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INTERNAL NONLOCAL AND INTEGRAL CONDITION
PROBLEMS OF THE DIFFERENTIAL EQUATION z' = f(t,z,z)

A. M. A. EL-SAYED!, E. M. HAMDALLAH? AND KH. W. ELKADEKY?

ABSTRACT. In this work, we are concerned with the existence of at least
one absolutely continuous solution of the Cauchy problem for the differen-
tial equation z = ft, x, :c'), t € (0,1) with the internal nonlocal condition
Yoy agz(tk) = xo, T € (¢,d) C (0,1). The problem of the integral
condition f(d z(s) dg(s) = z, will be considered.

1. INTRODUCTION

Problems with non-local conditions have been extensively studied by several
authors in the last two decades. The reader is referred to [0]- [B] and 8] - [IF]
and references therein.

Here we are consisted with the nonlocal problem

dr(t) dx(t)
5 = f(t,m(t),w), ae, te (0,1), (1.1)
Z ag ©(Tx) = T, Z ap #0and 7, € (¢,d) C (0,1). (1.2)

The existence of at least one solution z € AC|0,1] will be studied when the
function f is measurable in t € [0, 1],for any (u1,uz) € R* and continuous in
(u1,uz) € R? |, for t € [0,1]. As a consequence of our result, the problem of the
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differential equation () with integral condition

/ (s) dg(s) = o, (1.3)

where ¢ is a nondecreasing function, will be studied.
It must be noticed that the nonlocal condition (I2) and the integral condition
(3) are more general than the following ones

(1) = z,, T E€ (¢,d), (1.4)

Z arx(me) = 0, 7 € (a,c), (1.5)
k=1
and

/C x(s) dg(s) = 0. (1.6)

The following theorems will be needed.
Theorem (Kolmogorov Compactness Criterion) see[8]
Let Q C LP(0,1), 1 < P < oo. If
(i) Q is bounded L*(0, 1),
(ii) @5, — = as h — 0 uniformly with respect to x € €, then 2 is relatively
compact in L7(0, 1), where

n(t) = %/fh o(s) ds.

Theorem (Schauder) see[[7]
Let U be a convex subset of a Banach space X, and T :U — U is compact,
continuous map. Then 7T has at least one fixed point in U .

2. EXISTENCE OF SOLUTION

The following Lemma gives the integral equation representation for the nonlo-
cal problem (I)-(3).

Lemma 2.1 The solution of the nonlocal problem (II)-(I2) can be expressed
by the integral equation

x(t) = axy — aZak /OTk y(s) ds +/O y(s) ds (2.1)

where y is the solution of the functional integral equation

(t) = f(t,axg —a Yy ay K (s) ds + t (s) ds, y(t)), t € (0,1). (2.2)
y ; /0 y /0 y y

Proof. Let d‘fl(tt) = y(t) in equation (1), then

y(t) = f(t.2(0) + / y(s) ds,y(t)) (2.3)
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where

and
m m m Th
Z apx(mp) = Z apx(0) + Z ak/ y(s) ds. (2.5)
k=1 k=1 k=1 0
Substitute from (2) into (E33), we get
m m T
Ty = Z apz(0) + Z ak/ y(s) ds
k=1 k=1 0

and
o0) =azo =3 a [yl ) (26)

where a = (3,0, ar) .
Substitute from (E8) into (E4) and (E33), we obtain (E) and (E22).

Consider the functional integral equation (E2) with the following assumptions

(i) f:[0,1] x R? - RT is measurable in ¢ € [0,1] for any (uj,us) € R?
and continuous in (u1,us) € R? for almost all ¢ € [0,1].

(ii) There exists a function a € L]0, 1] and two constants b; >0, i = 1,2
such that

2
[t u,u2)| < a(t)] + Z bilui|, V(t, uy,up) € [0,1] x R?.
i=1
(iii)
(261 -+ bg) < 1.

Now we have the following theorem.

Theorem 2.1 Assume that the assumptions (i) - (iii) are satisfied. Then the
functional integral equation (E22) has at least one solution y € L1(0, 1).

Proof. Let ye B, C L', B, = {y: |lyllz, <r, r> 0}, r:%.

