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CONTROLLABILITY OF NONLOCAL IMPULSIVE FUNCTIONAL
INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

B. RADHAKRISHNAN1, K. BALACHANDRAN2

Abstract. In this paper, we establish a set of sufficient conditions for the controllability
of nonlocal impulsive functional integrodifferential evolution systems with finite delay. The
controllability results are obtained with out assuming the compactness condition on the
evolution operator by using the semigroup theory and applying the fixed point approach.
An example is provided to illustrate the theory.

1. Introduction

In various fields of engineering and physics, many problems that are related to linear vis-
coelasticity, nonlinear elasticity have mathematical models and are described by the problems
of differential or integral equations or integrodifferential equations. Our work centers around
the problems described by the integrodifferential models. The notion of controllability is of
great importance in mathematical control theory. Many fundamental problems of control
theory such as pole-assignment, stabilizability and optimal control may be solved under the
assumption that the system is controllable. It means that it is possible to steer any initial
state of the system to any final state in some finite time using an admissible control. As
far as the controllability problems associated with finite-dimensional systems modelled by
ODEs are concerned, this theory has evolved tremendously in the last decades to deal with
nonlinearity and uncertainty of the physical models. In the finite-dimensional context, a sys-
tem is controllable if and only if the algebraic Kalman rank condition is satisfied. According
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to this property, when a system is controllable for some time it is controllable for all time.
But this is no longer true in the context of infinite-dimensional systems modelled by PDEs.

The controllability of nonlinear systems in finite-dimensional space by means of fixed point
principles [1]. This concept has been extended to infinite-dimensional spaces by applying
semigroup theory ([19]). Controllability of nonlinear systems with different types of nonlin-
earity has been studied by many authors with the help of fixed point principles ([2]). Many
systems in physics and biology exhibit impulsive dynamical behavior due to sudden jumps
at certain instants in the evolution process. Differential equations involving impulsive effects
occur in many applications: radiation of electromagnetic waves, population dynamics, bio-
logical systems, the abrupt increase of glycerol in fed-batch culture etc.,([12]). For the basic
theory of impulsive differential equations can refer to ([15],[21]) and Fu et al. ([11]) studied
the existence for neutral impulsive differential inclusions with nonlocal conditions.

Controllability of linear and nonlinear impulsive systems in finite dimensional space has
been discussed by many authors ([13],[14],[22]). Li et al. ([16]) and Chang ([9]) extended
the results to impulsive functional differential systems in Banach spaces by using compact
semigroup and the Schaefer fixed point theorem. Balchandran and Park ([3]) studied the
existence and uniqueness of a mild solution for a functional integrodifferential equation with
nonlocal conditions. Byszewski and Acka ([7]) established the existence and uniqueness and
continuous dependence of mild solution of semilinear functional differential equation with
nonlocal condition of the form

du(t)

dt
+ Au(t) = f(t, ut), t ∈ [0, a],

u(s) + [g(ut1 , ..., utp)](s) = φ(s), s ∈ [−r, 0]

where 0 < t1 < . . . < tp ≤ a, −A is the infinitesimal generator of a C0− semigroup of
operators on a Banach space. Theorems about the existence, uniqueness and stability of
solutions of functional differential equations abstract evolution Cauchy problems were studied
by Byszewski and Lakshmikantham ([5]), by Byszewski ([6],[7],[8]), by Balachandran and
Chandrasekaran ([4]), and by Lin and Liu ([17]). In this paper we study the controllability
of nonlocal impulsive functional integrodifferential with evolution systems and by using the
results of ([3],[7],[8],[19]).

2. Preliminaries

Consider the following nonlocal impulsive nonlinear integrodifferential evolution system

x′(t) = A(t)x(t) +Bu(t) + f
(
t, xt,

∫ t

0

h(t, s, xs)ds
)
, t ̸= ti, t ∈ J, (2.1)

x(s) + [g(xt1 , ..., xtp)](s) = φ(s), s ∈ [−r, 0], (2.2)

∆x|t=ti = Ii(x(t
−
i )), i = 1, 2, . . . ,m, (2.3)

where the state variable x(·) takes values in a Banach space X and the control function
u(·) is given in L2(J, V ), a Banach space of admissible control functions with V as a Ba-
nach space and J = [0, b], Ω = {(t, s) : 0 ≤ s ≤ t ≤ b}. Here A(t) is a closed linear
densely defined operator in X and B is a bounded linear operator from V into X. Fur-
ther f : J × X × X → X, h : Ω × X → X, Ii : X → X, ∆x|t=ti = x(t+i ) − x(t−i ), for
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all i = 1, 2, . . . ,m; 0 = t0 < t1 < t2 < . . . < tm < tm+1 = b; and the nonlocal func-
tion g : [PC([−r, 0], X)]p → X are given functions. The history xt represents the function
xt : (−r, 0] → X defined by xt(θ) = x(t+ θ), for t ∈ [0, b], θ ∈ [−r, 0].

