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Abstract

In this paper, fixed point and variational inequality problems are investigated based on a viscosity
approximation method. Strong convergence theorems are established in the framework of Hilbert spaces.
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1. Introduction and Preliminaries

Monotone variational inequality theory, which was introduced in sixties, has emerged as an interesting
and fascinating branch of applicable mathematics with a wide range of applications in finance, economics,
optimization, engineering and medicine see, for example, [1], [8], [9]-[11], [17], [25], [26] and the references
therein. This field is dynamic and is experiencing an explosive growth in both theory and applications; as
a consequence, research techniques and problems are drawn from various fields. The ideas and techniques
of monotone variational inequalities are being applied in a variety of diverse areas of sciences and prove to
be productive and innovative. It has been shown that this theory provides the most natural, direct, simple,
unified and efficient framework for a general treatment of a wide class of unrelated linear and nonlinear
problems, see, for example, [2], [5]-[7], [18]-[21], [23], [24], [29] and the references therein. Recently, fixed-
point methods have been extensively investigated for solving monotone variational inequalities. Among the
fixed-point algorithms, Mann-like iterative algorithms are efficient for solving several nonlinear problems.
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However, Mann-like iterative algorithms are only weakly convergent even in Hilbert spaces; see [12] for more
details and the references therein. In many disciplines, including economics [17], quantum physics [10], image
recovery [8] and control theory [11], problems arises in infinite dimension spaces. In such problems, norm
convergence (strong convergence) is often much more desirable than weak convergence, for it translates the
physically tangible property that the energy ‖xn−x‖ of the error between the iterate xn and the solution x
eventually becomes arbitrarily small. Halpern-like iterative algorithms, which are strongly convergent, have
been extensively investigated. Recently, Moudafi [22] introduced a viscosity method for solving fixed points
of nonlinear operators in the framework of Hilbert spaces. He showed that the convergence point is not only
a fixed point of nonlinear operators but an unique solution to some monotone variational inequality; see
[22] for more details and the references therein. In this paper, we consider a Moudafi’s viscosity iterative
method for solving common solutions of monotone variational inequality and fixed point problems. Strong
convergence theorems of common solutions are established in the framework of Hilbert spaces. The results
presented in this paper mainly improve the corresponding results in [13], [15], [16], [30]-[33].

Let H be a real Hilbert space with inner product 〈x, y〉 and induced norm ‖x‖ =
√
〈x, x〉 for x, y ∈ H.

Let C be a nonempty closed and convex subset of H. Let A : C → H be a mapping. Recall that A is said
to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0 ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a positive constant L > 0 such that

〈Ax−Ay, x− y〉 ≥ L‖Ax−Ay‖2 ∀x, y ∈ C.

From the definition, we see that every inverse-strongly monotone mapping is also monotone and Lipschitz
continuous.

Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀y ∈ C.

The solution set of the variational inequality is denoted by V I(C,A) in this paper. One of classical methods
of solving the variational inequality, is the gradient algorithm PC(I − rnA)xn, n = 0, 1, · · · , where rn > 0.

Let S : C → C be a mapping. Recall that S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖ ∀x, y ∈ C.

S is said to be α-contractive iff there exists a constant 0 ≤ α < 1 such that

‖Sx− Sy‖ ≤ α‖x− y‖ ∀x, y ∈ C.

In this paper, we use F (S) to stand for the set of fixed points of S. For the class of nonexpansive mappings,
we know that F (S) is nonempty if C is a weakly compact subset of reflexive Banach spaces; see [3] and the
references therein.

Lemma 1.1 ([4]). Let C be a closed convex subset of a Hilbert space H. Let {Ti}ri=1, where r is some
positive integer, be a sequence of nonexpansive mappings on C. Suppose ∩ri=1F (Ti) is nonempty. Let {µi}
be a sequence of positive numbers with

∑r
i=1 = 1. Then a mapping S on C defined by Sx =

∑r
i=1 µiTix for

x ∈ C is well defined, nonexpansive and F (S) = ∩ri=1F (Ti) holds.

Lemma 1.2 ([28]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn =∞ and limn→∞ γn = 0;
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(ii)
∑∞

n=1 |δn| <∞ or lim supn→∞ δn/γn ≤ 0.

Then limn→∞ αn = 0.

Lemma 1.3 ([27]). Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn} be a sequence
in (0, 1) with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn − yn+1‖ − ‖xn − xn+1‖) ≤ 0.

Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.4 ([3]). Let H be a real Hilbert space, C be a nonempty closed convex subset of H and S : C → C
be a nonexpansive mapping. Then I − S is demiclosed at zero, that is, {xn} converges weakly to some point
x and {xn − Txn} converges in norm to 0. Then x = Tx.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
Ai : C → H be a µi-inverse-strongly monotone mapping for each 1 ≤ i ≤ r, where r is some positive integer.
Let S : C → C be a nonexpansive mapping with a fixed point and let f : C → C be a fixed α-contractive
mapping. Assume that F := ∩ri=1V I(C,Ai) ∩ F (S) 6= ∅. Let {λi} be real numbers in (0, 2µi). Let {αn},
{βn} and {γn} be real sequences in (0, 1). Let {xn} be a sequence defined by the following manner:

x1 ∈ C,
yn,i ≈ PC(xn − λiAixn),

xn+1 = αnf(xn) + βnxn + γnS
∑r

i=1 ηiyn,i, n ≥ 1,

(2.1)

where the criterion for the approximate computation of yn,i in C is ‖yn,i − PC(xn − λiAixn)‖ ≤ en,i, where
limn→∞ ‖en,i‖ = 0 for each 1 ≤ i ≤ r. Assume that the above control sequences satisfies the following
conditions:

(a) αn + βn + γn =
∑r

i=1 ηi = 1 ∀n ≥ 1;

(b) 1 > lim supn→∞ βn ≥ lim infn→∞ βn > 0;

(c) limn→∞ αn = 0,
∑∞

n=1 αn =∞.

Then sequence {xn} converges in norm to a common solution p, which is also the unique solution to the
following variational inequality:

〈f(p)− p, p− q〉 ≥ 0 ∀q ∈ F .

Proof. First, we show sequences {xn} is bounded. For any x, y ∈ C, we see

‖(I − λiAi)x− (I − λiAi)y‖2 = ‖x− y‖2 − 2λi〈Aix−Aiy, x− y〉+ λ2i ‖Aix−Aiy‖2

≤ ‖x− y‖2 − λi(2µi − λi)‖Aix−Aiy‖2.

Using restriction λi ∈ (0, 2µi), we find that I − λiAi is nonexpansive. Fixing x∗ ∈ F , we have from Lemma
1.1 that

‖xn+1 − x∗‖ ≤ αn‖f(xn)− x∗‖+ βn‖xn − x∗‖+ γn‖S
r∑
i=1

ηiyn,i − x∗‖



Y. Zhang, Q. Yuan, J. Nonlinear Sci. Appl. 9 (2016), 1882–1890 1885

≤ αn‖f(xn)− f(x∗)‖+ αn‖f(x∗)− x∗‖+ βn‖xn − x∗‖

+ γn

r∑
i=1

ηi‖yn,i − PC(x∗ − λiAix∗)‖

≤ αnα‖xn − x∗‖+ αn‖f(x∗)− x∗‖+ βn‖xn − x∗‖

+ γn

r∑
i=1

ηi‖en,i‖+ γn

r∑
i=1

ηi‖PC(xn − λiAixn)− x∗‖

≤
(
1− αn(1− α)

)
‖xn − x∗‖+ αn‖f(x∗)− x∗‖+ γn

r∑
i=1

ηi‖en,i‖

≤
(
1− αn(1− α)

)
‖xn − x∗‖+ αn(1− α)

‖f(x∗)− x∗‖
1− α

+

r∑
i=1

ηi‖en,i‖

≤ max{‖xn − x∗‖,
‖f(x∗)− x∗‖

1− α
}+

r∑
i=1

ηi‖en,i‖.

By mathematical induction, we have

‖xn+1 − x∗‖ ≤ max{‖xn − x∗‖,
‖f(x∗)− x∗‖

1− α
}+

r∑
i=1

ηi(
∞∑
n=0

‖en,i‖) <∞.

This shows that sequence {xn} is bounded. Note that

‖yn+1,i − yn,i‖ ≤ ‖yn+1,i − PC(xn+1 − λiAixn+1)‖+ ‖PC(xn+1 − λiAixn+1)− PC(xn − λiAixn)‖
+ ‖PC(xn − λiAixn)− yn,i‖
≤ ‖en+1,i‖+ ‖xn+1 − xn‖+ ‖en,i‖.

Putting yn =
∑r

i=1 ηiyn,i, we have

‖yn+1 − yn‖ ≤
r∑
i=1

ηi‖yn+1,i − yn,i‖

≤
r∑
i=1

ηi(‖en+1,i‖+ ‖en,i‖) + ‖xn+1 − xn‖.

Put κn = xn+1−βnxn
1−βn for all n ≥ 1. That is, xn+1 = (1− βn)κn + βnxn ∀n ≥ 1. Note that

κn+1 − κn =
αn+1f(xn+1) + γn+1Syn+1

1− βn+1
− αnf(xn) + γnSyn

1− βn

=
αn+1

1− βn+1
f(xn+1) +

1− βn+1 − αn+1

1− βn+1
Syn+1 −

αn
1− βn

f(xn)− 1− βn − αn
1− βn

Syn

=
αn+1

1− βn+1

(
f(xn+1)− Syn+1

)
+

αn
1− βn

(
Syn − f(xn)

)
+ Syn+1 − Syn.

