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Abstract. The purpose of the present paper is to study some results in-
volving coefficient conditions, extreme points, distortion bounds, convolution
conditions and convex combination for a new class of harmonic multivalent
functions in the open unit disc. Relevant connections of the results presented
here with various known results are briefly indicated.

1. Introduction

A continuous complex-valued function f = u+iv defined in a simply connected
domain D is said to be harmonic in D if both u and v are real harmonic in D. In
any simply connected domain we can write f = h+g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f .

A necessary and sufficient condition for f to be locally univalent and sense-
preserving in D is that |h′(z)| > |g′(z)|, z ∈ D. See Clunie and Shiel-Small [7],
(see also Ahuja [1] and Duren [11].)

Let H denotes the class of functions f = h + g which are harmonic univalent
and sense-preserving in the open unit disk U = {z : |z| < 1} for which f (0) =
fz (0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic functions
h and g as

h(z) = z +
∞∑

k=2

akz
k, g(z) =

∞∑

k=1

bkz
k, |b1| < 1. (1.1)

Date: Received: August 27, 2010; Revised: November 29, 2010.
∗Corresponding author

c© 2011 N.A.G.
2000 Mathematics Subject Classification. Primary 30C45, 30C50, 30C55.
Key words and phrases. Harmonic; Univalent; Multivalent functions; Fractional calculus.

170



HARMONIC MULTIVALENT FUNCTIONS 171

Recently, Ahuja and Jahangiri [3] defined the class

Hp (k) , (p, k ∈ N = {1, 2, 3....})
consisting of all p-valent harmonic functions f = h+g which are sense-preserving
in U and h and g are of the form

h(z) = zp +
∞∑

k=2

ak+p−1z
k+p−1, g(z) =

∞∑

k=1

bk+p−1z
k+p−1, |bp| < 1. (1.2)

Note that H and Hp (k) reduce to the class S and Sp(k) of analytic univalent
and multivalent functions, respectively, if the co-analytic part of its members are
zero. For these classes f (z) may be expressed as

f(z) = z +
∞∑

k=2

akz
k, (1.3)

and

f(z) = zp +
∞∑

k=2

ak+p−1z
k+p−1. (1.4)

The following definitions of fractional integrals and fractional derivatives are
due to Owa [17] and Srivastava and Owa [23].

Definition 1.1. The fractional integral of order λ is defined for a function f (z)
by

D−λ
z f(z) =

1

Γλ

∫ z

0

f(ς)

(z − ς)1−λ
dς, (1.5)

where λ > 0, f (z) is an analytic function in a simply connected region of the

z -plane containing the origin and the multiplicity of (z − ς)λ−1 is removed by
requiring log (z − ς) to be real when (z − ς) > 0.

Definition 1.2. The fractional derivative of order λ is defined for a function
f (z) by

Dλ
z f(z) =

1

Γ (1− λ)

d

dz

∫ z

0

f(ς)

(z − ς)λ
dς, (1.6)

where 0 ≤ λ < 1, f (z) is an analytic function in a simply connected region of

the z -plane containing the origin and the multiplicity of (z − ς)−λ is removed as
in Definition 1.1 above.

Definition 1.3. Under the hypothesis of Definition 1.2 the fractional derivative
of order n + λ is defined for a function f (z) by

Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z), (1.7)

where 0 ≤ λ < 1 and n ∈ N0 = {0, 1, 2.....}.
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Motivated with the definition of Salagean operator, we introduced an interest-
ing operator (Dλ,p

z )nf(z) for function f(z) of the form (1.4)

(Dλ,p
z )0f(z) =

Γ(p− λ + 1)

Γ(p + 1)
zλDλ

z f(z)

(Dλ,p
z )1f(z) =

z

p

(
Γ (p− λ + 1)

Γ (p + 1)
zλDλ

z f (z)

)′

(Dλ,p
z )nf(z) = (Dλ,p

z )((Dλ,p
z )n−1f(z)).

