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1. Introduction

In this paper we investigate the existence of positive solutions for the q-fractional boundary value prob-
lems with p-Laplacian

Dβ
q (ϕp(D

α
q u(t))) = f(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt, D

α
q u(0) = 0, Dα

q u(1) = bDα
q u(η),

(1.1)

where Dα
q , Dβ

q are the fractional q-derivative of the Riemann-Liouville type with 1 < α, β ≤ 2, 0 ≤ b ≤ 1,
0 < η < 1, ϕp(s) = |s|p−2s, ϕ−1p = ϕr, p

−1 + r−1 = 1, p > 1,r > 1, and f ∈ C([0, 1] × R+,R+), h ∈
C([0, 1],R+)(R+ := [0,+∞)).

Fractional differential equations can describe many phenomena in various fields of science and engineering
such as physics, mechanics, chemistry, control, engineering, etc. In recent years there are a large number
of papers dealing with the existence of solutions (or positive solutions) of nonlinear fractional differential
equations by virtue of techniques of nonlinear analysis, for example, see [2, 3, 4, 5, 7, 8, 10, 11, 12, 13] and
the references therein.
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In [2], R. Almeida and N. Martins discussed the fractional q-difference equation
CDα

q [x](t) = g(t, x(t)), 0 ≤ t ≤ 1,

x(0) = γ0, Dq[x](0) = γ1,

x(1) = γ2
∫ η
0 x(s)dqs,

(1.2)

and presented some sufficient conditions regarding the existence and uniqueness of solutions for (1.2). Their
arguments are based on fixed point theorems: Banach fixed point theorem, Krasnoselskii fixed point theorem
and Leray-Schauder alternative.

As known to all, the upper and lower solutions method is an effective tool to deal with the existence of
solutions for nonlinear differential equations, see [5, 7, 10, 11, 12]. However, to the best of our knowledge, few
results exist in the literatures devoted to investigate integral boundary conditions by applying the method.
Motivated by the above works, in this paper we apply the upper and lower solutions method as well as the
Schauder fixed point theorem to establish a new existence result of at least one positive solution for (1.1).

2. Preliminaries

Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a− b)n with N0 is

(a− b)0 = 1, (a− b)n =

n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x+ 1) = [x]Γq(x). The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =

∫ x

0
f(t)dqt = x(1− q)

∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined by∫ b

a
f(t)dqt =

∫ b

0
f(t)dqt−

∫ a

0
f(t)dqt.
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Similarly as done for derivatives, an operator Inq can be defined, i.e.,

(I0q f)(x) = f(x) and (Inq f)(x) = Iq(I
n−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

Basic properties of the two operators can be found in the book [6]. We now point out three formulas that
will be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α),

tDq(t− s)(α) = [α]q(t− s)(α−1),(
xDq

∫ x

0
f(x, t)dqt

)
(x) =

∫ x

0
xDqf(x, t)dqt+ f(qx, x).

(2.1)

We note that if α > 0 and a ≤ b ≤ t, then (t − a)(α) ≥ (t − b)(α) (see [3]). The following definition was
considered first in [1].

Definition 2.1. Let α ≥ 0 and f be a function defined on [0, 1]. The fractional q-integral of the Riemann-
Liouville type is (I0q f)(x) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0
(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2. (see [9]) The fractional q-derivative of the Riemann-Liouville type of order α ≥ 0 is defined
by (D0

qf)(x) = f(x) and

(Dα
q f)(x) = (Dm

q I
m−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Next, we list some properties that are already known in the literature. Its proof can be found in [1, 9].

Lemma 2.3. Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the next formulas hold:

(i) (Iβq Iαq f)(x) = (Iα+βq f)(x),
(ii) (Dα

q I
α
q f)(x) = f(x).

Lemma 2.4. (see [3]) Let α > 0 and p be a positive integer. Then the following equality holds:

(Iαq D
p
qf)(x) = (Dp

qI
α
q f)(x)−

p−1∑
k=0

xα−p+k

Γq(α+ k − p+ 1)
(Dk

q f)(0).

