
J. Nonlinear Sci. Appl. 4 (2011), no. 4, 270–280

The Journal of Nonlinear Sciences and Applications

http://www.tjnsa.com

T -ROUGH SEMIPRIME IDEALS ON COMMUTATIVE RINGS
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Communicated by S. Jafari

Abstract. Rough sets were originally proposed in the presence of an equiva-
lence relation. An equivalence relation is sometimes difficult to be obtained in
rearward problems due to the vagueness and incompleteness of human knowl-
edge. The purpose of this paper is to introduce and discuss the concept of
T -rough semiprime ideal, T -rough fuzzy semiprime ideal and T -rough quotient
ideal in a commutative ring which are a generalization of rough set and ap-
proximation theory. We compare relation between a rough ideal and a T -rough
ideal and prove some theorems.

1. Introduction

The notion of rough sets has been introduced by Z. Pawlak [16-23] and Z.
Pawlak, A. Skowron [24-26]. It soon invoked a natural question concerning possi-
ble connection between rough sets and algebraic systems. The algebraic approach
to rough sets have been given and studied by T. Iwinski [11], A. Rosenfeild [27],
W. Zhang, W. Wu [31]. R. Biswas [1, 2], R. Biswas, S. Nanda [3] introduced the
notion of rough set and rough subgroups. N. Kuroki [14] introduced the notion of
rough ideals in a semigroups. B. Davvaz [6] introduced the notion of rough sub-
ring with respect to an ideal of a ring. D. Dubois, H. Prade [7, 8] combined fuzzy
sets and rough sets in a fruitful way by defining rough fuzzy sets and fuzzy rough
sets. Qi-Mei Xiao, Zhen-Liang Zhang [28] discussed the lower and the upper ap-
proximations of prime ideals and fuzzy prime ideals in a semigroup with details.
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B. Davvaz [5] introduced T -rough set and T -rough homomorphism in a group.
Rough set theory is an extension of set theory, in which a subset of a universe is
described by a pair of ordinary sets called the lower and upper approximations.
The lower approximation of a given set is the union of all the equivalence classes
which are subsets of the set, and the upper approximation is the union of all the
equivalence classes which have a non-empty intersection with the set. It is well
known that a partition induces an equivalence relation on a set and vice versa.
The properties of rough sets can thus be examined via either partition or equiv-
alence classes. Rough sets are a suitable mathematical model of vague concepts,
i.e., concepts without sharp boundaries. S. B. Hosseini et al.[9, 10] studied some
properties of T -rough set in semigroup and commutative rings. In this paper,
we discussed T -rough ideal, T -rough semiprime ideal, T -rough fuzzy ideal and
T -rough fuzzy semiprime ideal of rings based on definitions in [5] and generalized
some theorems have been proved [5, 6, 10, 28, 29].

2. Preliminaries

The following definitions and preliminaries are required in the sequel of the
work and hence presented in brief. Some of them were in [6]. Suppose that U is
a non-empty set. A partition or classification of U is a family Θ of non-empty
subsets of U such that each element of U is contained in exactly one element
of Θ. It is vitally important to recall that an equivalence relation θ on a set U
is a reflexive, symmetric and transitive binary relation on U . Each partition Θ
induces an equivalence relation θ on U by setting

xθy ⇔ x and y are in the same class of Θ.

Conversely, each equivalence relation θ on U induces a partition Θ of U whose
classes have the form

[x]θ = {y ∈ U | xθy}.

Definition 2.1. A pair (U, θ) where U ̸= ∅ and θ is an equivalence relation on
U is called an approximation space.

Definition 2.2. For an approximation space (U, θ) by a rough approximation in
(U, θ) we mean a mapping Apr : P (U) −→ P (U) × P (U) defined by for every
X ∈ P (U), Apr(X) = (Apr(X), Apr(X)), where

Apr(X) = {x ∈ U | [x]θ ⊆ X}, Apr(X) = {x ∈ U | [x]θ
∩

X ̸= ∅}.

Apr(X) is called the lower rough approximation of X in (U, θ) whereas Apr(X)
is called the upper rough approximation of X in (U, θ).

Definition 2.3. [16] Given an approximation space (U, θ) a pair (A,B) in P (U)×
P (U) is called a rough set in (U, θ) if (A,B) = (Apr(X), Apr(X)) for some
X ∈ P (U).

