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Abstract

In this work, using the Leray-Schauder continuation principle, we study the existence of at least one solution
to the quasilinear second-order multi-point boundary value problems on the half-line.
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1. Introduction

Boundary value problems on the half-line arise quite naturally in the study of radially symmetric solutions
of nonlinear elliptic equations and in various applications such as an unsteady flow of gas through a semi-
infinite porous media, theory of drain flows and plasma physics. There have been many works concerning
the existence of solutions for the boundary value problems on the half-line. We refer the reader to [11 2} 3]

4., (6], 18, 9L 10, 11, 12] [13), 14, 15 16l 19, 20}, 22, 23] and the references therein.
Recently, Lian and Ge ([11]) studied the second-order three-point boundary value problem

2 (t) +g(t,z(t),2'(t)) =0, ae. t € R,
2(0) = ax(n), lim 2'(t) =0,

where Ry = [0,00), @ # 1 and n > 0. The authors investigated the existence of at least one solution under
the assumption that g(t,-, ) and tg(t,-,-) are Carathéodory with respect to L*(R,).
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More recently, Kosmatov ([10]) studied the second-order nonlinear differential equation

(at)y (1)) = k(t,y(t),y (1), ae. t € Ry,

satisfying two sets of boundary conditions:
/ _ : —
y(0) =0, Jim y(t) = 0

and
y(0) =0, lim y(t) =0,

where k : Ry x R x R — R is Carathéodory with respect to L'(Ry), R = (—o0,00), ¢ € C(Ry) N
C1(0,0), 1/qg € L'(Ry) and ¢(t) > 0 for all t € R;. The author obtained the existence of at least one
solution to the above problems using the Leray-Schauder continuation principle. In the end of the paper, the
author pointed out that the assumption ¢(0) > 0 could be omitted, in which case one would have to work
in a Banach space equipped with a weighted norm after the boundary conditions are adjusted accordingly.
Motivated by the above works ([I0) [11]), we study the quasilinear second-order nonlinear differential

equation
(w()ep(u (£))) + F(t,u(t), o (1) = 0, ae. t € Ry, (P)

satisfying the following four sets of boundary conditions:

m—2
u(0) = ) aw(&), lim (o, (w)u)(t) =0, (BCh)
=1
m—2
w(0) = Y ailey (W) (&), lim (g (w)u) (1) =0, (BC)
=1
m—2
Jim (g ()} (1) = 0, lim u(t) = aiu(&). (BCs)
i=1
m—2
Jim (2, () (1) = 0, lim u(t) = Y~ ai(e, (w)u') (&), (BCy)
i=1

where p,(s) = [s[P7%s, p>1,& € Ry with 0 < & < & < -+ < &2, a; € R with Zf:lQ a; 1, w €
C(R4,R)and f: Ry xRxR — R is a Carathéodory function such that f = f(¢, u, v) is Lebesgue measurable
in ¢ for all (u,v) € R x R and continuous in (u,v) for almost all ¢ € Ry. We further assume the following
conditions hold.

(F) There exist measurable functions «, f and 7 such that

«, ﬁ/wv v E LI(RJF)

and
£t u,0)] < a(®)|ulP~ + B(E)|vP~" + (1), ae t €Ry.

(W) ¢, '(1/w) € LY(Ry) and Zy, = {t € Ry | w(t) = 0} is a finite set.

By a solution to problem (P), (BC;), we understand a function u € C(R4)NCHRy\ Zy,) with we,(u') €
AC(Ry) satisfying (P), (BC;) (i =1,2,3,4).

To the author’s knowledge, the multi-point boundary value problems with sign-changing weight w have
not been investigated until now. The purpose of this paper is to establish the existence of at least one
solution to p-Laplacian boundary value problems (P), (BC;) (i = 1,2,3,4) with sign-changing weight w.
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Since Ry is not compact, the related compactness principle on a bounded interval [0, 1] does not hold.
In addition, solutions u of (P), (BC;) (i = 1,2, 3,4) may not be in C'(R) since w may have zeros in R . In
order to overcome these difficulties, a new Banach space equipped with a weighted norm is introduced, and
then we can proceed with the Leray-Schauder continuation principle which was used in many works (see, e.g.,
[5, [7, 91 10}, 11 [17]) in order to prove the existence of a solution for the problems (P), (BC;) (i = 1,2,3,4).