Throughout this paper we always assume that the following condition holds:
(H1) κ := 1−

∫ 1
0 h(t)tα−1dqt > 0.

Lemma 2.5. Suppose that (H1) holds. Let y ∈ C[0, 1] and 1 < α ≤ 2. Then
Dα
q u(t) + y(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt,

(2.2)
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is equivalent to

u(t) =

∫ 1

0
G(t, qs)y(s)dqs,

where

G(t, s) = g(t, s) +
tα−1

κ

∫ 1

0
h(t)g(t, s)dqt,

g(t, s) =
1

Γq(α)

{
(t(1− s))(α−1) − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,

(t(1− s))(α−1), 0 ≤ t ≤ s ≤ 1.

Proof. By Lemma 2.4 we have

u(t) = −Iαq y(t) + c1t
α−1 + c2t

α−2, c1, c2 ∈ R.

From u(0) = 0 we obtain c2 = 0. Consequently,

u(t) = −Iαq y(t) + c1t
α−1 = −

∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs+ c1t

α−1.

Hence u(1) =
∫ 1
0 h(t)u(t)dqt implies that

c1 =

∫ 1

0
h(t)u(t)dqt+

∫ 1

0

(1− qs)(α−1)

Γq(α)
y(s)dqs,

and

u(t) = −
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs+ tα−1

∫ 1

0

(1− qs)(α−1)

Γq(α)
y(s)dqs+ tα−1

∫ 1

0
h(t)u(t)dqt

=

∫ 1

0
g(t, qs)y(s)dqs+ tα−1

∫ 1

0
h(t)u(t)dqt.

(2.3)

Multiplying h(t) on both sides of (2.3) and integrating over [0, 1], we find∫ 1

0
h(t)u(t)dqt =

∫ 1

0
h(t)

∫ 1

0
g(t, qs)y(s)dqsdqt+

∫ 1

0
h(t)tα−1dqt

∫ 1

0
h(t)u(t)dqt.

By (H1) we have ∫ 1

0
h(t)u(t)dqt =

1

κ

∫ 1

0
h(t)

∫ 1

0
g(t, qs)y(s)dqsdqt.

Combining this with (2.3) we obtain

u(t) =

∫ 1

0
g(t, qs)y(s)dqs+

tα−1

κ

∫ 1

0
h(t)

∫ 1

0
g(t, qs)y(s)dqsdqt

=

∫ 1

0
G(t, qs)y(s)dqs.

This completes the proof.

Lemma 2.6. Suppose that (H1) holds. Let y ∈ C[0, 1], 1 < α, β ≤ 2, 0 ≤ b ≤ 1, 0 < η < 1. Then
Dβ
q (ϕp(D

α
q u(t))) = y(t), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt, D

α
q u(0) = 0, Dα

q u(1) = bDα
q u(η),

(2.4)
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is equivalent to

u(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)y(τ)dqτ

)
dqs,

where

H(t, s) = m(t, s) +
bp−1tβ−1

1− bp−1ηβ−1
m(η, s),

m(t, s) =
1

Γq(β)

{
(t(1− s))(β−1) − (t− s)(β−1), 0 ≤ s ≤ t ≤ 1,

(t(1− s))(β−1), 0 ≤ t ≤ s ≤ 1.

Proof. By Lemma 2.4 we have

ϕp(D
α
q u(t)) = Iβq y(t) + c3t

β−1 + c4t
β−2, c3, c4 ∈ R.

From Dα
q u(0) = 0 we obtain c4 = 0. Consequently,

ϕp(D
α
q u(t)) = Iβq y(t) + c3t

β−1 =

∫ t

0

(t− qs)(β−1)

Γq(β)
y(s)dqs+ c3t

β−1.

By (2.4) we obtain

ϕp(D
α
q u(1)) =

∫ 1

0

(1− qs)(β−1)

Γq(β)
y(s)dqs+ c3,

ϕp(D
α
q u(η)) =

∫ η

0

(η − qs)(β−1)

Γq(β)
y(s)dqs+ c3η

β−1,

and ∫ 1

0

(1− qs)(β−1)

Γq(β)
y(s)dqs+ c3 = bp−1

∫ η

0

(η − qs)(β−1)

Γq(β)
y(s)dqs+ c3b

p−1ηβ−1.

