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Abstract

In this paper, we investigate singular p-Laplacian equations of the form 4pu + f(x,∇u)u−λ = 0 with zero
Dirichlet boundary condition in a ball B ⊂ RN , where p > 1, λ > 0, and give a sufficient condition for the
equation to have a positive solution, by means of a supersolution and a subsolution. c©2012 NGA. All rights
reserved.
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1. Introduction

We shall establish the results on the existence of positive solutions of singular p-Laplacian
equations

4pu+ f(x,∇u)u−λ = 0, x ∈ B ⊂ RN , (1.1)

u = 0, x ∈ ∂B, (1.2)

where p > 1,4pu := div(|∇u|p−2∇u), x = (x1, x2, · · · , xN), ∇ is the gradient operator, B is an open
ball centered at the origin of RN , ∂B is the boundary of B, λ > 0 is a constant, and f(x, u) is locally
Hölder continuous with exponent θ ∈ (0, 1).
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Equations of the above form are mathematical models occurring in studies of the p-Laplace equa-
tion, generalized reaction-diffusion theory [19], non-Newtonian fluid theory [2, 25], non-Newtonian
filtration [18] and the turbulent flow of a gas in porous medium [8]. In the non-Newtonian fluid
theory, the quantity p is characteristic of the medium.Media with p > 2 are called dilatant fluids and
those with p < 2 are called pseudoplastics. If p = 2, they are Newtonian fluids.

During the past three decades, singular elliptic equations have been paid much attention by many
mathematicians. In particular, the existence and the uniqueness of positive solutions of the following
singular elliptic boundary value problems{

−∆u = η(x)u−λ, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where η(x) ≥ 0, in Ω ,λ > 0, have been studied widely, see for instance [9, 21, 17] and references
therein.

In [4], the authors studied general singular elliptic equation of the following{
−∆u+ h(u) |∇u|

2

uγ
= f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where Ω is an open bounded subset of RN , γ > 0 and f is a function which is strictly positive
on every compactly contained subset of Ω. They prove that the condition γ < 2 is necessary and
sufficient for the existence of solutions in H1

0 (Ω) for every sufficiently regular f as above.
Recently, Ahmed Mohammed [1] studied of the existence of the positive solution of the equation −∆pu = λf(x, u), x ∈ Ω,

u > 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where Ω ⊂ RN is a C1,$ bounded domain, for some 0 < $ < 1, f : Ω× (0,∞)→ [0,∞) is a suitable
function and allowed to be singular, λ > 0.

Yao and Zhou [20] shows the existence of positive solutions for the one-dimensional singular
p-Laplacian {

[Φp(ψ
′)]′ − λ |ψ

′|p
ψ

+ f(t) = 0, 0 < t < 1,

ψ(1) = ψ(0) = ψ′(1) = ψ′(0) = 0

where Φp(s) = |s|p−2s, p ≥ 2, λ > 0, f(t) ∈ C[0, 1] and f(t) > 0 on [0,1].
For the other results of singular elliptic equations, see [13, 14, 16, 22, 23, 24] and the references

therein.
Motivated by the results of the above cited papers, we shall attempt to treat such equation (1.1)-

(1.2), the results of the semilinear equations are extending the quasilinear ones. We can find the
related results for p = 2 in [10]. The main differences between p = 2 and p 6= 2 are known in [5, 6].
When p 6= 2 , the problem becomes more complicated since certain nice properties inherent to the
case p = 2 [3] seem to be lost or at least difficult to verify. The main differences between p = 2 and
p 6= 2 can be found in [5, 6, 26].

This work is organized as follows: In Section 2, we give Several results and lemmas. In Section
3,we give our main results and its proof.
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2. Several Results and Lemmas

Before we prove the main results, we need the following lemmas. For (1.1)-(1.2), the following
hypotheses on f are adopted.

(B1).f : B ×RN → (0,∞) is locally Hölder continuous with exponent θ ∈ (0, 1), and f(x, p) is
continuously differentiable in p. For every compact region Ω ⊂ B, there exists an ordinary number
ρΩ, such that |f(x, t)| ≤ ρΩ(1 + |t|p), x ∈ Ω, t ∈ RN .

Lemma 2.1. [11] Suppose that a function f satisfies (B1) , and that there exist a supersolution v
and subsolution w of Eq. (1.1)-(1.2) such that 0 < w(x) < v(x);x ∈ B; then Eq. (1.1)-(1.2) has a
solution u and w(x) < u(x) < v(x), x ∈ B.