Denote J0 = [0, t1], Ji = (ti, ti+1], i = 1, 2, . . . ,m and define the following space:

Let PC([−r, b], X)={ x : x is a function from [−r, b] into X such that x(t) is continuous
at t ̸= ti and left continuous at t = ti and the right limit x(t+i ) exists for i = 1, 2, . . . ,m}.
Similarly as in ([12],[18]), we see that PC([−r, b], X) is a Banach space with norm

∥x∥PC = sup
t∈[0,b]

∥x(t)∥.

For the family {A(t) : 0 ≤ t ≤ b} of linear operators, we assume the following hypotheses:

(A1) A(t) is a closed linear operator and the domain D(A) of {A(t) : 0 ≤ t ≤ b} is dense
in the Banach space X and independent of t.

(A2) For each t ∈ [0, b], the resolvent R(λ,A(t)) = (λI − A(t))−1 of A(t) exists for all λ
with Re λ ≤ 0 and ∥R(λ,A(t))∥ ≤ C(|λ|+ 1)−1.

(A3) For any t, s, τ ∈ [0, b], there exists a 0 < δ < 1 and L > 0 so that

∥(A(t)− A(τ))A−1(s)∥ ≤ L|t− τ |δ.

Statements (A1) − (A3) implies that there exists a family of evolution operator U(t, s)(see
[10]).

The family {A(t) : 0 ≤ t ≤ b} generates a unique linear evolution system {U(t, s) : 0 ≤
s ≤ t ≤ b} satisfying the following properties:

(a) U(t, s) ∈ L(X) the space of bounded linear transformation on X, whenever 0 ≤ s ≤
t ≤ b and for each x ∈ X, the mapping (t, s) → U(t, s)x is continuous.

(b) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t ≤ b.

(c) U(t, t) = I.

Definition 2.1. A solution x(·) ∈ PC([−r, b], X) is said to be a mild solution of (2.1) −
(2.3) if x(s) + [g(xt1 , ..., xtp)](s) = φ(s), s ∈ [−r, 0], ∆x|t=ti = Ii(x(t

−
i )), i = 1, 2, . . . ,m;

the restriction of x(·) to the interval Ji (i = 0, 1, . . . ,m) is continuous and the following
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conditions are satisfied:

(i) x(t) = U(t, 0)φ(0)− U(t, 0)[g(xt1 , ..., xtp)](0) +

∫ t

0

U(t, s)
[
Bu(s)

+f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)]

ds+
∑

0<ti<t

U(t, ti)Ii(x(t
−
i )), t ∈ [0, b],

(ii) x(s) + [g(xt1 , ..., xtp)](s) = φ(s), s ∈ [−r, 0).

To study the controllability problem we assume the following hypotheses:

(H1) A(t) generates a family of evolution operators U(t, s) in X and there exists a constant
M > 0 such that

∥U(t, s)∥ ≤ M, for 0 ≤ s ≤ t ≤ b.

(H2) The linear operator W : L2(J, V ) → X defined by

Wu =

∫ b

0

U(b, s)Bu(s)ds

has an inverse operator W−1, which takes values in L2(J, V )/kerW and there exists
a positive constant K such that ∥BW−1∥ ≤ K.

(H3) The nonlinear function f : J ×X ×X → X is continuous and there exist constants
LB > 0, L0 > 0 such that

∥f(t, xt, ut)− f(t, yt, vt)∥ ≤ LB(∥x− y∥+ ∥u− v∥), for x, y, u, v ∈ X, t ∈ J,

L0 = max
t∈J

∥f(t, 0, 0)∥.

(H4) For each (t, s) ∈ Ω, the function h : Ω × X → X is continuous and there exist
constants NB > 0 and N0 > 0 such that∫ t

0

∥h(t, s, xs)− h(t, s, ys)∥ds ≤ NB∥x− y∥ , for x, y ∈ X, t, s ∈ J,

N0 = max
{∫ t

0

∥h(t, s, 0)∥ds : t, s ∈ Ω
}
.

