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TRIPLE SOLUTIONS FOR NONLINEAR SINGULAR m-POINT
BOUNDARY VALUE PROBLEM

FULI WANG

Abstract. In this paper, we study the existence of three solutions to the
following nonlinear m-point boundary value problem

u′′(t) + β2u(t) = h(t)f(t, u(t)), 0 < t < 1,

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),

where 0 < β < π
2 , f ∈ C([0, 1] × R+,R+). h(t) is allowed to be singular at

t = 0 and t = 1. The arguments are based only upon the Leggett-Williams
fixed point theorem. We also prove nonexist results.

1. Introduction

Motivated by the work of Bitsadze and Samarskii on nonlocal linear elliptic
boundary value problem [1, 2], Il’in and Moiseev studied a multipoint boundary
value problems for linear second-order ordinary differential equations [3]. Since
then, great efforts have been devoted to the multipoint boundary value problems
for more general nonlinear ordinary differential equations due to its theoretical
challenge and its great potential applications; see for example [4]–[13] and the
references therein.

In 2007, Han [13] studied the existence of positive solutions for three-point
boundary value problem{

u′′(t) + β2u(t) = h(t)f(t, u(t)), 0 < t < 1,
u′(0) = 0, u(η) = u(1),

(1.1a)
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where 0 < β < π
2
, 0 < η < 1, under the assumptions:

(C1) h : (0, 1) → [0,+∞) is continuous, h(t) ̸≡ 0, and∫ 1

0

h(t)dt < +∞.

(C2) f : [0, 1]× [0,+∞) → [0,+∞) is continuous.
He established the following result for (1.1a).

Theorem 1.1[13]. Assume (C1) and (C2) hold. Then in each of the following
cases:
(i)

lim inf
u→0+

min
t∈[0,1]

f(t, u)

u
> λ1; lim sup

u→+∞
max
t∈[0,1]

f(t, u)

u
< λ1;

(ii)

lim inf
u→+∞

min
t∈[0,1]

f(t, u)

u
> λ1; lim sup

u→0+
max
t∈[0,1]

f(t, u)

u
< λ1.

Then BVP (1.1a) has at least one positive solution, where λ1 is the first eigenvalue
of the corresponding linear positive operator.

In this paper, we are concerned with the second-order m-point boundary value
problem 

u′′(t) + β2u(t) = h(t)f(t, u(t)), 0 < t < 1,

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),
(1.1)

where 0 < β < π
2
, m ≥ 3, 0 < η1 < η2 < · · · < ηm−1 < 1 and αi ≥ 0, for all

i = 1, 2, . . . ,m− 2 such that
m−2∑
i=1

αi < 1.

The goal of this paper is to obtain the existence of multiple solutions for the
singular second-order m-point boundary value problem (1.1) under the sufficient
conditions by applying the well-known Leggett-Williams fixed point theorem. The
emphasis here is that, in our main result, we don’t care whether the following
limits exist or not:

lim inf
u→0+

min
t∈[0,1]

f(t, u)

u
, lim sup

u→+∞
max
t∈[0,1]

f(t, u)

u
, lim inf

u→+∞
min
t∈[0,1]

f(t, u)

u
, lim sup

u→0+
max
t∈[0,1]

f(t, u)

u
.

Therefore, our conclusion improves and extends the main results contained in
[13].

The paper is divided into four sections. In Section 2, we provide some prelim-
inaries and various lemmas, which play key roles in this paper. In Section 3, we
obtain the existence of multiple positive solutions of the m-point boundary value
problem (1.1). In Section 4, we give the nonexistence of positive solution.

2. Preliminaries and lemmas

In Banach space C[0, 1] in which the norm is defined by ∥u∥ = max
0≤t≤1

|u(t)| for
any u ∈ C[0, 1]. We setK = {u ∈ C[0, 1]|u(t) ≥ 0, t ∈ [0, 1]} be a cone in C[0, 1].
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The function u is said to be a positive solution of BVP (1.1) if u ∈ C[0, 1]∩C2(0, 1)
satisfies (1.1) and u(t) > 0 for t ∈ (0, 1).