To establish the supersolution and subsolution, we firstly consider that the function f is radially
symmetric, that is f = F (|x|, |∇u|). Thus, we introduce the following radial problem

(rN−1|w′|p−2w′)′ + rN−1F (r, |w′|)w−λ = 0, 0 < r < 1, (2.1)

w′(0) = 0, w(1) = 0. (2.2)

We assume that the function F satisfies the following hypotheses.
(A1).F : [0, 1)× [0,∞)→ (0,∞) is continuous, F (t, z) is continuously differentiable in z ≥ 0. For

each fixed t ∈ [0, 1),F (t, z) is strictly increasing in z ≥ 0;
(A2). There exists a positive constant M > 0 satisfying∫ 1

0

(

∫ s

0

(
t

s
)N−1F (t, d)dt)

1
p−1ds ≤M,

which holds uniformly for every d ≥ 0.
(A3). For all ε > 0, there exists δ > 0, such that 1− δ < r < 1, the following inequality∫ 1

r

(

∫ s

0

(
t

s
)N−1F (t, d)dt)

1
p−1ds ≤ ε,

holds uniformly for every d ≥ 0.
We study the existence of positive solutions of boundary value problems(2.1)-(2.2) by the shooting

method. We consider that the unique positive solution of the initial value problem

(rN−1|w′|p−2w′)′ + rN−1F (r, |w′|)w−λ = 0, (2.3)

w(0) = α, w′(0) = 0, (2.4)

where α > 0 is a parameter. Condition (A1) implies that problems (2.3)-(2.4) have a unique positive
solution wα(r) ∈ C1[0, Tα) ∩ C[0, Tα], r ∈ [0, Tα), where [0, Tα) is the maximal existence interval in
wα(r) (see [15]). Clearly, the value of Tα lies in 0 < Tα ≤ 1. If Tα < 1, then wα(r) > 0, 0 ≤ r <
Tα;wα(Tα) = 0. Therefore, wα(r) depends continuously on its initial value α.

Lemma 2.2. Suppose that F satisfies (A1)− (A3), let α and β be positive numbers satisfying α > β.
If wβ(r) exists on [0, T ), (0 ≤ T < 1), then wα(r) also exists on [0,T) and satisfies

wα(r) > wβ(r), r ∈ [0, T ), (2.5)

w′α(r) > w′β(r), r ∈ [0, T ). (2.6)
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Proof. We prove that lemma 2.2 in three steps.
Step 1. Assume that wα(r) and wβ(r) are defined on [0,T). Then

w′α(r) > w′β(r), r ∈ [0, T ).

By (2.3)-(2.4) and (A1), we obtain

|w′α(r)|p−2w′α(r) = −
∫ r

0

(
s

r
)N−1F (s, |w′α(s)|)w−λα (s)ds < 0.

Therefore wα(r) is strictly decreasing and |w′α(r)| = −w′α(r). Hence,

|w′α(r)|p−1 − |w′β(r)|p−1 =∫ r
0

( s
r
)N−1[F (s, |w′α(s)|)w−λα (s)− F (s, |w′β(s)|)w−λβ (s)]ds, r ∈ [0, T ).

(2.7)

Choose a positive number γ such that β < γ < α. Since wα(r) is continuous and wα(0) = α, r ∈
[0, T ), there exists r0 > 0(0 < r0 < T ) satisfying wα(r) > γ, 0 ≤ r ≤ r0,and

F (s, |w′α(s)|)w−λα (s)− F (s, |w′β(s)|)w−λβ (s)
< F (s, |w′α(s)|)γ−λ − F (s, 0)β−λ, 0 ≤ r ≤ r0

(2.8)

Let F (0, 0)β−λ − F (0, 0)γ−λ = a > 0. Since [F (s, |w′α(s)|)w−λα (s) is continuous and w′α(0) =
w′β(0) = 0, there exists δ ∈ [0, r0) such that

F (s, |w′α(r)|)γ−λ < F (0, 0)γ−λ +
a

2
,

F (r, 0)β−λ > F (0, 0)β−λ − a

2
,

where 0 < r < δ. From (2.8) and the above equalities, we get

F (s, |w′α(s)|)w−λα (s)− F (s, |w′β(s)|)w−λβ (s) < 0, 0 < r < δ ≤ T. (2.9)

It also follows (2.7) and (2.9) that |w′α(r)|p−1 < |w′β(r)|p−1, 0 < r < δ ≤ T. It implies that
w′α(r) > w′β(r), 0 < r < δ ≤ T. Now we prove that δ = T .