Definition 2.4. A subset X of U is called definable if Apr(X) = Apr(X). If
X ⊆ U is given by a predicate P and x ∈ U , then

(1) x ∈ Apr(X) means that x certainly has property P ,
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(2) x ∈ Apr(X) means that x possibly has property P ,
(3) x ∈ U \ Apr(X) means that x definitely does not have property P .

The rough complement of Apr(A) denoted by Aprc(A) is defined by

Aprc(A) = (U \ Apr(A), U \ Apr(A).
Also, we can define Apr(A) \ Apr(B) as follows:

Apr(A) \ Apr(B) = (Apr(A) \ Apr(B), Apr(A) \ Apr(B)).

Proposition 2.5. [16] Let U be a nonempty set and θ an equivalence relation on
U . For every subsets A,B ⊆ U , we have

(i) Apr(A) ⊆ A ⊆ Apr(A);

(ii) If A ⊆ B, then Apr(A) ⊆ Apr(A) and Apr(A) ⊆ Apr(B);
(iii) Apr(A ∩B) = Apr(A) ∩ Apr(B);

(iv) Apr(A) ∪ Apr(B) = Apr(A ∪B).

3. T -rough Ideal and T -rough semiprime Ideal in a commutative
ring

In this section, we define the concept of a set-valued homomorphism and give
some important examples of set-valued mapping. We show that every ring ho-
momorphism is a set-valued homomorphism. We also investigate some basic
properties of the generalized lower and upper approximation operators in a ring.
We generalize rough ideal [9] that is called T -rough ideal [3]. We apply the notion
T -rough sets in a commutative ring .

Definition 3.1. (i) Let R be a ring and I ̸= ∅ be a subset of R. I is called an
ideal of R, if xr, rx, x− y ∈ I for all r ∈ R and x, y ∈ I.

(ii) Let U ̸= ∅ be a subset of R. U is called a subring of R, if xy, x − y ∈ U for
all x, y ∈ U .

(iii) Let A and B are non-empty subsets of R. We denote AB by the set of
all finite sum {

∑n
i=1 aibi | ai ∈ A, bi ∈ B, n ∈ N}.

(iv) An ideal P is called a prime ideal if P ̸= R and if A,B ⊆ R be ideals
of R and AB ⊆ P , then A ⊆ P or B ⊆ P . In a commutative ring R, primness is
an equivalent with x, y ∈ R and xy ∈ P implies that x ∈ P or y ∈ P .

(v) An ideal Q ̸= R is called a semiprime ideal of R, if A be an ideal of R
and A2 ⊆ Q, then A ⊆ Q. In a commutative ring R, semiprimness is an equiva-
lent with x ∈ R and x2 ∈ Q implies that x ∈ Q.

It is clear that any prime ideal is a semiprime ideal but if p1, p2 be two prime
numbers, then ideal < p1p2 >= p1p2Z is a semiprime ideal of Z that is not prime.

Definition 3.2. [5] Let X and Y be two non-empty sets and B ⊆ Y . Let
T : X → P ∗(Y ) be a set-valued mapping where P ∗(Y ) denotes the set of all
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non-empty subsets of Y . The lower inverse and upper inverse of B under T are
defined by

T+(B) = {x ∈ X | T (x) ⊆ B}; T−1(B) = {x ∈ X | T (x) ∩B ̸= ∅}.
Definition 3.3. [5] Let X and Y be two non-empty sets and B ⊆ Y . Let
T : X → P ∗(Y ) be a set-valued mapping where P ∗(Y ) denotes the set of all
non-empty subsets of Y. (T+(B), T−1(B)) is called T -rough set of R with respect
to B.

Example 3.4. (i) Let (U, θ) be an approximation space and T : U → P ∗(U)
be a set-valued mapping where T (x) = [x]θ, then for any B ⊆ U, T+(B) =
Apr(B) and T−1(B) = Apr(B).

(ii) Let N be natural numbers set and Z be integer numbers set and T :
N → P ∗(Z) where for every n ∈ N, T (n) = {1, 2, . . . , n}. If B = {1, 2, . . . , 10},
then T+(B) = {1, 2, . . . , 10} and T−1(B) = N.

(iii) Let N be natural numbers set and Z be integer numbers set and T :
N → P ∗(Z) where for every n ∈ N, T (n) = {±n}. If B = {1, 2, . . . , 10}, then
T+(B) = {1, 2, . . . , 10} = T−1(B).

(iv) LetR be real numbers set and T : R → P ∗(R) where for every a ∈ R, T (a) =
[−|a|, |a|]. If A = [0, 1], then T+(A) = {0} and T−1(A) = [−1, 1].