The rest of this paper is organized as follows. In Section 2, a weighted Banach space and corresponding
operators to problems (P),(BC;) (i = 1,2,3,4) are introduced, and lemmas are presented. In Section 3,
our main results are given, and also an example to illustrate our results is presented.

2. Preliminaries
Let X be the Banach space
X={ueC' R\ Zy,) | uand ©p Y(w)u' are continuous and bounded functions on R }

equipped with norm
lull = l[ulloo + llgy * (w)td oo,

where [[v]|oo = sup,cg, [v(t)| and let Y be the Banach space L'(R,) equipped with norm

o0
Il = [ fu(s)las.
0
For convenience, we will use the following constants

A: 1 —Z?i712a7;,

b= A'_lg‘“i' [ e (o) o o () o
¢ :g‘”i‘ - [ ()
0- ’A‘_lg’“i‘ [t (a2 o (o) 2

For each h € Y, we define, for t € Ry,

(T1h)(t) = A‘lrgai /0 i o (wzs) / ooh(r)ch) ds
+/Ot<,0;1 (wzs) /:o h(T)dT> ds,
(Toh)(t) = T:Zfaisﬁpl (/:O h(S)d5>
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and
<nmw:=—§?w;(fh@@)

+/too<p;1 <wzs) /Osh(T)d7‘> ds.

Then T; : Y — X is well defined and for each h € Y, T;h is the unique solution of the differential equation

(w(t)pp(u' (1)) + h(t) =0, a.e. t € Ry,

subject to the boundary conditions (BC;) (i = 1,2,3,4).

Lemma 2.1. Let h € Y. Then T1h satisfies
IThlloo < BlAJ;*™ (2.1)

and
oy L (w)(T1h) [l < [/ ®7Y. (2.2)

Proof. Let h € Y. Then, for all t € R, one has

Tih(t)] < (IAI 1Z|az|/ <|w >d5> (/Ooom(s)yds)l/(p_l)
*(AzngwL»>“><Awm“”“>UWM

1 1
< B|)y"

Similarly, for all ¢ € Ry, one has

et ([ o)

IRy @Y.

(g (w)(TR))(B)] =

IN

Thus the proof is complete. O

The following lemmas can be proved by the similar manner and so we omit the proofs.

Lemma 2.2. Let h € Y. Then, for each i = 2,4, T;h satisfies
1/(p—1)
I Tilloo < CRI ™Y

and ) .
oy () (Tih) |0 < (IR} P7Y.

Lemma 2.3. Let h € Y. Then T3h satisfies
| Tiblloo < DYRJL "™

and . .
oy () (Tih) |loo < [}/ P,



C.-G. Kim, J. Nonlinear Sci. Appl. 5 (2012), 27-33 31

We define the Nemiskii operator N : X — Y by

(Nu)(t) = f(t7u(t)7u/(t))v teRy.

It follows from (F') that N maps bounded sets of X into bounded sets of Y and is continuous. For each
i € {1,2,3,4}, define L; 2 T;N : X — X. Then L; is well defined and problem (P), (BC;) has a solution u
if and only if L; has a fixed point u in X.

To show the compactness of the operators L; (i = 1,2,3,4), we use the following compactness criterion.

Theorem 2.4. ([2]) Let Z be the space of all bounded continuous vector-valued functions on Ry and S C Z.
Then S is relatively compact in Z if the following conditions hold.

(1) S is bounded in Z.

(7i) the functions from S are equicontinuous on any compact interval of R.

(7i1) the functions from S are equiconvergent, that is, given € > 0, there exists a T = T(e) > 0 such that
lp(t) — Pp(c0)||rn < €, for allt >T and all ¢ € S.