If δ < T , we find that δ1 : δ < δ1 < T , such that

w′α(r) > w′β(r), 0 < r < δ1, w′α(δ1) = w′β(δ1).

Note that
wα(0)− wβ(0) = α− β, w′α(r) ≤ 0, w′β(r) ≤ 0, 0 < r < δ1.

Thus,
wα(r) > wβ(r), |w′α(r)| < |w′β(r)|, 0 < r < δ1.

Hence, we have
F (r, |w′α(r)|)w−λα (r) < F (r, |w′β(r)|)w−λβ (r), 0 < r < δ1,

and

0 = |w′α(δ1)|p−1 − |w′β(δ1)|p−1 =∫ δ1
0

( s
δ1

)N−1[F (s, |w′α(s)|)w−λα (s)− F (s, |w′β(s)|)w−λβ (s)]ds < 0.
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This contradiction proves that (2.6) holds.
Step 2. If wβ(r) exists on [0, T ), then wα(r) also exists on [0,T).
In fact, we assume that the existence interval of wα(r) is less than [0,T). Since wα(r) > wβ(r) near

the origin, the curve wα(r) is sure to intersect the curve wβ(r). Suppose that the first intersection
point is t = τ < T . Then we have

wα(r) > wβ(r), 0 ≤ r < τ ; wα(τ) = wβ(τ).

Using (2.3),(2.4),condition(A1) and the conclusion of step1, we get

wα(τ)− wβ(τ) + β − α
= −

∫ τ
0

(
∫ s

0
( t
s
)N−1F (t, |w′α(t)|)w−λα (t)dt)

1
p−1ds

−
∫ τ

0
(
∫ s

0
( t
s
)N−1F (t, |w′β(t)|)w−λβ (t)dt)

1
p−1ds ≥ 0.

Thus, wα(τ)− wβ(τ) ≥ α− β > 0. This contradiction proves that wα(r) also exists on [0,T).
Step 3. We prove (2.5) holds. In fact, making use of wα(0)− wβ(0) = α− β > 0 and the above

conclusions, we can prove immediately that (2.5)holds. Lemma 2.2 is proved.

Lemma 2.3. Under the assumptions (A1) − (A3), the boundary value problems (2.1)-(2.2) have a
unique positive solution w ∈ C2([0, 1)) ∩ C((0, 1]).

Proof. Define the subsets S̄, S ⊂ (0,∞), respectively, by
S̄={α > 0|wα(r) exists on [0, 1) and satisfies wα(1) > 0};
S={α > 0|wα(r) vanishes before r = 1}.
It follows from Lemma 2.2 that for all α ∈ S̄ and for all β ∈ S, α > β. Thus, S̄ ∩ S = �. The

following results (i)-(v) are valid.
(i). S̄ is not empty.
Choosing arbitrarily a positive number α1 such that α1

2
> M > 1. Thus, by condition (A2), α1

satisfies ∫ 1

0
(
∫ s

0
( t
s
)N−1F (t, d)(α1

2
)−λdt)

1
p−1ds

<
∫ 1

0
(
∫ s

0
( t
s
)N−1F (t, d)dt)

1
p−1ds < M < α1

2
,

(2.10)

which holds uniformly for every d ≥ 0. We claim that wα1(r) >
α1

2
, for r ∈ [0, 1). In fact, if this

is not true, then there exists r1 ∈ (0, 1) such that

wα1(r) >
α1

2
, r ∈ [0, r1); wα1(r1) =

α1

2
. (2.11)

Making use of (2.3), (2.4), we get

wα1(r1)− α1 +

∫ r1

0

(

∫ s

0

(
t

s
)N−1F (t, |w′α1

(t)|)w−λα1
(t)dt)

1
p−1ds = 0.