(v) Let Z be integer numbers set and T : Z → P ∗(Z) where for every n ∈
Z, T (n) = nZ. If A = 2Z, then T+(A) = 2Z and T−1(A) = Z.

(vi) Let f : R → S be a ring homomorphism and A be a non-empty set S.
Then for the set-valued mapping T : R → P ∗(S) defined by T (r) = {f(r)}, we
have T−1(A) = {r ∈ R | f(r) ∈ A} = T+(A) = f−1(A).

Proposition 3.5. [5] Let X and Y be two non-empty sets and A,B ⊆ Y. Let
T : X → P ∗(Y ) be a set-valued mapping where P ∗(Y ) denotes the set of all
non-empty subsets of Y . Then the following hold:

(1) T−1(A ∪B) = T−1(A) ∪ T−1(B);
(2) T+(A ∩B) = T+(A) ∩ T+(B);
(3) A ⊆ B implies T+(A) ⊆ T+(B)and T−1(A) ⊆ T−1(B);
(4) T+(A ∪B) ⊆ T+(A) ∪ T+(B) and T−1(A ∩B) ⊆ T−1(A) ∩ T−1(B).

Using the lower inverse and upper inverse under T, we define a binary relation
on subsets of Y as follows:

A ∼= B ⇐⇒ T−1(A) = T−1(B) and T+(A) = T+(B).

It is an equivalence relation which induces a partition P ∗(Y ). An equivalence
class of the relation is called a T -rough set. Therefore a T -rough set of Y is a
family of all subsets of Y having the same lower and upper inverse under T .

Definition 3.6. Let R and S be two commutative rings and T : R → P ∗(S) be
a set-valued mapping. T is called a set-valued homomorphism if
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(i) T (x1 + x2) = T (x1) + T (x2);
(ii) T (x1x2) = {ab | a ∈ T (x1), b ∈ T (x2)};
(iii) T (−x) = −T (x);

for all x, x1, x2 ∈ R.

Examples 3.3(v) and (vi) are set-valued homomorphisms. So a ring homo-
morphism is a special case of a set-valued homomorphism. Let θ be a complete
congruence relation, i.e., [x]θ[y]θ = [xy]θ and [x]θ + [y]θ = [x+ y]θ for all x, y ∈ R.
Define T : R → P ∗(R) by T (x) = [x]θ, then T is a set-valued homomorphism.
Further, the rough sets are T -rough sets.

Lemma 3.7. Let R and S be two commutative rings and T : R → P ∗(S) be a set-
valued homomorphism. If U is a subring of S and T+(U), T−1(U) are nonempty,
then T+(U) and T−1(U) are subrings of R.

Proof. Let x, y ∈ T+(U), by Definition 3.2, T (x), T (y) ⊆ U. Since U is a
subring of S, we have T (x − y) = T (x) − T (y) ⊆ U and T (xy) = {ab | a ∈
T (x), b ∈ T (y)} ⊆ T (x)T (y) ⊆ U. It shows that x − y, xy ∈ T+(U). Moreover,
let x, y ∈ T−1(U), by Definition 3.2, T (x) ∩ U ̸= ∅ and T (y) ∩ U ̸= ∅. Suppose
a ∈ T (x) ∩ U and b ∈ T (y) ∩ U . Since U is a subring of S, a − b ∈ U and
a−b ∈ T (x)−T (y) = T (x−y), thus a−b ∈ T (x−y)∩U , hence T (x−y)∩U ̸= ∅.
So x − y ∈ T−1(U). Again, ab ∈ {ab | a ∈ T (x), b ∈ T (y)} = T (xy) and ab ∈ U.
This implies that T (xy) ∩ U ̸= ∅. So xy ∈ T−1(U).

Lemma 3.8. [10] Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If A is an ideal of S and T+(A) ̸= ∅ and T−1(A) ̸= ∅,
then T+(A), T−1(A) are ideals of R.

Corollary 3.9. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If A is an ideal of S and T−1(A) ̸= ∅ and T+(A) ̸= ∅
then (T+(A), T−1(A)) is a T -rough ideal of R.

Recently, we have studied some properties of T - rough ideal and T -rough prime
ideal [10].

Theorem 3.10. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If A is a semiprime ideal of S and T+(A) ̸= ∅, then
T+(A) is a semiprime ideal of R.