It follows that

‖κn+1 − κn‖ ≤
αn+1

1− βn+1
‖f(xn+1)− Syn+1‖+

αn
1− βn

‖Syn − f(xn)‖+ ‖Syn+1 − Syn‖

≤ αn+1

1− βn+1
‖f(xn+1)− Syn+1‖+

αn
1− βn

‖Syn − f(xn)‖+ ‖yn+1 − yn‖.

This implies
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‖κn+1 − κn‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1
‖f(xn+1)− Syn+1‖+

αn
1− βn

‖Syn − f(xn)‖

+
r∑
i=1

ηi(‖en+1,i‖+ ‖en,i‖).

Therefore, we have
lim sup
n→∞

(‖κn+1 − κn‖ − ‖xn+1 − xn+1‖) < 0.

Using Lemma 1.3, one has limn→∞ ‖κn − xn‖ = 0. It follows that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.2)

On the other hand, since PC is firmly nonexpansive, one has

‖PC(I − λiAi)xn − x∗‖2 ≤ 〈(I − λiAi)xn − (I − λiAi)x∗, PC(I − λiAi)xn − x∗〉

=
1

2

(
‖(I − λiAi)xn − (I − λiAi)x∗‖2 + ‖PC(I − λiAi)xn − x∗‖2

− ‖(I − λiAi)xn − (I − λiAi)x∗ − (PC(I − λiAi)xn − x∗)‖2
)

≤ 1

2

(
‖xn − x∗‖2 + ‖PC(I − λiAi)xn − x∗‖2

− ‖xn − PC(I − λiAi)xn − λi(Aixn −Aix∗)‖2
)

=
1

2

(
‖xn − x∗‖2 + ‖PC(I − λiAi)xn − x∗‖2 − ‖xn − PC(I − λiAi)xn‖2

+ 2λi〈Aixn −Aix∗, xn − PC(I − λiAi)xn〉 − λ2i ‖Aixn −Aix∗‖2
)
.

It follows that

‖PC(I − λiAi)xn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − PC(I − λiAi)xn‖2 +Mi‖Aixn −Aix∗‖, (2.3)

where Mi is an appropriate constant such that

Mi = max{2λi‖xn − PC(I − λiAi)xn‖ : ∀n ≥ 1}.

From the nonexpansivity of S, one has

‖xn+1 − x∗‖2 ≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn‖Syn − x∗‖2

≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn‖
r∑
i=1

ηiyn,i − x∗‖2

≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖+ γn

r∑
i=1

ηi‖PC(xn − λiAixn)− x∗‖2

≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖+ γn

r∑
i=1

ηi(‖xn − x∗‖2

− 2λi〈Aixn −Aix∗, xn − x∗〉+ λ2i ‖Aixn −Aix∗‖2)

≤ αn‖f(xn)− x∗‖2 + ‖xn − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖ − γn
r∑
i=1

ηiλi(2µi − λi)‖Aixn −Aix∗‖2.

It follows that

γn

r∑
i=1

ηiλi(2µi − λi)‖Aixn −Aix∗‖2 ≤ αn‖f(xn)− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖
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≤ αn‖f(xn)− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖

+ γn

r∑
i=1

ηi‖en,i‖.

From 2.2, one obtains limn→∞ ‖Aixn −Aix∗‖ = 0 ∀1 ≤ i ≤ r. Note that

‖yn − xn‖ ≤ ‖
r∑
i=1

ηiyn,i −
r∑
i=1

ηiPC(I − λiAi)xn‖+ ‖
r∑
i=1

ηiPC(I − λiAi)xn − xn‖

≤
r∑
i=1

ηi‖en,i‖+
r∑
i=1

ηi‖PC(I − λiAi)xn − xn‖2.

It follows from 2.3 that

r∑
i=1

ηi‖PC(I − λiAi)xn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − xn‖+
r∑
i=1

ηi‖en,i‖+
r∑
i=1

ηiMi‖Aixn −Aix∗‖.

Hence, we have

‖xn+1 − x∗‖2 ≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn‖
r∑
i=1

ηiyn,i − x∗‖2

≤ αn‖f(xn)− x∗‖2 + βn‖xn − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖+ γn

r∑
i=1

ηi‖PC(xn − λiAixn)− x∗‖2

≤ αn‖f(xn)− x∗‖2 + ‖xn − x∗‖2 + γn

r∑
i=1

ηi‖en,i‖ − γn‖yn − xn‖+ γn

r∑
i=1

ηi‖en,i‖

+ γn

r∑
i=1

ηiMi‖Aixn −Aix∗‖.

