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Abstract

In this work, multiple soliton solutions and multiple singular soliton solutions are formally derived for
the BBM equation. A novel transformation method combined with the Hirota’s bilinear method are used
to determine the two sets of solutions, where each set has a distinct structure. The resonance phenomenon
does not exist for the model under the study. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Long waves in shallow water is a subject of broad interest and has a long colorful history. Physically, it
has a rich variety of phenomenological manifestation, especially the existence of waves permanent in form
and robust in maintaining their entities through mutual interaction and collision as well as the remarkable
property of exhibiting recurrences of initial data when circumstances should prevail. These characteristics
are due to the intimate interplay between the roles of nonlinearity and dispersion.

The Benjamin–Bona–Mahony (BBM) equation [2]

ut + aux − buxxt + c
(
u2
)
x

= 0, (1.1)

where a, b, c are arbitrary constants, was derived as a model for the unidirectional propagation of long-
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crested, surface water waves. In addition to shallow water waves, the equation is applicable to the study
of drift waves in plasma or the Rossby waves in rotating fluids. The equation can also characterize the
hydromagnetic waves in cold plasma, acoustic waves in anharmonic crystals and acoustic-gravity waves in
compressible fluids [2]. Apart from these applications, solutions to the BBM equation are interesting in
themselves. As a result, many methods were used for the solutions of the BBM equation [1, 3, 4, 12, 13, 14].

The BBM equation has been investigated as a regularized version of the Korteweg–de Vries equation
for shallow water waves. It incorporates nonlinear dispersive and dissipative effects. In certain theoretical
investigations the equation is superior as a model for long waves, and the word “regularized” refers to the fact
that, from the standpoint of existence and stability, the equation offers considerable technical advantages
over the Korteweg–de Vries equation.

The investigation of exact travelling wave solutions to nonlinear evolution equations plays an important
role in the study of nonlinear physical phenomena. Solitons are the most important solutions among travel-
ling wave solutions. The existence of multi-soliton, especially two-soliton solutions, is crucial for information
technology: it makes it possible undisturbed simultaneous propagation of many pulses in both directions.
There are many powerful methods such as, the inverse scattering method, the Bäcklund transformation
method [15], and the Hirota bilinear method [7, 8, 9, 10, 11] were thoroughly used to derive the multiple
soliton solutions of these equations.

The Hirota bilinear method possesses significant features that make it practical for the determination
of multiple soliton solutions. The Hirota bilinear method relies on a transformation for considered equation
to a bilinear form. The bilinear forms are usually used to enable us deriving the auxiliary function. It is
remarkable to mention that it is not easy for us to find such a transformation for some equations and some-
times it requires the introduction of new dependent and sometimes even independent variables. However,
Hereman et al. [5, 6], formally introduced the simplified algorithm to derive the auxiliary functions without
using the bilinear forms.

It is the aim of this work to derive multiple soliton solutions and multiple singular soliton solutions for
the BBM equation (1.1). An efficient transformation combined with the Hereman’s method will be used to
achieve the goals set for this work.

2. Method description

To derive N -soliton solutions, we will mainly use the Hirota’s direct method combined with the simplified
version of Hereman and Zhuang [5, 6] where it was shown that soliton solutions are just polynomials of
exponentials. We only summarize the necessary steps, the details of which can be found in [16, 17, 18, 19,
20, 21].

We first substitute
u(x, t) = ekix−ωit

into the linear terms of the equation under discussion to determine the dispersion relation between ki and
ωi. To obtain the single soliton solution, we use a suitable transformation formula, such as

u(x, t) = R (ln f)xx ,

into the equation under discussion, where the auxiliary function f(x, t) is given by

f(x, t) = 1 + eθ1 ,

where
θi = kix− ωit, i = 1, 2, · · · , N.

Then solving the resulting equation to determine the numerical value for R. The N -soliton solutions can be
obtained by using the following forms for f(x, t):
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• For dispersion relation, we use

u(x, t) = ekix−ωit, θi = kix− ωit.

• For single soliton solution, we use
f(x, t) = 1 + eθ1 .