Let G(t, s) be the Green’s function of the problem (1.1) with h(t)f(t, u) ≡ 0
(see [14]), that is,

G(t, s) =


1

β
sin β(t− s), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1

+
Km

β
cos βt



sin β(1− s)−
m−2∑
i=1

αi sin β(ηi − s), 0 ≤ s ≤ η1,

sin β(1− s)−
m−2∑
i=2

αi sin β(ηi − s), η1 ≤ s ≤ η2,

sin β(1− s)−
m−2∑
i=3

αi sin β(ηi − s), η2 ≤ s ≤ η3,

· · ·

sin β(1− s)−
m−2∑
i=k

αi sin β(ηi − s), ηk−1 ≤ s ≤ ηk,

· · ·
sin β(1− s), ηm−2 ≤ s ≤ 1.

It is known [14] that there exist a constant σ ∈ (0, 1) and a continuous funcition
Φ : [0, 1] → [0,+∞) such that

σΦ(s) ≤ G(t, s) ≤ Φ(s), for all t, s ∈ [0, 1]. (2.1)

We make the following assumptions:
(H1) h : (0, 1) → [0,+∞) is continuous, h(t) ̸≡ 0, and∫ 1

0

h(t)dt < +∞;

(H2) f : [0, 1]× R+ → R+ is continuous.
Let

(Au)(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds, t ∈ [0, 1]. (2.2)

We can verify that the nonzero fixed points of the operator A are positive
solutions of the problem (1.1).

Define

P = {u ∈ K|u(t) ≥ σ∥u∥, t ∈ [0, 1]}.
Then P is subcone of K.
Lemma 2.1. Suppose that (H1) and (H2) are satisfied. Then A : P → P is a
completely continuous operator.
Proof. Let u ∈ K. Since G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1], by the definition,
we have (Au)(t) ≥ 0, t ∈ [0, 1]. On the other hand, by (2.1) we have

(Au)(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds ≥ σ

∫ 1

0

Φ(s)h(s)f(s, u(s))ds, (2.3)
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∥Au∥ = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds ≤
∫ 1

0

Φ(s)h(s)f(s, u(s))ds, (2.4)

for every t ∈ [0, 1], by (2.3) and (2.4) we have

(Au)(t) ≥ σ∥Au∥.
Thus, we assert that A : P → P . It follows from Arzela-Ascoli’s theorem that if
(H1)–(H2) are satisfied, A : P → P is completely continuous.

Our main result concerning three positive solutions of (1.1) will arise as appli-
cations of the following Leggett-Williams fixed point theorem [15].

A map α : P → [0,+∞) is said to be a nonnegative continuous concave
functional on P if α is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y),

for all x, y ∈ P and t ∈ [0, 1]. Let a, b be two numbers such that 0 < a < b and
α is a nonnegative continuous concave functional on P . We define the following
convex sets:

Pa = {x ∈ P |∥x∥ < a},
P (α, a, b) = {x ∈ P |a ≤ α(x), ∥x∥ ≤ b}.

Lemma 2.2. Let A : Pc → Pc be completely continuous and α be a nonnegative
continuous concave functional on P such that α(x) ≤ ∥x∥ for all x ∈ Pc. Suppose
there exist 0 < d < a < b ≤ c such that

(i) {x ∈ P (α, a, b)|α(x) > a} ̸= ∅ and α(Ax) > a for x ∈ P (α, a, b);
(ii) ∥Ax∥ < d for ∥x∥ ≤ d;
(iii) α(Ax) > a for x ∈ P (α, a, c) with ∥Ax∥ > b.

Then A has at least three fixed points x1, x2, x3 ∈ Pc satisfying x1 < d, a <
α(x2), ∥x3∥ > d and α(x3) < a.

3. Existence result

In this section, we will impose growth conditions on f which allow us to apply
Lemma 2.2 in regard to obtaining three solutions of (1.1).
Theorem 3.1. Suppose that (H1) and (H2) are satisfied. If there exist constants
a and d with 0 < d < a such that

f(t, u) <
d

D
, t ∈ [0, 1], u ∈ [0, d], (3.1)

and

f(t, u) >
a

C
, t ∈ [0, 1], u ∈ [a,

a

σ
], (3.2)

where

D = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)ds and C = min
t∈[0,1]

∫ 1

0

G(t, s)h(s)ds.

Suppose further that one of the following conditions holds:
(H3)

lim
u→∞

max
t∈[0,1]

f(t, u)

u
<

1

D
;
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(H4) there exists a number c such that c > a
σ
and if t ∈ [0, 1] and u ∈ [0, c], then

f(t, u) < c
D
.

Then m-point BVP (1.1) has at least three nonnegative solutions.