Hence

c3 = bp−1
∫ η

0

(η − qs)(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs−

∫ 1

0

(1− qs)(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs.

As a result,

ϕp(D
α
q u(t)) =

∫ t

0

(t− qs)(β−1)

Γq(β)
y(s)dqs− tβ−1

∫ 1

0

(1− qs)(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs

+ tβ−1bp−1
∫ η

0

(η − qs)(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs

=

∫ t

0

(t− qs)(β−1)

Γq(β)
y(s)dqs−

∫ 1

0

(t(1− qs))(β−1)

Γq(β)
y(s)dqs+

∫ 1

0

(t(1− qs))(β−1)

Γq(β)
y(s)dqs

−
∫ 1

0

(t(1− qs))(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs+ tβ−1bp−1

∫ η

0

(η − qs)(β−1)

(1− bp−1ηβ−1)Γq(β)
y(s)dqs

= −
∫ 1

0
m(t, qs)y(s)dqs−

bp−1tβ−1

1− bp−1ηβ−1

∫ 1

0
m(η, qs)y(s)dqs

= −
∫ 1

0
H(t, qs)y(s)dqs.

Consequently, 
Dα
q u(t) + ϕr

(∫ 1

0
H(t, qs)y(s)dqs

)
= 0,

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt.
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Combining this with Lemma 2.5, we have

u(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)y(τ)dqτ

)
dqs.

This completes the proof.

Lemma 2.7. G(t, s) and H(t, s) defined above have the following properties:
(i) G,H are continuous on [0, 1]× [0, 1] and G(t, qs) ≥ 0, H(t, qs) ≥ 0 for all t, s ∈ [0, 1],
(ii) for any t, s ∈ [0, 1],

σ1(qs)t
α−1 ≤ G(t, qs) ≤ σ2(qs)tα−1,

where

σ1(qs) =
1

κ

∫ 1

0
h(t)g(t, qs)dqt, σ2(qs) =

1

κ

∫ 1

0
h(t)g(t, qs)dqt+

(1− qs)(α−1)

Γq(α)
.

Lemma 2.8. (see [11, Lemma 2.8]) Let u ∈ C[0, 1] satisfy u(0) = 0, u(1) = ϕp(b)u(η) and Dβ
q u(t) ≥ 0 for

all t ∈ (0, 1). Then u(t) ≤ 0 for t ∈ [0, 1].

Let E := {u|u, ϕp(Dα
q u) ∈ C2[0, 1]}. Now we introduce the following definitions about the upper and

lower solutions for (1.1).

Definition 2.9. A function φ is called a lower solution for (1.1), if φ ∈ E satisfies
Dβ
q (ϕp(D

α
q φ(t))) ≤ f(t, φ(t)), t ∈ (0, 1),

φ(0) ≤ 0, φ(1) ≤
∫ 1

0
h(t)φ(t)dqt, D

α
q φ(0) ≥ 0, Dα

q φ(1) ≥ bDα
q φ(η).

Definition 2.10. A function ψ is called an upper solution for (1.1), if ψ ∈ E satisfies
Dβ
q (ϕp(D

α
q ψ(t))) ≥ f(t, ψ(t)), t ∈ (0, 1),

ψ(0) ≥ 0, ψ(1) ≥
∫ 1

0
h(t)ψ(t)dqt, D

α
q ψ(0) ≤ 0, Dα

q ψ(1) ≤ bDα
q ψ(η).

Define A : E → E

(Au)(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)f(τ, u(τ))dqτ

)
dqs.

Then, by Lemma 2.6 we obtain that the existence of solutions for (1.1) is equivalent to the existence of fixed
points for the operator A. Furthermore, the continuity G,H and f enables us to prove A is a completely
continuous operator.

3. Main results

Theorem 3.1. Suppose that (H1) and the following conditions hold:
(H2) f ∈ C([0, 1]× [0,+∞), (0,+∞)) and f(t, u) is increasing in u,
(H3) there exists c ∈ (0, 1) such that

f(t, µu) ≥ µc(p−1)f(t, u), ∀µ ∈ [0, 1], t ∈ [0, 1], where p > 1.