• For two-soliton solutions, we use

f(x, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 .

• For three-soliton solutions, we use

f(x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 + a123e

θ1+θ2+θ3 .

Notice that if we find that b123 = a12a13a23, then three-soliton solutions are obtained.
The determination of three-soliton solutions confirms the fact that N -soliton solutions exist for any

order.
However, for the multiple singular soliton solutions, we follow the following steps:

• For dispersion relation, we use

u(x, t) = ekix−ωit, θi = kix− ωit.

• For single soliton, we use
f(x, t) = 1− eθ1 .

• For two-soliton solutions, we use

f(x, t) = 1− eθ1 − eθ2 + a12e
θ1+θ2 .

• For three-soliton solutions, we use

f(x, t) = 1− eθ1 − eθ2 − eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3 − a123eθ1+θ2+θ3 .

3. Soliton solutions for the BBM equation

In this section, we derive the solution for the BBM equation. In the first subsection we deal with the
single soliton solution and in the second one we treat the single singular soliton solution.

3.1. Single soliton solution for the BBM equation

We first substitute
u(x, t) = ekix−ωit (3.1)

into the linear terms of the BBM equation (1.1) to determine the dispersion relation between ki and ωi as
follows

ωi =
aki

1− bk2i
. (3.2)

It is obvious that the dispersion relation (3.2) depends on the coefficient ki of x. As a result we obtain

θi = kix−
aki

1− bk2i
t. (3.3)
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The single soliton solution of (1.1) is assumed to be

u(x, t) = R (ln f)xx , (3.4)

where the auxiliary function f(x, t), for the single soliton solution, is given by

f(x, t) = 1 + eθ1 = 1 + e
k1x− ak1

1−bk21
t
. (3.5)

Substituting (3.4) into (1.1) and solving for R we find

R =
6ab

c
(
1− bk21

) . (3.6)

Substituting (3.5) into (3.4) and using (3.6) gives the single soliton solution

u(x, t) =
6abk21

c
(
1− bk21

) eη

(1 + eη)2
=

3abk21
2c
(
1− bk21

) sech2(
η

2
), (3.7)

where

η =

(
k1 − bk31
1− bk21

)
x−

(
a

1− bk21

)
t. (3.8)

Solution (3.8) is a bell-shaped solitary wave solution of the BBM Eq. (1.1), which has the maximum

amplitude
3abk21

2c(1−bk21)
. The profile of this solution is depicted in Figure 1.

Figure 1: The profile of the bell-shaped solitary wave solution (3.11) with a = −1, b = 2, c = 3, k1 = 2.

3.2. Single singular soliton solution for the BBM equation

To obtain a single singular soliton solution, we substitute

u(x, t) = ekix−ωit (3.9)
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into the linear terms of the BBM Eq. (1.1). This gives the dispersion relation by

ωi =
aki

1− bk2i
(3.10)

and as a result we obtain

θi = kix−
aki

1− bk2i
t. (3.11)

The singular single soliton solution of (1.1) is assumed to be

u(x, t) = R (ln f)xx , (3.12)

where the auxiliary function f(x, t) is given by

f(x, t) = 1− eθ1 = 1− e
k1x− ak1

1−bk21
t
. (3.13)

Substituting (3.12) into (1.1) and solving for R we find

R =
6ab

c
(
1− bk21

) . (3.14)

Substituting (3.13) into (3.12) gives the single soliton solution

u(x, t) =
6abk21

c
(
bk21 − 1

) eφ

(eφ − 1)
2 =

3abk21
2c
(
1− bk21

) csch2(
φ

2
), (3.15)

where

φ =

(
bk31 − k1
bk21 − 1

)
x+

(
a

bk21 − 1

)
t. (3.16)

The profile of the solution (3.15) is depicted in Figure 2.