Thus we have

(Dλ,p
z )nf(z) = zp +

∞∑

k=2

(
(k + p− 1)Γ (p− λ + 1) Γ (k + p)

pΓ (p + 1) Γ (k + p− λ)

)n

ak+p−1z
k+p−1

= zp +
∞∑

k=2

(ϕ (k, p, λ))n ak+p−1z
k+p−1 (1.8)

where and throughout this paper

ϕ(k, p, λ) =
kΓ(p− λ + 1)Γ(k + p)

Γ(p + 1)Γ(k + p− λ)
(k, p ∈ N). (1.9)

Now, we define (Dλ,p
z )nf(z) for function of the form (1.2) as follows

(Dλ,p
z )nf(z) = (Dλ,p

z )nh(z) + (−1)n(Dλ,p
z )ng(z). (1.10)

We note that the study of the above operator (Dλ,p
z )n is of special interest

because it includes a variety of well-known operator. For example
1. If we put n = 0, p = 1 then it reduces to Owa-Srivastava Operator.
2. If we put λ = 0, then it reduces to well-known and widely used Salagean

Operator [19].
Now for

m ∈ N, n ∈ N0,m > n, 0 ≤ γ < 1, β ≥ 0, 0 ≤ λ < 1, 0 ≤ t ≤ 1, α ∈ R

and z ∈ U , suppose that Hp(m,n; β; γ; t; λ) denote the family of harmonic func-
tions f of the form (1.2) such that

Re

{
(1 + βeiα)

(Dλ,p
z )mf(z)

(Dλ,p
z )nft(z)

− βeiα

}
≥ γ, (1.11)

where (Dλ,p
z )mf(z) is defined by (1.10) and ft(z) = (1− t)z + t(h(z) + g(z)).

Further, let the subclass Hp(m,n; β; γ; t; λ) consisting of harmonic functions
fm = h + gm in Hp(m,n; β; γ; t; λ) so that h and gm are of the form

h(z) = zp −
∞∑

k=2

|ak+p−1| zk+p−1, gm(z) = (−1)m−1
∞∑

k=1

|bk+p−1| zk+p−1, |bp| < 1.

(1.12)
By specializing the parameters in subclass Hp(m,n; β; γ; t; λ), we obtain the

following known subclasses studied earlier by various authors.

(1) Hp(m,n; 0; γ; 1; 0) ≡ Hp(m,n; γ) and Hp(m,n; 0; γ; 1; 0) ≡ Hp(m, n; γ)
studied by Sker and Eker [20].
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(2) Hp(n + 1, n; 1; γ; 1; 0) ≡ Hp(n, γ) and Hp(n + 1, n; 1; γ; 1; 0) ≡ Hp(n, γ)
studied by Dixit et al. [9].

(3) Hp(1, 0; 0; γ; 1; 0) ≡ Hp(γ) and Hp(1, 0; 0; γ; 1; 0) ≡ Hp(γ) studied by
Ahuja and Jahangiri [3].

(4) H1(n + q, n, p, γ, 1, 0) ≡ RH(n, γ, p, q) studied by Dixit et al. [8].
(5) H1(n+1, n, 1, γ, 1, 0) ≡ RSH(n, γ) and H1(n+1, n, 1, γ, 1, 0) ≡ RSH(n, γ)

studied by Yalcin et al. [25].
(6) H1(1, 0, 1, γ, 1, 0) ≡ GH(γ) and H1(1, 0, 1, γ, 1, 0) ≡ GH(γ) studied by

Rosy et al. [18].
(7) H1(2, 1, β, γ, 1, 0) ≡ HCV (β, γ) and H1(2, 1, β, γ, 1, 0) ≡ HCV (β, γ) stud-

ied by Kim et al. [15].
(8) H1(1, 0, β, γ, t, 0) ≡ GH(β, γ, t) and H1(1, 0, β, γ, t, 0) ≡ GH(β, γ, t) stud-

ied by Ahuja et al. [2].
(9) H1(m,n; 0; γ; 1; 0) ≡ SH(m, n; γ) and H1(m,n; 0; γ; 1; 0) ≡ SH(m, n; γ)

studied by Yalcin [24].
(10) H1(n + 1, n; 0; γ; 1; 0) ≡ H(n, γ) and H1(n + 1, n; 0; γ; 1; 0) ≡ H(n, γ)

studied by Jahangiri et al. [13].
(11) H1(1, 0; 0; γ; t; λ) ≡ S∗H(γ, t, λ) and H1(1, 0; 0; γ; t; λ) ≡ S∗H(γ, t, λ) studied

by Kumar et al. [16].
(12) H1(1, 0; 0; γ; 1; λ) ≡ S∗H(γ, λ) and H1(1, 0; 0; γ; 1; λ) ≡ TS∗H(γ, λ) studied

by Dixit and Porwal [10].
(13) H1(2, 1; 0; γ; 1; 0) ≡ HK(γ) and H1(1, 0; 0; γ; 1; 0) ≡ S∗H(γ) studied by

Jahangiri [12].
(14) H1(2, 1; 0; 0; 1; 0) ≡ HK(0) and H1(2, 1; 0; 0; 1; 0) ≡ S∗H(0) studied by Avci

and Zlotkiewicz [6], Silverman [21] and Silverman and Silvia [22].
(15) H1(1, 0, 0, γ, 0, 0) ≡ NH(γ) studied by Ahuja and Jahangiri [4].
(16) Sp(1, 0, k, 0, 1, 0) ≡ k − ST studied by Aouf [5], see also Kanas and Sri-

vastava [14].