Proof. Let x ∈ R and x2 ∈ T+(A), then T (x2) ⊆ A. But we have {a2 | a ∈
T (x)} ⊆ {ab | a ∈ T (x), b ∈ T (y)} = T (x2) ⊆ A. Then for all a ∈ T (x), a2 ∈ A.
Since A is a semiprime ideal of S, We have a ∈ A. Hence T (x) ⊆ A. It implies
that x ∈ T+(A). Therefore T+(A) is a semiprime ideal of R.

Theorem 3.11. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism such that {a2 | a ∈ T (x)} = T (x2). If A is a semiprime
ideal of S and T−1(A) ̸= ∅, then T−1(A) is a semiprime ideal of R.

Proof. Let x ∈ R and x2 ∈ T−1(A), then T (x2)∩A ̸= ∅. So, there is b ∈ T (x)
such that a = b2 ∈ A. Since A is a semiprime ideal of S, we have b ∈ A. Hence
b ∈ T (x)∩A. It implies that T (x)∩A ̸= ∅. Hence x ∈ T−1(A). Therefore T−1(A)
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is a semiprime ideal of R.

Corollary 3.12. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism such that {a2 | a ∈ T (x)} = T (x2). If A is a semiprime
ideal of S and T−1(A) ̸= ∅ and T+(A) ̸= ∅, then (T+(A), T−1(A)) is a T -rough
semiprime ideal of R.

The following examples show that the converse of Lemma 3.8 and Theorem
3.10 do not hold in general.

Example 3.13. Let Z be integer numbers set and T : Z → P ∗(Z) where for
every n ∈ Z, T (n) = nZ. If A = {±1, 0,±6,±12,±18, . . .}, then T+(A) = 6Z.

Example 3.14. Suppose θ be an equivalence relation on Z by setting

xθy ⇐⇒ 12|x− y.

And T : Z → P ∗(Z) where for every n ∈ Z, T (n) = [n]θ. If

A = {0, 6, 12,±18,±24, . . .},

then T−1(A) = 6Z.

4. T -rough fuzzy semiprime ideal

Theory of fuzzy sets initiated by L. A. Zadeh [30]. As a natural need, D.
Dubois and H. Prade [5, 6] combined fuzzy sets and rough sets in a fruitful way
by defining rough fuzzy sets and fuzzy rough sets. Rough fuzzy sets and fuzzy
rough sets are also studied by R. Biswas [1, 2], A. Nakamura [14], S. Nanda [15].
Several research directions have been suggested on fuzzy rough sets and rough
fuzzy sets. In this section, we introduce the T -rough fuzzy semiprime ideal in a
commutative ring and give some properties of such ideals.

Definition 4.1. Let (U, θ) be an approximation space. A subset fuzzy is a
mapping µ from U to [0, 1]. If x ∈ U , we define

Apr(µ)(x) =
∧

a∈[x]θ

µ(a); Apr(µ)(x) =
∨

a∈[x]θ

µ(a).

They are called, respectively, the lower and upper approximation of the fuzzy
subset µ. Apr(µ) = (Apr(µ), Apr(µ)) is called a rough fuzzy set with respect to

θ if Apr(µ) ̸= Apr(µ)). Let µ be a subset fuzzy of U , λ ∈ [0, 1]. Then the sets

µλ = {x ∈ U | µ(x) ≥ λ}; µ+
λ = {x ∈ U | µ(x) > λ}

are called, respectively, λ-levelest and λ-strong levelest of the fuzzy set µ.

Definition 4.2. A fuzzy subset µ of a ring R is called a fuzzy ideal [11] if
(i)µ(x− y) ≥ µ(x) ∧ µ(y) for all x, y ∈ R;
(ii)µ(xy) ≥ µ(x) ∨ µ(y) for all x, y ∈ R.
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It is a fuzzy prime ideal if µ(xy) = µ(x) or µ(xy) = µ(y) and it is called a
fuzzy semiprime ideal if µ(x2) = µ(x). It is obvious that every fuzzy prime ideal
is a fuzzy semiprime ideal but converse of that is not true.

Example 4.3. Let µ be fuzzy set of Z by setting

µ(n) =

{
1, if pq|n
α, otherwise

where p ̸= q be a prime integer or zero and 0 ≤ α < 1. Then µ is a semiprime
ideal of Z that is not prime ideal.

Theorem 4.4. Let µ be a fuzzy subset of a commutative ring R. Then µ is a
fuzzy ideal( fuzzy semiprime ideal) of R iff µλ, µ

+
λ are, if they are nonempty, ideals

(semiprime ideals) of R for every λ ∈ [0, 1].

