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SOME FIXED POINT RESULTS IN ORDERED PARTIAL
METRIC SPACES

HASSEN AYDI

Abstract. In this paper, we establish some fixed point theorems in ordered
partial metric spaces. An example is given to illustrate our obtained results.

1. Introduction and preliminaries

When fixed point problems in partially ordered metric spaces are concerned, first
results were obtained by Ran and Reurings [17], and then by Nieto and López
[11]. The following fixed point theorem was proved in these papers.

Theorem 1.1. [11, 17] Let (X,≤X) be a partially ordered set and let d be a
metric on X such that (X, d) is a complete metric space. Let f : X → X be
a non-decreasing map with respect to ≤X . Suppose that the following conditions
hold:
(i) ∃0 ≤ c < 1, d(fx, fy) ≤ cd(x, y) for any y ≤X x
(ii) ∃x0 ∈ X such that x0 ≤X fx0
(iii) f is continuous in (X, d), or
(iii’) if a non-decreasing sequence {xn} converges to x ∈ X, then xn ≤X x for all
n.
Then f has a fixed point u ∈ X.

Results on weakly contractive mappings in such spaces were obtained by Har-
jani and Sadarangani in [8]. An extension of the previous result is the following
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Theorem 1.2. [8] Let (X,≤) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let f : X → X
be a non-decreasing mapping with respect to ≤X such that

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)),

for y ≤X x, where ψ : [0,+∞[→ [0,+∞[ is a continuous and non-decreasing
function such that it is positive in ]0,+∞[, ψ(0) = 0 and lim

t→+∞
ψ(t) = +∞.

Assume that
(i) f is continuous in (X, d), or
(ii) if a non-decreasing sequence {xn} converges to x ∈ X, then xn ≤X x for all
n.
If there exists x0 ∈ X with x0 ≤X fx0, then f has a fixed point.

Many other results on the existence of fixed points or common fixed points in
ordered metric spaces were given, we can cite for example [1, 3, 5, 6, 7, 9, 12, 15,
21, 23] and the references therein.

In this paper we extend the results of Harjani and Sadarangani [8] to the case of
partial metric spaces. An example is considered to illustrate our obtained results.

First, we start with some preliminaries on partial metric spaces. For more
details, we refer the reader to [2, 4, 10, 13, 14, 16, 18, 19, 20, 22, 23].

Definition 1.3. Let X be a nonempty set. A partial metric on X is a function
p : X ×X −→ R+ such that for all x, y, z ∈ X:
(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X.

If p is a partial metric on X, then the function ps : X ×X −→ R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.

Definition 1.4. Let (X, p) be a partial metric space. Then:
(i) a sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if
and only if p(x, x) = lim

n−→+∞
p(x, xn);

(ii) a sequence {xn} in a partial metric space (X, p) converges properly to a point
x ∈ X if and only if p(x, x) = lim

n−→+∞
p(xn, xn) = lim

n−→+∞
p(x, xn), if and only if

lim
n−→+∞

ps(x, xn) = 0;

(iii) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence
if there exists (and is finite) lim

n,m−→+∞
p(xn, xm);

(iv) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges to a point x ∈ X, that is p(x, x) = lim

n,m−→+∞
p(xn, xm).
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Lemma 1.5. Let (X, p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
the metric space (X, ps);
(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps)
is complete. Furthermore, lim

n−→+∞
ps(xn, x) = 0 if and only if

p(x, x) = lim
n−→+∞

p(xn, x) = lim
n,m−→+∞

p(xn, xm).

Definition 1.6. Suppose that (X1, p1) and (X2, p2) are partial metrics. Denote
τ(p1) and τ(p2) their respective topologies. We say T : (X1, p1) → (X2, p2) is
continuous if both T : (X1, τ(p1)) → (X2, τ(p2)) and T : (X1, τ(p

s
1)) → (X2, τ(p

s
2))

are continuous.