(H5) Ii : X → X is continuous and there exist constants li such that

∥Ii(x)− Ii(y)∥ ≤ li∥x− y∥, i = 1, 2, . . . ,m,

for each x, y ∈ X.

(H6) g : [PC([−r, 0], X)]p → X is continuous and there exists a constant GB > 0 such that

∥[g(xt1 , ..., xtp ](s)− [g(yt1 , ..., ytp ](s)∥ ≤ GB∥x− y∥PC,

for each x, y ∈ PC([−r, b], X), s ∈ [−r, 0],

G0 = max
{
∥[g(xt1 , ..., xtp ](s)∥ : x, y ∈ PC([−r, b], X), s ∈ [−r, 0]

}
.



CONTROLLABILITY OF INTEGRODIFFERENTIAL EVOLUTION SYSTEMS 285

(H7) There exist a positive constant ρ > 0 such that

M(1 + bMK)
[
∥φ(0)∥+G0 + b{LB[N0 + (1 +NB)r] + L0}+

m∑
i=1

li

]
+ bMK∥x1∥ ≤ ρ.

Moreover, let us put λ =
m∑
i=1

li and

γ = M(1 + bMK)[GB + bLB + bNB + λ].

Definition 2.2. [20] The system (2.1)− (2.3) is said to be controllable on the interval J if
for every x1 ∈ X and [g(xt1 , ..., xtp ](s) ∈ PC([−r, b], X), there exists a control u ∈ L2(J, V )
such that the mild solution x(t) of (1)− (3) satisfies x(0) = x0 and x(b) = x1.

3. Controllability Result

Theorem 3.1. If the conditions (H1) − (H7) are satisfied and if 0 ≤ γ < 1, then the
system (2.1)− (2.3) is controllable on J .

Proof. Introduce the operator Γ on the Banach space PC([−r, b], X) by the formula:

(Γx)(t) =



φ(t)− [g(xt1 , ..., xtp)](t), t ∈ [−r, 0],

U(t, 0)φ(0)− U(t, 0)[g(xt1 , ..., xtp)](0) +

∫ t

0

U(t, s)Bu(s)ds

+

∫ t

0

U(t, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds+

∑
0<ti<t

U(t, ti)Ii(x(t
−
i )), t ∈ J.

Using hypothesis (H2) for an arbitrary function x(·), define the control

u(t) = W−1
[
x1 − U(b, 0)[φ(0)− (g(xt1 , ..., xtp))(0)]

−
∫ b

0

U(b, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds−

∑
0<ti<b

U(b, ti)Ii(x(t
−
i ))

]
(t).

We shall now show that when using this control, the operator

Γ : PC([−r, b], X) → PC([−r, b], X)
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defined by

(Γx)(t) = U(t, 0)[φ(0)− [g(xt1 , ..., xtp)](0)] +

∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)φ(0)

−U(b, 0)[g(xt1 , ..., xtp)](0)]−
∫ b

0

U(b, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

−
∑

0<ti<b

U(b, ti)Ii(x(t
−
i ))

]
(s)ds+

∫ t

0

U(t, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

+
∑

0<ti<t

U(t, ti)Ii(x(t
−
i ))

has a fixed point x(·). To prove the controllability, it is enough to show that the operator
Γ has a fixed point in PC([−r, b], X) and since all the functions involved in the operator are
continuous and therefore Γ is continuous.

Let S be a nonempty closed subset of PC([−r, b], X) defined by

S = {x : x ∈ PC([−r, b], X), ∥x(t)∥PC ≤ r, 0 ≤ t ≤ b}.

First we show that Γ maps S into S. For x ∈ S, we have

∥(Γx)(t)∥ ≤ ∥U(t, 0)[φ(0)− [g(xt1 , ..., xtp)](0)]∥+
∥∥∥∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)φ(0)

−U(b, 0)[g(xt1 , ..., xtp)](0)]−
∫ b

0

U(b, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds

−
∑

0<ti<b

U(b, ti)Ii(x(t
−
i ))

]
(s)ds

∥∥∥+∥∥∥∫ t

0

U(t, s)f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
ds
∥∥∥

+
∥∥∥ ∑
0<ti<t

U(t, ti)Ii(x(t
−
i ))

∥∥∥
≤ M∥φ(0)∥+MG0 +MK

∫ t

0

[
∥x1∥+M∥φ(0)∥+MG0

+M

∫ b

0

∥f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
∥ds+M

∑
0<ti<b

li

]
ds

+M

∫ b

0

∥f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
∥ds+M

∑
0<ti<t

li
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Since from assumptions (H3) and (H4), we have