Proof. Suppose for every λ ∈ [0, 1], µλ, µ
+
λ are, if they are nonempty, semiprime

ideals. By Definition 4.2(ii) , µ(x2) ≥ µ(x). Now if µ(x2) > µ(x) for some x ∈ R,
let λ ∈ [0, 1] such that µ(x2) > λ > µ(x), then x2 ∈ µλ but x /∈ µλ. It is a
contradiction to semiprimness of µλ. Conversely, suppose µ(x2) = µ(x) for all
x ∈ R. Let x2 ∈ µλ, then µ(x) = µ(x2) ≥ λ. Hence x ∈ µλ. For µ+

λ can be seen
in a similar way.

The two following theorems have been proved in [14]:

Theorem 4.5. Let θ is an equivalence relation on commutative ring R and µ is
a fuzzy ideal of R, then Apr(µ) is a fuzzy ideal of R.

Theorem 4.6. Let θ is a complete congruence relation on commutative ring R
and µ is a fuzzy ideal of R, then Apr(µ) is a fuzzy ideal of R if Apr(µ) ̸= ∅.

First of all, we define T -rough fuzzy set and T -rough fuzzy semiprime ideal.

Definition 4.7. Let R and S be two commutative rings and T : R → P ∗(S) be
a set-valued homomorphism. If µ is a fuzzy ideal of S . For every x ∈ R, we
define

T+(µ)(x) =
∧

a∈T (x)

µ(a) ; T−1(µ)(x) =
∨

a∈T (x)

µ(a).

T+(µ) and T−1(µ) are called, respectively, the lower T -rough and the upper T -
rough fuzzy subsets of R with respect to the fuzzy set of µ. (T+(µ), T−1(µ)) is
said to be T -rough fuzzy set of R with respect to the fuzzy set of µ. If T+(µ) and
T−1(µ) are fuzzy prime(semiprime)ideals, (T+(µ), T−1(µ)) is said to be T -rough
prime(semiprime) fuzzy ideal of R.

Lemma 4.8. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If µ is a fuzzy ideal of S, then for all λ ∈ [0, 1],

(1) (i) (T+(µ))λ = T+(µλ); (ii) (T−1(µ))λ = T−1(µλ).
(2) (i) (T+(µ))+λ = T+(µ+

λ ); (ii) (T−1(µ))+λ = T−1(µ+
λ ).
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Proof. (1-(i)).

x ∈ (T+(µ))λ ⇔ T+(µ)(x) ≥ λ ⇔
∧

a∈T (x)

µ(a) ≥ λ

⇔ for all a ∈ T (x), µ(a) ≥ λ

⇔ T (x) ⊆ µλ ⇔ x ∈ T+(µλ).

(1-(ii)).

x ∈ (T−1(µ))λ ⇔ T−1(µ)(x) ≥ λ ⇔
∨

a∈T (x)

µ(a) ≥ λ

⇔ for some a ∈ T (x), µ(a) ≥ λ

⇔ T (x) ∩ µλ ̸= ∅ ⇔ x ∈ T−1(µλ).

For(2(i), (ii)) can be seen in a similar way.

The following theorems are straightforward.

Theorem 4.9. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If µ is a fuzzy ideal of S, then T+(µ) and T+(µ) are
fuzzy ideals of R.

If θ is a complete congruence relation on R and define T : R → P ∗(R) where
T (x) = [x]θ for every x ∈ R, we obtained Theorems 4.5, 4.6.

Theorem 4.10. If µ is a fuzzy ideal of S and T : R → P ∗(S) be a set-valued
homomorphism. If µ is a fuzzy semiprime ideal in S, then T+(µ), T−1(µ) are
fuzzy semiprime ideals of R.

5. T-rough quotient ideal of rings

Let R and S be two commutative rings and T : R → P ∗(S) be a set-valued
homomorphism. Suppose R/T = {T (x) | x ∈ R}. It is clear that R/T is a
commutative ring.

Definition 5.1. Let R and S be two commutative rings and T : R → P ∗(S) be
a set-valued homomorphism. The lower T -rough quotient and the upper T -rough
quotient for A ∈ P ∗(S) are, respectively,

(T+(A))/T = {T (x) | T (x) ⊆ A}; (T−1(A))/T = {T (x) | T (x) ∩ A ̸= ∅}.

Lemma 5.2. Let R and S be two commutative rings and T : R → P ∗(S) be a
set-valued homomorphism. If A ∈ P ∗(S) be an ideal of S and (T+(A))/T ̸= ∅,
then (T+(A))/T is an ideal of R/T.