Clearly B, is nonempty, convex and closed .
Define the operator H by

Hy(t) = f(t,axq — aZak /Tk y(s) ds +/ y(s) ds, y(t)), t € (0,1). (2.7)
k=1 0 0
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From assumptions (i) and (iii), we obtain
1
Ml = [ I ) d
1 m ¢
= / taxo—aZak/ y(s d3+/ y(s) ds, y(t))| dt
0 0

m

/(|a()|+bl\aazo—a2ak/o (s ds+/ u(s) ds| + baly(1)]) dt

/ (|a()|dt+/ blaxodtJrablZak// §)| dsdt
+ // |dsdt+b2/|y

< lall + abyzo + by |[y[| + bul[yl] + bafly]]

IN

IN

< lal| 4+ braxg + (201 + b2)|ly|| <.

Then ||Hyl||r, < r, which implies that the operator H maps B, into itself.
Assumption (i) implies that H is continuous.

Now, let 2 be a bounded subset of B, , therefore H(f2) is bounded in L;(0, 1),
i.e condition (i) of Kolmogorav compactness criterion is satisfied, it remains to
show (Hy), — (Hy), in L1(0,1].

Let y € Q C L1(0,1), then we have the following

(Hy)n — (Hy)l|, = /O [(Hy)n(t) = (Hy)(1)] dt

= [ [ o s - o) a

[ [ e - ol a

< /}/”ﬂ saxo_azak/ ryir+ [ uryar, v(s)
- taxo—azak [ wrts+ [ utrts, wio) as

Since y € Q C Ly, and (assumption (ii) implies that) f € L0, 1], it follows

that
1 t+h m s
E/ (s axo—aZak/ y(T)dr + / y(r)dr, y(s))
t 0 0

IN
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ta:pg—aZak/ ds+/ y(s)ds, y(t))| ds = 0as h—0, te (0,1).

Hence (Hy), — (Hy), uniformly as h — 0.

Then by Kolmogorav compactness criterion, H(2) is relatively compact.

That is H has a fixed point in B,, then there exist at least one solution
y € Ly1(0,1) of the functional equation (233).

Now, consider the nonlocal problem (I)-(I2).

Theorem 2.2 Let the assumptions of Theorem 2.1 are satisfied. Then the
nonlocal problem ([C)-(I22) has at least one solution x € ACI0,1] .

Proof. Form Theorem 2.1 and equations (E1) and () we deduce that there
exist at least one solution z € AC|0, 1] of equation (E) where

t—0

z(0) = lim z(t) = axo—aZak /Tk y(s) ds (2.8)
k=1 0

and

t—1

(1) = lim z(t) = a:co—aZak/ ds—l—/o1 y(s) ds (2.9)

To complete the proof, we prove that equation (E) satisfies nonlocal problem
(D)-(2).
Differentiating (2), we get

dx dx
% = y(t> = f(t7x<t)7 %

Let t =7 in () ,we get

(Tk) —axo—azak/ d8+/ y(s) ds
0

)

Tk
:ax0+(1—a2ak) / y(s) ds
k=1 0
Then
m m m m T
Z arr(ty) = Z akaxo—l—z ak(l—aZak) / y(s) ds = x,
k=1 k=1 k=1 k=1 0

This complete the proof of the equivalent between the nonlocal problem (I)-
(I22) and the integral equation (E0) .

This implies that there exist at least one solution x € AC|0, 1] of the nonlocal
problem (I)-(2).
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3. NONLOCAL INTEGRAL CONDITION

Let = € ACI0,1] be the solution of the nonlocal problem ([I)-(I2). Let
ar = g(tx) — g(tk—1), g is a nondecreasing function, 7 € (tx_1,tx), ¢ = to <
t1 < tg,... < t, =d, then the nonlocal condition (I2) will be

m

3" (gt) = g(tir)) a(m) = o

k=1

From the continuity of the solution = of the nonlocal problem (II)-(2A) we can
obtain

m

T 3 (glte) ~ o(ti)) alm) = [ as) dots).

k=1

and the nonlocal condition (2) transformed to the integral one

/ " s) dgls) = o

Now, we have the following Theorem

Theorem 3.1 Let the assumptions of Theorem 2.1 are satisfied. Then there
exists at least one solution = € ACI0,1] of the nonlocal problem with integral

condition,
dx(t) dx(t)
= f(t,x(t), , a.e, t € (0,1],
S = (), S, e, te (0,1
d
/ z(s) dg(s) = w,.
(&
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