Figure 2: The profile of the singular solitary wave solution (3.11) with a = −1, b = 2, c = 3, k1 = 2.
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3.3. Multiple soliton solutions for the BBM equation

More generally, the N -soliton solutions for Eq. (1.1) can be expressed in the following form:

u(x, t) =
6ab

c
(
1− bk21

) (ln f)xx , (3.17)

f(x, t) =
∑
µ=0,1

exp

 N∑
i>j

Mijµiµj +
N∑
j=1

µjθj

 ,

where θj = kjx− akj
1−bk2j

t and exp (Mij) =
(ki−kj)2

(ki+kj)
2 , while kj is the parameter characterizing the jth soliton,

N∑
i>j

denotes the summation over all possible combinations of µj = 0, 1 and

N∑
i>j

is the summation over all

possible pairs chosen from N elements under the condition i > j.
For two-soliton solutions, we substitute

f(x, t) = 1 + eθ1 + eθ2 +
(k1 − k2)2

(k1 + k2)
2 e
θ1+θ2 , (3.18)

where θ1 and θ2 are defined in (3.3), into

u(x, t) =
6ab

c
(
1− bk21

) (ln f)xx . (3.19)

It worth to point out that the BBM Eq. (1.1) does not show any resonant phenomenon because the

phase shift term a12 = (k1−k2)2

(k1+k2)
2 in (3.18) cannot be 0 or∞ for |k1| 6= |k2|. It is well known that a two-soliton

solution can degenerate into a resonant triad under the conditions

a12 = 0, or (a12)
−1 = 0 for |k1| 6= |k2| .

The profile of the two-soliton solution (3.17) is depicted in Figure 3.

Figure 3: The profile of the bell-shaped solitary wave solution (3.11) with a = −5, b = 2, c = 3, k1 = 2, k2 = 1
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To determine the three-soliton solutions we set

f(x, t) =1 + eθ1 + eθ2 + eθ3 +
(k1 − k2)2

(k1 + k2)
2 e
θ1+θ2 +

(k1 − k3)2

(k1 + k3)
2 e
θ1+θ3 (3.20)

+
(k2 − k3)2

(k2 + k3)
2 e
θ2+θ3 +

(k1 − k2)2

(k1 + k2)
2

(k1 − k3)2

(k1 + k3)
2

(k2 − k3)2

(k2 + k3)
2 e
θ1+θ2+θ3 .

The three-soliton solutions are obtained by substituting (3.20) into (3.17). This shows that the N -soliton
solutions can be obtained for finite N , where N ≥ 1.

3.4. Multiple singular soliton solutions for the BBM equation

Multiple singular soliton solutions for Eq. (1.1) can be expressed in the following form:

u(x, t) =
6ab

c
(
1− bk21

) (ln f)xx , (3.21)

where θj = kjx− akj
1−bk2j

t .

To determine the two singular soliton solutions explicitly, we substitute

f(x, t) = 1− eθ1 − eθ2 +
(k1 − k2)2

(k1 + k2)
2 e
θ1+θ2 , (3.22)

where θ1 and θ2 are defined in (3.3), into (3.21).
For the three-soliton solutions we substitute

f(x, t) =1− eθ1 − eθ2 − eθ3 +
(k1 − k2)2

(k1 + k2)
2 e
θ1+θ2 +

(k1 − k3)2

(k1 + k3)
2 e
θ1+θ3

+
(k2 − k3)2

(k2 + k3)
2 e
θ2+θ3 − (k1 − k2)2

(k1 + k2)
2

(k1 − k3)2

(k1 + k3)
2

(k2 − k3)2

(k2 + k3)
2 e
θ1+θ2+θ3 ,

where θi (i = 1, 2, 3) are defined in (3.3), into (3.21).

4. Conclusion

Under consideration in this paper is the BBM equation for the propagation of long waves in shallow
water. In this paper, the simplified form of the Hirota bilinear method has been employed to derive the
multi-soliton solutions and multiple singular soliton solutions. The solutions are formally obtained without
any need to derive the bilinear forms. The derived solutions show the interaction of standard solitons and
the singular behavior of the singular solitons. The analysis confirms the fact that certain equations which
have N -soliton solutions, have simultaneously, N -singular soliton solutions. To our knowledge, the solutions
that we have constructed are new and different from those in the existing papers.
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