Let d1 = max0≤t≤r1|w′α1
(t)|. Eqs. (2.10),(2.11) and condition (A1) can be applied to get

α1

2
=
∫ r1

0
(
∫ s

0
( t
s
)N−1F (t, |w′α1

(t)|)w−λα1
(t)dt)

1
p−1ds

≤
∫ r1

0
(
∫ s

0
( t
s
)N−1F (t, d1)(α1

2
)−λdt)

1
p−1ds

≤
∫ 1

0
(
∫ s

0
( t
s
)N−1F (t, d1|)(α1

2
)−λdt)

1
p−1ds < α1

2
.
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This contradiction implies wα1(r) >
α1

2
, r ∈ [0, 1). Thus α1 ∈ S̄,i.e.S̄ is not empty.

(ii). S is not empty.
Let ∫ 1

2

0

(

∫ s

0

(
t

s
)N−1F (t, 0)dt)

1
p−1ds = k.

Choose arbitrarily a positive number α′ such that α′ <min{k, 1}, we have∫ 1
2

0

(

∫ s

0

(
t

s
)N−1F (t, 0)(α′)−λdt)

1
p−1ds > k > α′. (2.12)

Then for each α′,wα′(r) must vanish before r = 1
2
. In fact, if wα′(r) can be prolonged to r = 1

2
and

wα′(
1
2
) > 0.Sincewα′(r) ≤ α′, r ∈ [0, 1

2
], by (2.3),(2.4) and (2.12), we obtain

wα′(
1
2
) = α′ −

∫ 1
2

0
(
∫ s

0
( t
s
)N−1F (t, |w′α′(t)|)w−λα′ (t)dt)

1
p−1ds

≤ α′ −
∫ 1

2

0
(
∫ s

0
( t
s
)N−1F (t, 0)(α′)−λdt)

1
p−1ds

< α′ − α′ = 0.

This contradiction implies α′ ∈ S.
(iii). infS̄ does not belong to S̄.
Put α∗ = infS̄ ∈ S̄, it is clear that α∗ ∈ (0,∞). Suppose that α∗ ∈ S̄, then wα∗(1) = l > 0. Using

condition (A3), for ( l
2
)
p+λ−1
p−1 > 0, there exists δ1 > 0 and choosing r1 ∈ (0, 1) sufficiently close to 1,

satisfying 1− δ1 < r1 < 1, so that∫ 1

r1

(

∫ s

0

(
t

s
)N−1F (t, d)(

l

2
)−λ)dt)

1
p−1ds < (

l

2
)
p+λ−1
p−1 · ( l

2
)
−λ
p−1 =

l

2
(2.13)

which hold uniformly for every d ≥ 0. Since w′α∗(r) < 0, (0 < r < 1), we get that wα∗(r1) > l. Noting
the continuous dependence of solutions of (2.3),(2.4) on initial data, for all α0 ∈ (0, α∗) sufficiently
close to α∗, wα0(r) are define on [0, r1] and satisfy

wα0(r1) > l. (2.14)

Now we claim that such a wα0(r) satisfies wα0(r) >
l
2

on its interval of existence and, consequently,
can be extended to [0,1). In fact if this is not true, then, there is r2 ∈ (r1, 1) such that

l
2

= wα0(r2) = wα0(r1)−
∫ r2
r1

(
∫ s

0
( t
s
)N−1F (t, |w′α0

(t)|)w−λα0
(t)dt)

1
p−1ds

≥ l −
∫ r2
r1

(
∫ s

0
( t
s
)N−1F (t, d0)( l

2
)−λdt)

1
p−1ds

> l −
∫ 1

r1
(
∫ s

0
( t
s
)N−1F (t, d0)( l

2
)−λdt)

1
p−1ds

> l − l
2

= l
2
,

where d0 = maxr1≤t≤r2|w′α0
(t)|. Therefore, α0 ∈ S̄ and α0 < α∗. This contradicts the definition

α∗ = infS̄. Thus, infS̄ does not belong to S̄.
(iv). supS does not belong to S.
Suppose that α∗ = supS ∈ S. Let r1 be a point in (0, 1) such that wα∗(r1) = 0.Choose T ∈ (r1, 1)

arbitrarily and let it be fixed. Note that∫ T

r1

(

∫ s

0

(
t

s
)N−1F (t, 0)dt)

1
p−1ds > 0,



F. Li, Z. Yang, J. Nonlinear Sci. Appl. 5 (2012), 44–55 50

there exists ε > 0 sufficiently small such that∫ T

r1

(

∫ s

0

(
t

s
)N−1F (t, 0)(ε)−λdt)

1
p−1ds > ε. (2.15)