Proposition 1.7. Let (X, p) be a partial metric space, partially ordered and
T : X → X be a given mapping. We say that T is continuous in x0 ∈ X if for
every sequence {xn} is X, we have
(a) xn converges to x0 in (X, p) implies Txn converges to Tx0 in (X, p).
(b) xn converges properly to x0 in (X, p) implies Txn converges properly to Tx0
in (X, p).
If T is continuous on each point x0 ∈ X, then we say that T is continuous on X.

Definition 1.8. If (X,≤X) is a partially ordered set and f : X → X, we say
that f is monotone nondecreasing if x, y ∈ X, x ≤X y implies fx ≤X fy.

2. Main results

Our first result is the following theorem

Theorem 2.1. Let (X,≤X) be a partially ordered set and let p be a partial metric
on X such that (X, p) is complete. Let f : X → X be a non-decreasing map with
respect to ≤X . Suppose that the following conditions hold: for y ≤ x, we have
(i)

p(fx, fy) ≤ p(x, y)− ψ(p(x, y)), (2.1)

where ψ : [0,+∞[→ [0,+∞[ is a continuous and non-decreasing function such
that it is positive in ]0,+∞[, ψ(0) = 0 and lim

t→+∞
ψ(t) = +∞;

(ii) ∃x0 ∈ X such that x0 ≤X fx0;
(iii) f is continuous in (X, p), or;
(iii’) if a non-decreasing sequence {xn} converges to x ∈ X, then xn ≤X x for all
n.
Then f has a fixed point u ∈ X. Moreover, p(u, u) = 0.

Proof. Let x0 ∈ X be such that x0 ≤X fx0. As f is monotone non-decreasing,
then

x0 ≤X fx0 ≤X f2x0 ≤X f 3x0 ≤X ... ≤X fnx0 ≤X fn+1x0 ≤X ...

Put xn = fnx0, then for any n ∈ N∗, we have xn−1 ≤X xn. Then for each integer
n ≥ 1, from (2.1) and, as the elements xn and xn−1 are comparable, we get

p(xn+1, xn) = p(fxn, fxn−1) ≤ p(xn, xn−1)− ψ(p(xn, xn−1)), (2.2)
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If there exists n1 ∈ N∗ such that p(xn1 , xn1−1) = 0, then xn1−1 = xn1 = fxn1−1

and xn1−1 is a fixed point of f and the proof is finished. In other case, suppose
that p(xn+1, xn) ̸= 0 for all n ∈ N. Then, using an assumption on ψ in (2.2) we
have for n ∈ N∗

p(xn+1, xn) ≤ p(xn, xn−1)− ψ(p(xn, xn−1)) < p(xn, xn−1).

Put ρn = p(xn+1, xn), then we have

ρn ≤ ρn−1 − ψ(ρn−1) < ρn−1. (2.3)

Therefore {ρn} is a nonnegative non-increasing sequence and hence possesses a
limit ρ∗. From (2.3), taking limit when n→ +∞, we get

ρ∗ ≤ ρ∗ − ψ(ρ∗),

and, consequently, ψ(ρ∗) = 0. By our assumptions on ψ, we conclude ρ∗ = 0,
that is,

lim
n→+∞

p(xn, xn+1) = 0. (2.4)

In what follows we shall show that {xn} is a Cauchy sequence in the partial metric
space (X, p). Fix ε > 0, as ρn = p(xn+1, xn) → 0, there exists n0 ∈ N such that

p(xn0+1, xn0) ≤ min{ε
2
, ψ(

ε

2
)}. (2.5)

We claim that if z ∈ X verifies p(z, xn0) ≤ ε and xn0 ≤X z, we get p(fz, xn0) ≤ ε.
Indeed, to do this we distinguish two cases :
Case 1. p(z, xn0) ≤ ε

2
. In this case, as z and xn0 are comparable, we have

p(fz, xn0) ≤p(fz, fxn0) + p(fxn0 , xn0)

=p(fz, fxn0) + p(xn0+1, xn0)

≤p(z, xn0)− ψ(p(z, xn0)) + p(xn0+1, xn0)

≤p(z, xn0) + p(xn0+1, xn0)

≤ε
2
+
ε

2
= ε.