∥f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
∥≤ ∥f

(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f(s, 0, 0) + f(s, 0, 0)∥

≤ ∥f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f(s, 0, 0)∥+ ∥f(s, 0, 0)∥

≤ LB[∥xs∥+ ∥
∫ s

0

h(s, τ, xτ )dτ)∥] + L0

≤ LB[∥xs∥+
∫ s

0

∥h(s, τ, xτ )−h(s, τ, 0)∥dτ+
∫ s

0

∥h(s, τ, 0)∥dτ ]+L0

≤ LB[∥xs∥+NB∥xs∥+N0] + L0

≤ LB[N0 + (1 +NB)∥xs∥] + L0

there holds

∥(Γx)(t)∥ ≤ M∥φ(0)∥+MG0 + bMK
[
∥x1∥+M∥φ(0)∥+MG0

+bM{LB[N0 + (1 +NB)∥xs∥] + L0}+M

m∑
k=1

li

]
+bM{LB[N0 + (1 +NB)∥xs∥] + L0}+M

∑
0<ti<t

li

≤ M(1+bMK)
[
∥φ(0)∥+G0+b{LB[N0+(1 +NB)r]+L0}+

m∑
i=1

li

]
+bMK∥x1∥.

From (H7), one gets ∥(Γx)(t)∥ ≤ ρ, therefore Γ maps S into itself.

Now we shall show that Γ is a contraction on S. For this purpose consider two differences
as follows:

(Γx)(t)− (Γy)(t) = [g(xt1 , ..., xtp)](t)− [g(yt1 , ..., ytp)](t),

for x, y ∈ PC([−r, b], X), t ∈ [−r, 0), (3.1)
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and

(Γx)(t)− (Γy)(t)

= U(t, 0)[(g(xt1 , ..., xtp))(0)− (g(yt1 , ..., ytp))(0)] +

∫ t

0

U(t, η)BW−1

×
{
U(b, 0)[(g(xt1 , ..., xtp))(0)− (g(yt1 , ..., ytp))(0)]

+

∫ b

0

U(b, s)
[
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f

(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)]

ds

+
∑

0<ti<b

U(b, ti)[Ii(x(t
−
i ))− Ik(y(t

−
i ))]

}
(η)dη

+

∫ t

0

U(t, s)
[
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f

(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)]

ds

+
∑

0<ti<t

U(t, ti)[Ii(x(t
−
i ))− Ii(y(t

−
i ))], x, y ∈ PC([−r, b], X), t ∈ J. (3.2)

From (3.1) and (H6), we have

∥(Γx)(t)− (Γy)(t)∥ ≤ GB∥x− y∥PC, for x, y ∈ PC([−r, b], X), t ∈ [−r, 0). (3.3)

Moreover, by (3.2), (H3)− (H6), we obtain

∥(Γx)(t)− (Γy)(t)∥

≤
∥∥∥U(t, 0)[(g(xt1 , ..., xtp))(0)− (g(yt1 , ..., ytp))(0)]

∥∥∥+
∥∥∥∫ t

0

U(t, η)BW−1

×
{
U(b, 0)[(g(xt1 , ..., xtp))(0)− (g(yt1 , ..., ytp))(0)]

+

∫ b

0

U(b, s)
[
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f

(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)]

ds

+
∑

0<ti<b

U(b, ti)[Ii(x(t
−
i ))− Ii(y(t

−
i ))]

}
(η)dη

∥∥∥
+
∥∥∥∫ t

0

U(t, s)
[
f
(
s, xs,

∫ s

0

h(s, τ, xτ )dτ
)
− f

(
s, ys,

∫ s

0

h(s, τ, yτ )dτ
)]

ds
∥∥∥

+
∥∥∥ ∑

0<ti<t

U(t, ti)[Ii(x(t
−
i ))− Ii(y(t

−
i ))]

∥∥∥
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≤ MGB∥x− y∥PC +MK

∫ t

0

[
MGB∥x− y∥PC

+M

∫ b

0

LB[∥x− y∥+NB∥x− y∥]ds+M

m∑
i=1

li∥x− y∥PC

]
dη

+M

∫ b

0

LB[∥x− y∥+NB∥x− y∥]ds+M
∑

0<ti<t

li∥x− y∥PC

≤ MGB∥x− y∥PC + bMK[MGB∥x− y∥PC + bMLB∥x− y∥+ bMNB∥x− y∥
+Mλ∥x− y∥PC] + bMLB∥x− y∥+ bMNB∥x− y∥+Mλ∥x− y∥PC

≤ M(1 + bMK)[GB + bLB + bNB + λ]∥x− y∥PC. (3.4)

From (3.3) and (3.4), we get

∥(Γx)(t)− (Γy)(t)∥ ≤ γ∥x− y∥PC, for x, y ∈ PC([−r, b], X), (3.5)

where γ = M(1 + bMK)[GB + bLB + bNB + λ].