In the present paper, results involving the coefficient condition, extreme points,
distortion bounds, convolution and convex combinations for the above classes
Hp(m,n, β, γ, tλ) and Hp(m,n, β, γ, t, λ) of harmonic multivalent functions have
been investigated.

2. Main results

In our first theorem, we introduce a sufficient condition for functions in Hp(m,n, β, γ, t, λ).

Theorem 2.1. Let f = h+g be such that h and g are given by (1.2). Furthermore,
let

∞∑

k=1

{ψ(m,n, β, γ, t, λ)|ak+p−1|+ Θ(m,n, β, γ, t, λ)|bk+p−1|} ≤ 2, (2.1)

where

ψ(m,n, β, γ, t, λ) =
(ϕ(k, p, λ))m(1 + β)− t(β + γ)(ϕ(k, p, λ))n

1− γ
,
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and

Θ(m,n, β, γ, t, λ) =
(ϕ(k, p, λ))m(1 + β)− (−1)m−nt(β + γ)(ϕ(k, p, λ))n

1− γ
,

ap = 1, m ∈ N, n ∈ N0, m > n, 0 ≤ γ < 1, β ≥ 0, 0 ≤ λ < 1 and 0 ≤ t ≤ 1,
then f is sense-preserving in U and f ∈ Hp(m,n, β, γ, t, λ).

Proof. Using the fact that Re ω ≥ γ if and only if |1 − γ + ω| ≥ |1 + γ − ω|, it
suffices to show that

|(1− γ)(Dλ,p
z )nft(z) + (1 + βeiα)(Dλ,p

z )mf(z)− βeiα(Dλ,p
z )nft(z)|

−|(1 + γ)(Dλ,p
z )nft(z)− (1 + βeiα)(Dλ,p

z )mf(z) + βeiα(Dλ,p
z )nft(z)|. (2.2)

Substituting for (Dλ,p
z )mf(z) and (Dλ,p

z )nft(z) in L.H.S. of (2.2), we have
∣∣∣∣∣(2− γ)zp +

∞∑

k=2

[(1− γ − βeiα)(ϕ(k, p, λ))nt + (1 + βeiα)(ϕ(k, p, λ))m] ak+p−1z
k+p−1

+(−1)n

∞∑

k=1

[(1− γ − βeiα)(ϕ(k, p, λ))nt + (−1)m−n(1 + βeiα)(ϕ(k, p, λ))m]bk+p−1z̄
k+p−1

∣∣∣∣∣

−
∣∣∣∣∣γzp +

∞∑

k=2

[(1 + γ + βeiα)(ϕ(k, p, λ))nt− (1 + βeiα)(ϕ(k, p, λ))m] ak+p−1z
k+p−1

+(−1)n

∞∑

k=1

[(1 + γ + βeiα)(ϕ(k, p, λ))nt− (−1)m−n(1 + βeiα)(ϕ(k, p, λ))m]bk+p−1z̄
k+p−1

∣∣∣∣∣

≥ 2(1− γ)|z|p − 2
∞∑

k=2

[(ϕ(k, p, λ))m(1 + β)− (γ + β)t(ϕ(k, p, λ))n]|ak+p−1||z|k+p−1

−
∞∑

k=1

|[(1− γ)(ϕ(k, p, λ))nt + (−1)m−n(1 + βeiα)(ϕ(k, p, λ))m − βeiα(ϕ(k, p, λ))nt]||bk+p−1||z|k+p−1

−
∞∑

k=1

|[(−1)m−n(1 + βeiα)(ϕ(k, p, λ))m − (1 + γ + βeiα)(ϕ(k, p, λ))nt]||bk+p−1||z|k+p−1