Then (1.1) has at least one positive solution.
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Proof. We divide four steps.
Step 1. If u is a positive solution for (1.1), then there exist m1,m2 > 0 such that

m1ρ(t) ≤ u(t) ≤ m2ρ(t), (3.1)

where

ρ(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)dqτ

)
dqs.

Indeed, u ∈ C[0, 1] implies that there exists M > 0 such that

|u(t)| ≤M, ∀t ∈ [0, 1].

By (H2) we can choose

m1 := min
t∈[0,1],u∈[0,M ]

p−1
√
f(t, u(t)) > 0, m2 := max

t∈[0,1],u∈[0,M ]

p−1
√
f(t, u(t)) > 0.

Then

m1ρ(t) ≤ u(t) = (Au)(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)f(τ, u(τ))dqτ

)
dqs ≤ m2ρ(t).

Step 2. The existence of upper and lower solutions for (1.1).
Let

ξ(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)f(τ, ρ(τ))dqτ

)
dqs.

Then by Lemma 2.6 we obtain ξ is a positive solution for the problem
Dβ
q (ϕp(D

α
q u(t))) = f(t, ρ(t)), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt, D

α
q u(0) = 0, Dα

q u(1) = bDα
q u(η).

(3.2)

Furthermore,

ξ(0) = 0, ξ(1) =

∫ 1

0
h(t)ξ(t)dqt, D

α
q ξ(0) = 0, Dα

q ξ(1) = bDα
q ξ(η). (3.3)

By Step 1 we obtain there exist κ1 > 0, κ2 > 0 such that

κ1ρ(t) ≤ ξ(t) ≤ κ2ρ(t).

Let ξ1(t) = δ1ξ(t), ξ2(t) = δ2ξ(t), where

0 < δ1 < min

{
1

κ2
, κ

c
1−c

1

}
, δ2 > max

{
1

κ1
, κ

c
1−c

2

}
.

Then

f(t, ξ1(t)) = f(t, δ1ξ(t)) = f

(
t, δ1

ξ(t)

ρ(t)
ρ(t)

)
≥
(
δ1
ξ(t)

ρ(t)

)c(p−1)
f(t, ρ(t))

≥ (δ1κ1)
c(p−1)f(t, ρ(t)) ≥ δp−11 f(t, ρ(t)),

and

Dβ
q (ϕp(D

α
q ξ1(t))) = Dβ

q (ϕp(D
α
q δ1ξ(t))) = δp−11 Dβ

q (ϕp(D
α
q ξ(t))) = δp−11 f(t, ρ(t)) ≤ f(t, ξ1(t)).

Moreover, from (3.3) we have

ξ1(0) = 0, ξ1(1) =

∫ 1

0
h(t)ξ1(t)dqt, D

α
q ξ1(0) = 0, Dα

q ξ1(1) = bDα
q ξ1(η).
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Therefore, by Definition 2.9 we obtain ξ1 is a lower solution for (1.1).
On the other hand,

δp−12 f(t, ρ(t)) = δp−12 f

(
t,
ρ(t)

ξ2(t)
ξ2(t)

)
= δp−12 f

(
t,

ρ(t)

δ2ξ(t)
ξ2(t)

)
≥ δp−12

(
ρ(t)

δ2ξ(t)

)c(p−1)
f(t, ξ2(t))

≥ δp−12

(
1

δ2κ2

)c(p−1)
f(t, ξ2(t)) ≥ δp−12 δ

−(p−1)
2 f(t, ξ2(t)) = f(t, ξ2(t)),

and

Dβ
q (ϕp(D

α
q ξ2(t))) = Dβ

q (ϕp(D
α
q δ2ξ(t))) = δp−12 Dβ

q (ϕp(D
α
q ξ(t))) = δp−12 f(t, ρ(t)) ≥ f(t, ξ2(t)).