This implies

γn‖yn − xn‖2 ≤ αn‖f(xn)− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ γn

r∑
i=1

ηiMi‖Aixn −Aix∗‖+ 2γn

r∑
i=1

ηi‖en,i‖

≤ αn‖f(xn)− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖

+ γn

r∑
i=1

ηiMi‖Aixn −Aix∗‖+ 2γn

r∑
i=1

ηi‖en,i‖.

Hence, we have
lim
n→∞

‖yn − xn‖ = 0.

Since

‖Syn − xn‖ ≤
αn
γn
‖f(xn)− xn‖+

1

γn
‖xn+1 − xn‖,

we find
lim
n→∞

‖Syn − xn‖ = 0.

From
‖Sxn − xn‖ ≤ ‖xn − Syn‖+ ‖Syn − Sxn‖

≤ ‖xn − Syn‖+ ‖yn − xn‖,



Y. Zhang, Q. Yuan, J. Nonlinear Sci. Appl. 9 (2016), 1882–1890 1888

we have
lim
n→∞

‖Sxn − xn‖ = 0.

Since PFf is α-contractive, we have it has an unique fixed point. Let use p to denote the unique fixed point,
that is, p = PFf(p).

Next, we show
lim sup
n→∞

〈f(p)− p, xn − p〉 ≤ 0.

To show it, we can choose a sequence {xni} of {xn} such that

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim
i→∞
〈f(p)− p, xni − p〉.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly to x̄. Without

loss of generality, we can assume that xni ⇀ x̄. Define a mapping W : C → C by

Wx =
r∑
i=1

ηiPC(I − λiAi)x ∀x ∈ C.

Using Lemma 1.1, we see that W is nonexpansive with

F (W ) = ∩ri=1F (PC(I − λiAi)) = ∩ri=1V I(C,Ai).

Since limn→∞ ‖xn −Wxn‖ = 0, we can obtain that x̄ ∈ F (W ). Using Lemma 1.4, we see that x̄ ∈ F (S).
This proves that

x̄ ∈ F (W ) ∩ F (S) = ∩ri=1V I(C,Ai) ∩ F (S).

It follows that
lim sup
n→∞

〈f(p)− p, xn − p〉 ≤ 0.

Since

‖yn − p‖ ≤
r∑
i=1

ηi‖en,i‖+ ‖xn − p‖,

one has

‖xn+1 − p‖2 ≤ αn〈f(xn)− p, xn+1 − p〉+ βn‖xn − p‖‖xn+1 − p‖+ γn‖Syn − p‖‖xn+1 − p‖
≤ αn〈f(p)− p, xn+1 − p〉+ αnα‖xn − p‖‖xn+1 − p‖+ βn‖xn − p‖‖xn+1 − p‖

+ γn‖yn − p‖‖xn+1 − p‖

≤ αn〈f(p)− p, xn+1 − p〉+
1− αn(1− α)

2
(‖xn − p‖2 + ‖xn+1 − p‖2)

+ γn‖xn+1 − p‖
r∑
i=1

ηi‖en,i‖.

It follows that

‖xn+1 − p‖2 ≤
(
1− αn(1− α)

)
‖xn − p‖2 + 2

(
αn〈f(p)− p, xn+1 − p〉+ ‖xn+1 − p‖

r∑
i=1

ηi‖en,i‖
)
.

Using Lemma 1.2, one has limn→∞ ‖xn − p‖ = 0. This completes the proof.

If S is the identity operator, one has the following result.
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Corollary 2.2. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
Ai : C → H be a µi-inverse-strongly monotone mapping for each 1 ≤ i ≤ r, where r is some positive integer.
Let f : C → C be a fixed α-contractive mapping. Assume that F := ∩ri=1V I(C,Ai) 6= ∅. Let {λi} be real
numbers in (0, 2µi). Let {αn}, {βn} and {γn} be real sequences in (0, 1). Let {xn} be a sequence defined by
the following manner: 

x1 ∈ C,
yn,i ≈ PC(xn − λiAixn),

xn+1 = αnf(xn) + βnxn + γn
∑r

i=1 ηiyn,i, n ≥ 1,

where the criterion for the approximate computation of yn,i in C is ‖yn,i − PC(xn − λiAixn)‖ ≤ en,i, where
limn→∞ ‖en,i‖ = 0 for each 1 ≤ i ≤ r. Assume that the above control sequences satisfies the following
conditions:

(a) αn + βn + γn =
∑r

i=1 ηi = 1 ∀n ≥ 1;

(b) 1 > lim supn→∞ βn ≥ lim infn→∞ βn > 0;

(c) limn→∞ αn = 0,
∑∞

n=1 αn =∞.

Then sequence {xn} converges in norm to a common solution p, which is also the unique solution to the
following variational inequality: 〈f(p)− p, p− q〉 ≥ 0 ∀q ∈ F .
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