Case 2. ε
2
≤ p(z, xn0) ≤ ε. In this case, as ψ is a non-decreasing function,

ψ( ε
2
) ≤ ψ(p(z, xn0)). Therefore, from (2.5) we have

p(fz, xn0) ≤p(fz, fxn0) + p(fxn0 , xn0)

=p(fz, fxn0) + p(xn0+1, xn0)

≤p(z, xn0)− ψ(p(z, xn0)) + p(xn0+1, xn0)

≤p(z, xn0)− ψ(
ε

2
) + p(xn0+1, xn0)

≤p(z, xn0)− ψ(
ε

2
) + ψ(

ε

2
)

≤p(z, xn0) ≤ ε.

This proves the claim. As xn0+1 verifies p(xn0+1, xn0) ≤ ε and xn0 ≤X xn0+1, the
claim gives us that xn0+2 = fxn0+1 verifies p(xn0+2, xn0) ≤ ε. We repeat this
process to get

p(xn, xn0) ≤ ε for any n ≥ n0.
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It follows that

p(xn, xm) ≤ p(xn, xn0) + p(xn0 , xm) ≤ ε+ ε = 2ε for any n,m ≥ n0.

Since ε is arbitrary, then lim
n,m→+∞

p(xn, xm) = 0. Thus, {xn} is a Cauchy sequence

in (X, p), so by Lemma 1.5, {xn} is a Cauchy sequence in the metric space (X, ps).
Since (X, p) is complete, hence (X, ps) is complete, so there exists u ∈ X such
that

lim
n→+∞

ps(xn, u) = 0. (2.6)

Thus, by Lemma 1.5, from the condition (p2) and (2.4), we get

p(u, u) = lim
n→+∞

p(xn, u) = lim
n→+∞

p(xn, xn) = 0. (2.7)

We prove now that fu = u. We shall distinguish the cases (iii) and (iii’) of the
Theorem 2.1.
Case 1. Suppose that the mapping f is continuous. In particular, thanks to
condition (b) in proposition 1.7, we have fxn converges properly to fu in (X, p),
that is ps(fxn, fu) −→ 0, since ps(xn, u) −→ 0, i.e, {xn} converges properly to u
in (X, p). Hence we have {fxn} converges to fu in (X, ps). On the other hand,
{fxn = xn+1} converges to u in (X, ps) because of (2.6). By uniqueness of the
limit in metric space (X, ps), we deduce that fu = u.
Case 2. Suppose now that the condition (iii′) of the theorem holds. The sequence
{xn} is non-decreasing with respect to ≤X , and it follows that xn ≤X u. Take
x = xn and y = u (which are comparable) in (2.1) to obtain that

p(u, fu) ≤ p(u, xn+1) + p(xn+1, fu) ≤ p(u, xn+1) + p(u, xn)− ψ(p(u, xn)). (2.8)

Letting n→ +∞ in (2.8) we find using (2.7) and the properties of ψ that

p(fu, u) ≤ 0− ψ(0) = 0,

hence p(fu, u) = 0, so fu = u. This completes the proof of Theorem 2.1. �
Corollary 2.2. Let (X,≤X) be a partially ordered set and let p be a partial metric
on X such that (X, p) is complete. Let f : X → X be a non-decreasing map with
respect to ≤X . Suppose that the following conditions hold:
(i) ∃0 ≤ c < 1 such that

p(fx, fy) ≤ cp(x, y) for any y ≤X x. (2.9)

(ii) ∃x0 ∈ X such that x0 ≤X fx0;
(iii) f is continuous in (X, p), or;
(iii’) if a non-decreasing sequence {xn} converges to x ∈ X, then xn ≤X x for all
n.
Then f has a fixed point u ∈ X. Moreover, p(u, u) = 0.

Proof. We take ψ(t) = (1− c)t in Theorem 2.1.