Proof. For u ∈ K, let

α(u) = min
t∈[0,1]

u(t).

It is easy to check that α is a nonnegative continuous concave functional on P
with α(x) ≤ ∥x∥ for x ∈ P .

We first assert that if (H3) holds, then there exists a number c such that c > a
σ

and A : Pc → Pc. To see this, suppose

lim
u→∞

max
t∈[0,1]

f(t, u)

u
<

1

D
,

then there exists τ > 0 and γ < 1
D

such that if u > τ , then

max
t∈[0,1]

f(t, u)

u
≤ γ,

that is to say, f(t, u) ≤ γu for t ∈ [0, 1] and u > τ . Set

β = max
t∈[0,1],u∈[0,τ ]

f(t, u).

Then f(t, u) ≤ γu+ β for all t ∈ [0, 1] and u ∈ [0,+∞). Take

c > max
{ βD

1− γD
,
a

σ

}
.

If u ∈ Pc, then

∥Au∥ = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)h(s)[γu(s) + β]ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)h(s)[γ∥u∥+ β]ds

≤ (γc+ β)D < c.

Next we assert that if there exists a positive number r such that f(t, u) < r
D

for

t ∈ [0, 1] and u ∈ [0, r], then A : Pr → Pr. Indeed, if u ∈ Pr, then

∥Au∥ = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds <
r

D
D = r.

Hence, we have shown that if either (H3) or (H4) holds, then there exists a
number c > a

σ
such that A maps Pc into Pc.

Note that if r = d, then we may assert further that A maps Pd into Pd by (3.1).
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Next, we assert that {u ∈ P (α, a, a
σ
)|α(u) > a} ̸= ∅ and α(Au) > a for all

u ∈ P (α, a, a
σ
). Indeed, the constant function

a+ a
σ

2
∈ {u ∈ P (α, a, a

σ
)|α(Au) > a}.

Moreover, for u ∈ P (α, a, a
σ
), we have

a

σ
≥ ∥u∥ ≥ u(t) ≥ min

t∈[0,1]
u(t) = α(u) ≥ a,

for all t ∈ [0, 1]. Thus, in view of (3.2), we see that

α(Au) = min
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

> a
C

min
t∈[0,1]

∫ 1

0

G(t, s)h(s)ds

= a,

as required.
Finally, we assert that if u ∈ P (α, a, c) and ∥Au∥ > a

σ
, then α(Au) > a. To see

this, suppose u ∈ P (α, a, c) and ∥Au∥ > a
σ
, then we have

α(Au) = min
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

≥ σ

∫ 1

0

Φ(s)h(s)f(s, u(s))ds,

for t ∈ [0, 1]. Thus,

α(Au) ≥ σ max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

= σ∥Au∥ > σ a
σ
= a.

To sum up, all the hypotheses of the Leggett-Williams theorem are satisfied
by taking b = a

σ
. Hence, A has at least three fixed points, i.e., the m-point BVP

(1.1) has at least three nonnegative solutions u, v and w such that ∥u∥ < d, a <
min
t∈[0,1]

v(t), ∥w∥ > d and min
t∈[0,1]

w(t) < a. The proof is complete. �

4. Nonexistence results

In this section, we present our nonexistence results. Note that condition (H1)
holds throughout this section as well.
Theorem 4.1. If Bf(t, u) < u for all t ∈ [0, 1] and u ∈ (0,+∞), where

B =

∫ 1

0

Φ(s)h(s)ds. Then m-point BVP (1.1) has no positive solutions.
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Proof. Assume, to the contrary, that u(t) is a positive solution of (1.1). Then

u(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

< 1
B

∫ 1

0

G(t, s)h(s)u(s)ds

≤ 1
B

∫ 1

0

Φ(s)h(s)ds∥u∥

= ∥u∥,
which is a contradiction. The proof is complete. �

Theorem 4.2. If B′f(t, u) > u for all t ∈ [0, 1] and u ∈ (0,+∞), where

B′ = σ2

∫ 1

0

Φ(s)h(s)ds. Then m-point BVP (1.1) has no positive solutions.

Proof. Assume, to the contrary, that u(t) is a positive solution of (1.1). Then

u(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s))ds

> 1
B′

∫ 1

0

G(t, s)h(s)u(s)ds

≥ σ2

B′

∫ 1

0

Φ(s)h(s)ds∥u∥

= ∥u∥,
which is a contradiction. The proof is complete. �
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