Proof. Suppose T (x), T (y) ∈ (T+(A))/T . Since A ∈ P ∗(S) is an ideal of S,
So T (x− y) = T (x)− T (y) ⊆ A. Then T (x)− T (y) ∈ (T+(A))/T . Now suppose
T (a) ∈ R/T and T (x) ∈ (T+(A))/T , by Definition 5.1, T (x) ⊆ A. Since A is an
ideal of S, thus T (xa) ⊆ T (x)T (a) ⊆ A, therefore T (xa) ∈ (T+(A))/T .
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Lemma 5.3. Let R and S be two commutative rings and T : R → P ∗(S) be a set-
valued homomorphism such that {ab | a ∈ T (x), b ∈ T (y)} = T (xy) = T (x)T (y).
If A ∈ P ∗(S) be an ideal of S and (T−1(A))/T ̸= ∅, then (T−1(A))/T is an ideal
of R/T .

Proof. Suppose T (x), T (y) ∈ (T−1(A))/T . Thus T (x) ∩ A ̸= ∅ ̸= T (y) ∩ A.
Hence, there exist a ∈ T (x)∩A and b ∈ T (y)∩A. Since A ∈ P ∗(S) is an ideal of S,
So a−b ∈ T (x)−T (y) = T (x−y), a−b ∈ A. Therefore a−b ∈ T (x−y)∩A. Then
T (x) − T (y) ∈ (T−1(A))/T. Now suppose T (a) ∈ R/T and T (x) ∈ (T−1(A))/T ,
by Definition 5.1, T (x) ∩ A ̸= ∅. There exists b ∈ T (x) ∩ A. Since A is an ideal,
T (a)b ⊆ A and T (a)b ⊆ T (xa) = T (x)T (a). Then T (a)b ⊆ T (xa) ∩ A. Hence
T (x)T (a) = T (xa) ∈ (T−1(A))/T.

Definition 5.4. Let R and S be two commutative rings and T : R → P ∗(S) be
a set-valued mapping. T is called a strong set-valued homomorphism if

(i) T (x1 + x2) = T (x1) + T (x2);
(ii) T (x1x2) = {ab | a ∈ T (x1), b ∈ T (x2)} = T (x1)T (x2);
(iii) {a2 | a ∈ T (x)} = T (x2);
(iv) T (−x) = −T (x);

for all x, x1, x2 ∈ R.

We can obtain the following propositions by direction from the definition.

Proposition 5.5. Let R and S be two commutative rings and T : R → P ∗(S)
be a strong set-valued homomorphism. If A ⊆ S be a semiprime ideal of S and
(T+(A))/T ̸= ∅, then (T+(A))/T is a semiprime ideal of R/T.

Proposition 5.6. Let R and S be two commutative rings and T : R → P ∗(S)
be a strong set-valued homomorphism. If A ⊆ S be a semiprime ideal of S and
(T−1(A))/T ̸= ∅, then (T−1(A))/T is a semiprime ideal of R/T.

Corollary 5.7. Let θ is a complete congruence relation on commutative ring on
S and A an ideal of S, then (Apr(A))/θ = {[x]θ | [x]θ ⊆ A} and (Apr(A))/θ =
{[x]θ | [x]θ ∩ A ̸= ∅} are ideals of S/θ.

Corollary 5.8. Let θ is a complete congruence relation on commutative ring on
S and A is a semiprime ideal of S, then (Apr(A))/θ and (Apr(A))/θ are rough
quotient semiprime ideals.

For proving the two above corollaries, it is enough we define T : S → P ∗(S)
where T (x) = [x]θ for all x ∈ S.

6. Conclusion

The rough sets theory is regarded as a generalization of the classical sets the-
ory. A key notion in rough set is an equivalence which is sometime difficult to
be obtained in rearward problems due to vagueness and incompleteness of hu-
man knowledge. In the present paper, we substituted a universe set by a ring
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and introduced the set-valued homomorphism and the strong set-valued homo-
morphism, T -rough semiprime ideals and T -rough fuzzy semiprime ideals in a
commutative ring based on definitions in [5]. We discussed the relations between
upper(lower)T - rough semiprime ideals and upper (lower) approximations of their
homomorphism images. We extended some theorems which have been proved [5,
6, 12]. In addition, we introduced the notion of lower and upper T -rough quotient
set in a ring and investigated some their interesting properties.
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