By using Lemma 2.2 and the continuous dependence of solutions on initial data, we find that wβ(r)
exists on [0, r1]and satisfies 0 < wβ(r1) < ε for all β > α∗ sufficiently close to α∗. Now, we assert
that such a wβ(r) vanishes before t = T . Assume on the contrary that wβ(r) exists on [0, T ] and
remains positive. Then we obtain that 0 < wβ(r) < ε, r1 ≤ r ≤ T , and integrating (2.3) twice and
using (2.15), (A1), we obtain

wβ(T ) = wβ(r1)−
∫ T
r1

(
∫ s

0
( t
s
)N−1F (t, |w′β(t)|)w−λβ (t)dt)

1
p−1ds

≤ ε−
∫ T
r1

(
∫ s

0
( t
s
)N−1F (t, 0)ε−λdt)

1
p−1ds

< ε− ε = 0.

This contradiction shows that a β is contained in S. However, this contradicts the definition of
α∗ = supS. Thus, supS does not belong to S.

(v). α0 = infS̄ = supS.
It is obvious that for all α ∈ S̄ and for all β ∈ S, then β < α. Thus, infS̄ ≥ supS. Now,

we claim that infS̄ > supS does not hold. In fact, if this is no true, denote α = infS̄, β = supS,
then α > β. We see clearly that α, β belong neither to S̄ or S. We find that wα(r), wβ(r) exist in
[0, 1),wα(1) = wβ(1) = 0 from the definition of S̄ and S. Since α > β, by Lemma 2.2 we have

w′α(r) > w′β(r), r ∈ (0, 1).

Thus, wα(r)− wβ(r) is strictly increasing in [0, 1) and we have

wα(1)− wβ(1) > wα(0)− wβ(0) = α− β > 0.

This contradiction proves that α ≥ β does not hold. Thus, α0 = infS̄ = supS. It follows that wα0(r)
is unique positive solution of class C1[0, 1)∩C[0, 1] of problems (2.1)-(2.2). This completes the proof
of Lemma 2.3.

3. The Main Result

We consider the singular elliptic boundary value problems (1.1)-(1.2)under the following con-
ditions:

(B2). There exists functions f ∗, f∗ : [0, 1) × [0,∞) → (0,∞), f ∗, f∗ ∈ Cθ
loc([0, 1) × ([0,∞)).

Both f ∗(t, z), f∗(t, z) are continuously differentiable in z, strictly increasing in z ≥ 0 for every fixed
t ∈ [0, 1) and satisfy

0 < f∗(|t|, |z|) ≤ f(x, p) ≤ f ∗(|t|, |z|), (x, p) ∈ B ×RN . (3.1)

From [21, 23], we get the following comparison principle which plays an important role in the
proof of Theorem 3.2.

Lemma 3.1. (Weak comparison principle) Let Ω be a bounded domain in RN(N ≥ 2) with smooth
boundary ∂Ω and θ : (0,∞)→ (0,∞) is continuous and nondecreasing. Let u1, u2 ∈ W 1,p(Ω) satisfy∫

Ω

|∇u1|p−2∇u1∇ψdx+

∫
Ω

θ(u1)ψdx ≤
∫

Ω

|∇u2|p−2∇u2∇ψdx+

∫
Ω

θ(u2)ψdx,
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for all non-negative ψ ∈ W 1,p
0 (Ω) satisfy

u1 ≤ u2 on ∂Ω,

implies that
u1 ≤ u2 in Ω.

The main results of this paper are as follows:

Theorem 3.2. Suppose that conditions (B1) and (B2) hold, f ∗ and f∗ satisfy the conditions (A2) and
(A3). Then, there exists a positive solution u of class C1[0, 1)∩C[0, 1] for singular elliptic boundary
value problems (1.1)-(1.2).

Proof. We consider the following boundary value problems:

4pu+ f ∗(|x|, |∇u|)u−λ = 0, x ∈ B, (3.2)

u = 0, x ∈ ∂B, (3.3)

4pu+ f∗(|x|, 0)u−λ = 0, x ∈ B, (3.4)

u = 0, x ∈ ∂B. (3.5)

Applying Lemma 2.3 to these problems, we see that problems (3.2)-(3.3) and (3.4)-(3.5), respectively,
have positive radial solutions ū(|x|) and u(|x|) of class C2

loc(B) ∩ C(B̄). Note thatf ∗, f∗ ∈ C2
loc. The

regular theorem implies that ū, u ∈ C2+θ
loc (B) ∩ C(B̄). It is obvious that ū, u are a supersolution

and a subsolution respectively of the boundary value problems (1.1)-(1.2). We next prove that
ū(|x|) ≥ u(|x|), x ∈ B. Since ū− u satisfies