=





2(1− γ)|z|p − 2
∞∑

k=2

[(1 + β)(ϕ(k, p, λ))m − (γ + β)t(ϕ(k, p, λ))n]|ak+p−1||z|k+p−1

−2
∞∑

k=2

[(1 + β)(ϕ(k, p, λ))m + (γ + β)t(ϕ(k, p, λ))n]|bk+p−1||z|k+p−1, if m− n is odd

2(1− γ)|z|p − 2
∞∑

k=2

[(1 + β)(ϕ(k, p, λ))m − (γ + β)t(ϕ(k, p, λ))n]|ak+p−1||z|k+p−1

−2
∞∑

k=1

[(1 + β)(ϕ(k, p, λ))m − (γ + β)t(ϕ(k, p, λ))n]|bk+p−1||z|k+p−1, if m− n is odd
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= 2(1− γ)|z|p
{

1−
∞∑

k=2

(ϕ(k, p, λ))m(1 + β)− (γ + β)t(ϕ(k, p, λ))n

1− γ
|ak+p−1||z|k−1

−
∞∑

k=1

(ϕ(k, p, λ))m(1 + β)− (−1)m−n(γ + β)t(ϕ(k, p, λ))n

1− γ
|bk+p−1||z|k−1

}

> 2(1− γ)

{
1−

∞∑

k=2

(ϕ(k, p, λ))m(1 + β)− (γ + β)t(ϕ(k, p, λ))n

1− γ
|ak+p−1|

−
∞∑

k=1

(ϕ(k, p, λ))m(1 + β)− (−1)m−n(γ + β)t(ϕ(k, p, λ))n

1− γ
|bk+p−1|

}
.

The last expression is non negative by (2.1), and so the proof is complete. ¤

In the following theorem, it is proved that the condition (2.1) is also necessary
for functions fm = h + gm, where h and gm are of the form (1.12).

Theorem 2.2. Let fm = h+gm be given by (1.12). Then fm ∈ Hp(m,n, β, γ, t, λ),
if and only if

∞∑

k=1

{ψ (m,n, β, γ, t, λ) |ak+p−1|+ Θ (m,n, β, γ, t, λ) |bk+p−1|} ≤ 2. (2.3)

Proof. Since Hp (m,n; β; γ; t; λ) ⊂ Hp (m,n; β; γ; t; λ), we only need to prove the
“only if” part of the theorem.

To this end, for functions fm of the form (1.12), we notice that condition

Re





(
1 + βeiα

) (
Dλ,p

z

)m
f (z)(

Dλ,p
z

)n

ft (z)
− βeiα



 ≥ γ

is equivalent to

Re





(1− γ)zp −
∞∑

k=2

[(ϕ(k, p, λ))m(1 + βeiα)− (βeiα + γ)(ϕ(k, p, λ))nt]

|ak+p−1|zk+p−1 + (−1)2m−1

∞∑

k=1

[(ϕ(k, p, λ))m(1 + βeiα)− (−1)m−n(βeiα + γ)(ϕ(k, p, λ))nt]

|bk+p−1|z̄k+p−1

z −
∞∑

k=2

(ϕ (k, p, λ))n t |ak+p−1| zk+p−1 + (−1)m+n−1

∞∑

k=1

(ϕ (k, p, λ))n t |bk+p−1| z̄k+p−1





≥ 0.

(2.4)
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The above required condition (2.4) must hold for all values of z in U . Upon
choosing the values of z on the positive real axis where 0 ≤ z = r < 1, we must
have

Re





(1− γ)−
∞∑

k=2

[(ϕ (k, p, λ))m − γt (ϕ (k, p, λ))n] |ak+p−1| rk−1

−
∞∑

k=1

[
(ϕ (k, p, λ))m − (−1)m−n γt (ϕ (k, p, λ))n] |bk+p−1| rk−1

1−
∞∑

k=2

(ϕ (k, p, λ))n t |ak+p−1| rk−1 − (−1)m−n
∞∑

k=1

(ϕ (k, p, λ))n t |bk+p−1| rk−1

−eiα

∞∑

k=2

β ((ϕ (k, p, λ))m − t (ϕ (k, p, λ))n) |ak+p−1| rk−1

−
∞∑

k=1

β
(
(ϕ (k, p, λ))m − (−1)m−n t (ϕ (k, p, λ))n) |bk+p−1| rk−1

1−
∞∑

k=2

(ϕ (k, p, λ))n t |ak+p−1| rk−1 − (−1)m−n

∞∑

k=1

(ϕ (k, p, λ))n t |bk+p−1| rk−1





≥ 0.