Since γ < 1, then (3.5) shows that the operator Γ is a contraction on PC([−r, b], X).
Also, Γ satisfies the Banach contraction theorem. Hence there exists a unique fixed point
x ∈ PC([−r, b], X) such that (Γx)(t) = x(t) and this point is the mild solution of the system
(2.1)−(2.3) and (Γx)(b) = x(b) = x1, which implies that the given system is controllable. �

4. Example

Consider the following partial integrodifferential equation with impulses:

∂

∂t
z(t, y) =

∂2

∂y2
z(t, y) + a(t, y)z(t, y) + µ(t, y)

+η1(y)

∫ t

−r

sin zt(s, y)ds+ η2

∫ t

−r

∫ s

0

e−zt(τ,y)dτds,

0 ≤ y ≤ 1, t ∈ J = [0, b], (4.1)

z(t, 0) = z(t, 1) = 0, t ≥ 0, (4.2)

z(0, y) +
m∑
i=1

eiφti(s, y) = z0(y), φ ∈ PC, 0 ≤ y ≤ 1, (4.3)

∆z|t=ti = Ii(z(y)) = (βi|z(y)|+ ti)
−1, z ∈ X, 1 ≤ i ≤ m, (4.4)

where a(t, y) continuous on 0 ≤ y ≤ 1, 0 ≤ t ≤ b and constants ei, βi are small and η1(y) is
continuous on [0, 1], η2 > 0.

Let us take X = V = L2[0, 1] be endowed with the usual norm | · |L2 .

Put xt(s) = zt(s, ·) and u(t) = µ(t, ·) where µ : J × [0, 1] → [0, 1] be the control function
is continuous.
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Define the operators g, f by

g(φti(s, ·))(s) =
m∑
i=1

eiφti(s, y)

and

f(t, xt,H(xt)) = η1(·)
∫ t

−r

sin zt(s, y)ds+H(xt),

where

H(xt) = η2

∫ t

−r

∫ s

0

e−zt(τ,y)dτds.

Let A : D(A) ⊂ X → X be the operator defined by Az = z′′ with the domainD(A) = {z ∈
X : z, z′ are absolutely continuous, z′′ ∈ X, z(0) = z(π) = 0}. It is well known that A is the
infinitesimal generator of a C0− semigroup (T (t))t≥0 on X. Furthermore A has a discrete
spectrum with eigenvalues −n2, n ∈ N and corresponding normalized eigenfunctions given
by zn(y) =

√
2/π sinny, n = 1, 2, 3, . . . .

In addition, {zn : n ∈ N} is an orthonormal basis of X and

T (t)z =
∞∑
n=1

e−n2t(x, zn)zn,

for x ∈ X and t ≥ 0.

Now we define the operator A(t)z = Az(y) + a(t, y)z, z ∈ D(A(t)), t ≥ 0, y ∈ [0, π], where
D(A(t)) = D(A), t ≥ 0. By assuming that y → a(t, y) is continuous in t, and there exists
ρ > 0 such that a(t, y) ≤ −ρ, for all t ∈ J, y ∈ [0, π], it follows that the system

z′(t) = A(t)z(t) t ≥ s,

z(0) = z0,

generates an evolution system U(t, s) satisfying assumptions (A1) − (A3). Furthermore,

U(t, s)z = T (t− s) exp(
∫ t

s
a(τ, y)dτ)z for z ∈ X and ∥U(t, s∥ ≤ e−(1+σ)(t−s) for every t ≥ s.

With this choice A(t), Ii, f, g and B = I the identity operator, we see that equation
(4.1) − (4.4) can be written in the abstract formulation of (2.1) − (2.3). Assume that the
linear operator W from L2(J, V )/kerW into X is defined by

Wu =

∫ b

0

T (b− s)e
∫ b
s a(τ,y)dτµ(s, ·)ds,

has an invertible operator and satisfies the condition (H2).

Further the conditions (H3)− (H6) are satisfied and it is possible to choose ei, βi, η1, η2
in such a way that the constant γ < 1. Hence by Theorem 3.1. the system (4.1) − (4.4) is
controllable on J.
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