4pū−4pu+ f ∗(|x|, |∇ū|)(ū)−λ − f∗(|x|, 0)(u)−λ = 0, x ∈ B, (3.6)

ū− u = 0, x ∈ ∂B, (3.7)

We can change (3.6) as follows:

4pū−4pu+ f ∗(|x|, |∇ū|)(ū)−λ−
f∗(|x|, 0)(u)−λ + f∗(|x|, 0)(ū)−λ − f∗(|x|, 0)(ū)−λ = 0, x ∈ B. (3.8)

Condition (B2)and (3.8) can be applied to obtain

4pū−4pu+ f∗(|x|, 0)(ū)−λ − f∗(|x|, 0)(u)−λ ≤ 0, x ∈ B, (3.9)

Thus, we obtain
4pū−4pu+ c(x)(ū− u) ≤ 0, x ∈ B, (3.10)

c(x) = −λf∗(|x|, 0)

∫ 1

0

(tū+ (1− t)u)−(λ+1)dt ≤ 0. (3.11)

Making use of (3.10), (3.7) and Lemma 3.1, we have

ū(|x|) ≥ u(|x|), x ∈ B. (3.12)

Let Bn = {x ∈ RN ||x| < 1 − 1
n
} for n = 2, 3, . . . , and h be a function of class C2+θ

loc (B) ∩ C(B̄)
satisfying u(|x|) ≤ h(x) ≤ ū(|x|) in B. Since ū(|x|) and u(|x|) are a supersolution and a subsolution
respectively, of boundary value problems (1.1)-(1.2), we see clearly that ū, u are also a supersolution
and a subsolution of the following boundary value problems

4pu+ f(x,∇u))u−λ = 0, x ∈ Bn, (3.13)
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u = h(x), x ∈ ∂Bn, (3.14)

for each n ≥ 2, and satisfy

ū(|x|) ≥ u(|x|), x ∈ B̄n.

Using condition (B1) and Lemma 2.1, we find that there exists a positive un ∈ C1+θ
loc (B̄n)(n ≥ 2)

for boundary value problems (3.13)-(3.14) and satisfy

ū(|x|) ≥ un(x) ≥ u(|x|), x ∈ B̄n.

Now, we want to apply elliptic interior estimates together with a diagonal process to conclude:
{uk : k ≥ 1} has a subsequence {uki : ki ↑ ∞} such that {uki} converges to a function u in
B (pointwise) and this convergence is in C1 on every compact set in B. (Therefore, u ∈ C1 and
4pu+ f(x,∇u))u−λ = 0 in B with u = 0 on ∂B, and this concludes the proof.)

Step 1. On B2, {uk : k ≥ 2} is uniformly bounded by u(x) and u(x). Since both u(x) and u(x)
are bounded functions on B2, there exists M > 0 such that

‖uk(x)‖L∞(B2) ≤M,

for all k ≥ 2.
From (1.1), uk satisfies ∫

B2

|∇uk|p ≤ −
∫
B2

f(x,∇uk)(uk)−λuk.

Therefore, ∫
B2

|∇uk|p ≤M(measB2)1/q′C1‖∇uk‖p.

Here1/q′+1/p = 1, and C1 is the Sobolev embedding constant. So, ‖uk‖1,p ≤ C2. When 1 < m < N ,

the embedding of W 1,p
0 (B2) in LNp/(N−p)(B2) implies that uk ∈ LNp/(N−p)(B2). Applying Theorem

7.1 in [26], Page 286-287, we obtain the estimate

sup{|uk|;x ∈ B2} ≤ C3, (3.15)

here C3 = C3(‖ψ‖0). If p ≥ N , we get (3.15) from the Sobolev embedding theorem. Using Theorem
1.1 in[26], Page 251, we see that uk belongs to Cα(B2) for some 0 < α < 1, and

‖uk‖Cα ≤ C4,

here C4 is determined by C3. By Proposition 3.7 in [27], Page 806, we also know that uk belongs to
C2,α(B2) and

‖uk‖C1,α ≤ C5.

