursively one can obtain

ρ(xn, xn+1) ≤ kρ(xn−1, xn) ≤ · · · ≤ knρ(x0, x1). (2.31)

Regarding the triangle inequality (P4), (2.31) implies that

ρ(xn, xn+s) ≤
kn

1− k
ρ(x0, x1). (2.32)

for any s ∈ N. Taking (ii) of the theorem into the account, one can get

p(xn, xn+p) ≤
kn

1− k
ρ(x0, x1). (2.33)

Thus, {xn} is a Cauchy sequence with respect to p. Since X is T -orbitally complete, there exists z ∈ X
such that limn→∞ T

n(x) = z. From the orbital continuity of T , one can get the desired result, that is,

Tz = lim
n→∞

T (Tn(x)) = z.

Remark 2.8. The fixed point theorems presented in this paper give conditions only for the existence of fixed
points but not uniqueness.
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