Moreover, from (3.3) we have

ξ2(0) = 0, ξ2(1) =

∫ 1

0
h(t)ξ2(t)dqt, D

α
q ξ2(0) = 0, Dα

q ξ2(1) = bDα
q ξ2(η).

Therefore, by Definition 2.10 we obtain ξ2 is an upper solution for (1.1).
Step 3. We prove that the following problem has at least one positive solution:

Dβ
q (ϕp(D

α
q u(t))) = g(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
h(t)u(t)dqt, D

α
q u(0) = 0, Dα

q u(1) = bDα
q u(η),

(3.4)

where

g(t, u(t)) =


f(t, ξ1(t)), u(t) < ξ1(t),

f(t, u(t)), ξ1(t) ≤ u(t) ≤ ξ2(t),
f(t, ξ2(t)), u(t) > ξ2(t).

To see this, we consider the operator B : C[0, 1]→ C[0, 1]

(Bu)(t) =

∫ 1

0
G(t, qs)ϕr

(∫ 1

0
H(s, qτ)g(τ, u(τ))dqτ

)
dqs.

By [11, Page 10 and 11], we obtain B is a compact operator, by using the Schauder fixed point theorem,
the operator B has at least a fixed point, i.e., (3.4) has at least one positive solution.

Step 4. We prove (1.1) has at least one positive solution. Suppose that u∗ is a positive solution for
(3.4), according to Step 3 we only need to prove

ξ1(t) ≤ u∗(t) ≤ ξ2(t) for t ∈ [0, 1].

The method is similar for the two inequalities. We only prove u∗(t) ≤ ξ2(t) for t ∈ [0, 1]. Suppose by
contradiction that u∗(t) > ξ2(t). From (3.4) we have

Dβ
q (ϕp(D

α
q u
∗(t))) = g(t, u∗(t)) = f(t, ξ2(t)).

On the other hand, since ξ2 is an upper solution for (1.1), we have

Dβ
q (ϕp(D

α
q ξ2(t))) ≥ f(t, ξ2(t)).

Let z(t) = ϕp(D
α
q ξ2(t))− ϕp(Dα

q u
∗(t)). Then

Dβ
q z(t) = Dβ

q (ϕp(D
α
q ξ2(t)))−Dβ

q (ϕp(D
α
q u
∗(t))) ≥ f(t, ξ2(t))− f(t, ξ2(t)) = 0,

z(0) = 0, z(1) = ϕp(b)z(η).
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Thus by Lemma 2.8 we have z(t) ≤ 0, t ∈ [0, 1], which implies that

ϕp(D
α
q ξ2(t)) ≤ ϕp(Dα

q u
∗(t)), t ∈ [0, 1].

Since ϕp is monotone increasing, we obtain Dα
q ξ2(t) ≤ Dα

q u
∗(t), i.e., Dα

q (ξ2−u∗)(t) ≤ 0. Combining Lemma
2.5, we have (ξ2 − u∗)(t) ≥ 0. Therefore, ξ2(t) ≥ u∗(t), t ∈ [0, 1], a contradiction to the assumption that
u∗(t) > ξ2(t).

Consequently, ξ1(t) ≤ u∗(t) ≤ ξ2(t) for t ∈ [0, 1], i.e., u∗ is a positive solution for (1.1). This completes
the proof.

Remark 3.2. In [7], the authors had the following condition:
(Hf ) f(t, u) ∈ C([0, 1] × [0,+∞), (0,+∞)) is nondecreasing relative to u and there exists a positive

constant c < 1 such that
µcf(t, u) ≤ f(t, µu), ∀0 ≤ µ ≤ 1.

Moreover, their example is f(t, u) = t+uc, 0 < c < 1. This is a sublinear function. We note that if p ≥ 2, this
example also satisfies our condition (H3). However, if f(t, u) = et + uσ, where σ > 1, u ∈ [0,+∞), t ∈ [0, 1],
then (Hf ) doesn’t hold for all u ∈ [0,+∞), but (H3) still holds with p ≥ σ

c + 1. In a word, for some
appropriate values of p, our nonlinear term f is allowed to grow superlinearly or sublinearly.
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