Here C5 is determined by C4.
From the arguments above we see that there exists C > 0 such that

‖uk‖C1+α(B1) ≤ C, for all k ≥ 2.

Since the embedding C1+α(B1)→ C1(B1) is compact, there exists a sequence denoted by {uk1j}j=1,2...

(where k1j ↑ ∞), which converges in C1(B1). Let u1(x) = limj→∞ uk1j(x), for x ∈ B1; then u1 is a
solution of (1.1) with u(x) ≤ u1 ≤ u(x).
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Step 2. Repeat Step 1 up to the existence of the sequence {uk1j}j=1,2... to get a subsequence
{uk2i}i=1,2... converging in C1(B2) to a limit u2. Then likewise u2 is a solution of (2.4), (2.5) and
u2|B1 = u1. Repeat Step 1 again on B3, ..., etc. In this way, we obtain a sequence {uknj}j=1,2... which
converges in C1(Bk) and is a subsequence of {uk(n−1)j

}j=1,2.... Let uk = limj→∞ uknj , then, uk is a

solution of (3.13), (3.14) in Bk and uk|Bk−1
= uk−1.

Step 3. By a diagonal process, {uknn}n=1,2... is a subsequence of {uknj}j=1,2... for every n. Thus,
on Bk for each k we have

lim
n→∞

uknn = uk.

So, if we define u(x) = limn→∞ uknn(x), then u(x) satisfies

4pu+ f(x,∇u))u−λ = 0,

and u ≤ u(x) ≤ u (since u ≤ uk(x) ≤ u) for every k. This complete the proof of Theorem 3.1.

Now, we give an example below to show the application of Theorem 3.2. The principal part of
the equation below is p-Laplacian and the nonlinear function f(x, z) has singularity at the boundary
of the unit N-ball and isn’t increasing in z ≥ 0 .

Example 3.3. Consider the singular boundary value problem
(rN−1|u′(r)|p−2u′(r))′ +

rN−1(2− 3
2
e−|u

′(r)|2+e−2|u′(r)|2 )

u(r)(1−r2)
1
2

= 0, r ∈ [0, 1),

u(r) > 0, r ∈ [0, 1),
u′(0) = 0, u(1) = 0,

(3.16)

where p ≥ 2.
Here

f(r, z) =
2− 3

2
e−z

2
+ e−2z2

(1− r2)
1
2

: [0, 1)× [0,∞)→ (0,∞),

where z = |u′(r)|. We take

f∗(r, z) =
2− 3

2
e−z

2

(1− r2)
1
2

, f ∗(r, z) =
2− 1

2
e−z

2

(1− r2)
1
2

.

It is easy to check that f(r, z) isn’t increasing in z ≥ 0,condition(B2) is satisfied and f ∗, f∗ satisfy
the condition (A1). Now,we check f ∗, f∗ also satisfy conditions (A2) and (A3).

(A2)

∫ 1

0
(
∫ s

0
( t
s
)N−1f∗(t, d)dt)

1
p−1ds

=
∫ 1

0
(
∫ s

0
( t
s
)N−1 (2− 3

2
e−d

2
)

(1−t2)
1
2
dt)

1
p−1ds

≤
∫ 1

0
(
∫ s

0
2

(1−t2)
1
2
dt)

1
p−1ds

≤ (
∫ 1

0

∫ s
0

2

(1−t2)
1
2
dtds)

1
1/(p−1)

≤ (
∫ 1

0
2s

(1−s2)
1
2
ds)

1
p−1 = 21/(p−1).

From the above compute, we know that f∗ satisfy the condition (A2).By the same way,we can check
that f ∗ satisfy the conditions (A2).

(A3) When 0 < r < 1,similar to the above computation, we have
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∫ 1

r
(
∫ s

0
( t
s
)N−1f∗(t, d)dt)

1
p−1ds

=
∫ 1

r
(
∫ s

0
( t
s
)N−1 (2− 3

2
e−d

2
)

(1−t2)
1
2
dt)

1
p−1ds

≤ (
∫ 1

r
2s

(1−s2)
1
2
ds)

1
p−1 = 21/p−1(1− r2)

1
p−1 ≤ ε,

when r ≥ (1− εp−1

2
)1/2.Choosing δ = 1− (1− εp−1

2
)1/2,f∗ satisfy the condition (A3).The same result

can be attained by f ∗.Therefore, by Theorem 3.2, problem (3.16) has a positive solution in the unit
N-ball.
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