Next theorem gives a sufficient condition for the uniqueness of the fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.1 be fulfilled and let the fol-
lowing condition be satisfied: for arbitrary two points x, y ∈ X there exists z ∈ X
which is comparable with both x and y. Then the fixed point of f is unique.
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Proof. Let u and v be two fixed points of f , i.e., fu = u and fv = v. Consider
the following two cases:
Case 1. u and v are comparable. Then we can apply condition (2.1) and obtain
that

p(u, v) = p(fu, fv) ≤ p(u, v)− ψ(p(u, v)),

hence ψ(p(u, v)) ≤ 0, i,e, p(u, v) = 0, so u = v, that is the uniqueness of the fixed
point of f .
Case 2. Suppose now that u and v are not comparable. Choose an element w ∈ X
comparable with both of them. Then also, u = fnu is comparable with fnw for
each n (since f is non-decreasing). Applying (2.1), one obtains for n ∈ N∗ that

p(u, fnw) = p(ffn−1u, ffn−1w) ≤ p(fn−1u, fn−1w)− ψ(p(fn−1u, fn−1w))

≤ p(fn−1u, fn−1w) = p(u, fn−1w).

It follows that the sequence {p(u, fnw)} is non-increasing and it has a limit l ≥ 0.
Assuming that l > 0 and passing to the limit in the relation

p(u, fnw) ≤ p(u, fn−1w)− ψ(p(u, fn−1w)),

one obtains that l = 0, a contradiction. In the same way it can be deduced that
p(v, fnw) → 0 as n → +∞. Now, passing to the limit in p(u, v) ≤ p(u, fnw) +
p(fnw, v), it follows that p(u, v) = 0, so u = v, and the uniqueness of the fixed
point is proved. �
Example 2.4. Let X = [0,+∞[ endowed with the usual partial metric p defined
by p : X ×X → [0,+∞[ with p(x, y) = max{x, y}. We give the partial order on
X by

x ≤X y ⇐⇒ p(x, x) = p(x, y) ⇐⇒ x = max{x, y} ⇐= y ≤ x.

It is clear that (X,≤X) is totally ordered. The partial metric space (X, p) is
complete because (X, ps) is complete. Indeed, for any x, y ∈ X,

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) =2max{x, y} − (x+ y)

=|x− y|,
Thus, (X, ps) = ([0,+∞[, |.|) is the usual metric space, which is complete. Again,
we define

f(t) =
1

2
t, if t ≥ 0.

The function f is continuous on (X, p). Indeed, let {xn} be a sequence converging
to x in (X, p), then

lim
n→+∞

max{xn, x} = lim
n→+∞

p(xn, x) = p(x, x) = x

hence by definition of f , we have

lim
n→+∞

p(fxn, fx) = lim
n→+∞

max{fxn, fx} = lim
n→+∞

1

2
max{xn, x} =

1

2
x = p(fx, fx),

(2.10)
that is {f(xn)} converges to f(x) in (X, p). On the other hand, if {xn} converges
properly to x in X, hence

lim
n→+∞

ps(xn, x) = 0.
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Thus, by definition of ps and f , one can find

lim
n→+∞

ps(fxn, fx) = 0. (2.11)

Both convergences (2.10)-(2.11) yield that f is continuous on (X, p). Any x, y ∈ X
are comparable, so for example we take x ≤X y, and then p(x, x) = p(x, y), so
y ≤ x. Since f(y) ≤ f(x), so f(x) ≤X f(y), giving that f is monotone non-
decreasing with respect to ≤X . In particular, for any x ≤X y, we have

p(x, y) = x, p(fx, fy) = f(x) =
1

2
x. (2.12)

Let us take ψ : [0,+∞[→ [0,+∞[ such that ψ(t) = 1
4
t. We have for any x ∈ X,

1
2
x ≤ x− 1

4
x. Consequently, we get for any x ≤X y, thanks to this and (2.12)

p(fx, fy) ≤ p(x, y)− ψ(p(x, y),

that is (2.1) holds. All the hypotheses of Theorem 2.1 are satisfied, so f has a
unique fixed point in X, which is u = 0.
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Mahdia. Route de Réjiche, Km 4, BP 35, Mahdia 5121, Tunisie.

E-mail address: hassen.aydi@isima.rnu.tn