Lemma 2.5. For each i € {1,2,3,4}, the mapping L; : X — X is completely continuous.

Proof. We only prove that L; : X — X is completely continuous since other cases can be proved by the
similar manner.

First, we show that L; is compact. Let ¥ be bounded in X, i.e., there exists M > 0 such that [jul| < M
for all u € X. Then there exists hys € Y such that |(Nu)(t)| < ha(t) for all t € Ry and all u € ¥. By
Lemma u Li(X) is bounded in X.

For ¢1,t5 € Ry with ¢; < to, one has

/: 23 (wés) /:O(N“)(T)d7> ds
g YO0 / oot (k)

(0 ' (w) (L1u))(t1) = (' (w) (Lru))

(v - 1(/: )

which yield that L;(X) and {¢,'(w)(L1u)' | u € ¥} are equicontinuous on R, by the facts that ¢!
uniformly continuous on [—1,1] and [(Nu)(t)| < has(t) for all ¢t € Ry.
For u € ¥, one has

[(L1u)(t1) — (Liu)(t2)| =

IN

and

)

t—o0 t—o00

! 5 / OO(N@(T)dT) ds

[o.¢]
1 _ —1
|Liu(t) — lim Lyu(t)| ‘/ on (w -

o0 1
har Lp=1) / 90_1< >ds
Warl o e

ot ([ woeas)
< ([ imartoias) e

i (5 0) (E1))0) = i " ([ (Vs ) =

Then

IN

and

[y ' (w)(Law))(t) = lim (0, (w)(Law) ) (8)] =

t—o00
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which yield that L1(X) and {p;,*(w)(Liu)’ | u € X} are equiconvergent. By Theorem we can conclude
that 77 is compact.
It follows from the Lebesgue dominated convergence theorem that L; : X — X is continuous, and thus

the proof is complete.
O

3. Main results

In this section, we give our main results.

Theorem 3.1. Assume BP||a|1 + ||8/wl|l1 < 1. Then problem (P),(BC1) has at least one solution for
every v € Y.

Proof. Consider the differential equation, for A € [0, 1],
(wW(t)pp( (1)) + Af(t,u(t), /(1) = 0, ae. t € Ry, (3.1)

subject to the boundary condition (BCY).
Let u be any solution of (3.1]), (BC1). Then, by (F) and Lemma one has

I(wep() L = AllNull
ledllalfulBS + 118/wll oy (w)u' B + v ]11
B Hal1 [l (wep(u)) Il + 18/ w1l (wep(u)) I + 1]l

VANVAN

which yields
Iyl < i .
1= (BPHlally + [|8/wll1)
It follows from Lemmathat the set of all possible solutions to problem , (BC) is a priori bounded by
a constant independent of A € [0, 1]. Thus the proof is complete in view of the Leray-Schauder continuation
principle (see, e.g., [18, 21]). O

Similarly, the following results are obtained.

Theorem 3.2. Assume CP~!||a|; + ||B/w|1 < 1. Then problems (P),(BC;) (i = 2,4) have at least one
solution for every v € Y.

Theorem 3.3. Assume DP~Y|all; + ||8/w|1 < 1. Then problem (P),(BCs3) has at least one solution for
every vy €Y.

Finally, we give an example to illustrate our results.
Example 3.4. In problems (P), (BC;) (i =1,2,3,4),let p=3, m =3, a1 =1/2, & =1, and
p3(—(1=1)1/%), 0<t <1,
w(t) = { e3((t = D?), 1<t <2,
ws3(exp(t —2)), t > 2.
Then A=1/2, B=7,C =11/2 and D = 8. For any v € Y, we set

sin ¢ w(t)
— — t).
Then «a(t) = B/w = 1/(t + 70)?, and ||a||; = ||3/w]|/1 = 1/70. Thus by Theorems and problems
(P),(BC;) (1 =1,2,3,4) has at least one solution for every v € Y.

fltu,v) =
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