Since Re (−eiα) ≥ − |eiα| = −1, the above inequality reduces to

(1− γ)−
∞∑

k=2

[(ϕ (k, p, λ))m (1 + β)− (β + γ) (ϕ (k, p, λ))n t] |ak+p−1| rk−1

−
∞∑

k=1

[
(ϕ (k, p, λ))m (1 + β)− (−1)m−n (β + γ) (ϕ (k, p, λ))n t

] |bk+p−1| rk−1

1−
∞∑

k=2

(ϕ (k, p, λ))n t |ak+p−1| rk−1 − (−1)m−n
∞∑

k=1

(ϕ (k, p, λ))n t |bk+p−1| rk−1

≥ 0.

(2.5)
If the condition (2.3) does not hold, then the numerator in (2.5) is negative

for r sufficiently close to 1. Hence there exists a z0 = r0 in (0,1) for which
the quotient in (2.5) is negative. This contradicts the required condition for
fm ∈ Hp (m, n; β; γ; t; λ) and so the proof is complete. ¤

We employ the techniques of Dixit et al. [9] in the proofs of Theorems 2.3, 2.4,
2.6 and 2.7.
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Theorem 2.3. Let fm be given by (1.12). Then fm ∈ Hp (m,n; β; γ; t; λ), if and
only if

fm(z) =
∞∑

k=1

(
xk+p−1hk+p−1 (z) + yk+p−1gmk+p−1

(z)
)
, where hp (z) = zp,

hk+p−1 (z) = zp − 1

ψ (m,n, β, γ, t, λ)
zk+p−1, (k = 2, 3, 4....) , gmk+p−1

(z) = zp + (−1)m−1

1

Θ (m,n, β, γ, t, λ)
z̄k+p−1, (k = 1, 2, 3....) , xk+p−1 ≥ 0,

yk+p−1 ≥ 0,
∞∑

k=1

(xk+p−1 + yk+p−1) = 1.

In particular, the extreme points of Hp(m,n; β; γ; t; λ) are {hk+p−1} and {gmk+p−1
}.

Theorem 2.4. Let fm ∈ Hp(m,n; β; γ; t; λ). Then for |z| = r < 1 we have

|fm(z)| ≤ (1 + |bp|)rp +
1(

(p+1)2

p(p−λ+1)

)n


 1− γ(

(p+1)2

p(p−λ+1)

)m−n

(1 + β)− t(γ + β)
− (1 + β)− (−1)m−nt(γ + β)(

(p+1)2

p(p−λ+1)

)m−n

(1 + β)− t(γ + β)
|bp|


 rp+1

and

|fm(z)| ≥ (1− |bp|) rp − 1(
(p+1)2

p(p−λ+1)

)n


 1− γ(

(p+1)2

p(p−λ+1)

)m−n

(1 + β)− t (γ + β)
− (1 + β)− (−1)m−n t (γ + β)(

(p+1)2

p(p−λ+1)

)m−n

(1 + β)− t(γ + β)
|bp|


 rp+1.

The following covering result follows from the left hand inequality in Theorem
2.4.

Corollary 2.5. Let fm of the form (1.12) be so that fm ∈ Hp (m,n; β; γ; t; λ).
Then{

ω : |ω| < (ϕ (p, λ))m (1 + β)− (ϕ (p, λ))n (γ + β) t− 1 + γ

(ϕ (p, λ))m (1 + β)− (ϕ (p, λ))n (γ + β) t

−((ϕ (p, λ))m − 1) (1 + β)− t (γ + β)
(
(ϕ (p, λ))n − (−1)m−n)

(ϕ (p, λ))m (1 + β)− (ϕ (p, λ))n (γ + β) t
|bp| ⊂ fm (U)

}
,

where φ(p, λ) =
{

(p+1)2

p(p−λ+1)

}
.

For our next theorem, we need to define the convolution of two harmonic func-
tions. For harmonic functions of the form

fm(z) = zp −
∞∑

k=2

|ak+p−1| zk+p−1 + (−1)m−1
∞∑

k=1

|bk+p−1| z̄k+p−1
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and

Fm(z) = zp −
∞∑

k=2

|Ak+p−1| zk+p−1 + (−1)m−1
∞∑

k=1

|Bk+p−1| z̄k+p−1

we define the convolution of two harmonic functions fm and Fm as

(fm ∗ Fm) (z) = fm (z) ∗ Fm (z)

= zp −
∞∑

k=2

|ak+p−1Ak+p−1| zk+p−1 + (−1)m−1 (2.6)

∞∑

k=1

|bk+p−1Bk+p−1| z̄k+p−1.

Using this definition, we show that the class Hp (m,n; β; γ; t; λ) is closed under
convolution.

Theorem 2.6. For 0 ≤ γ1 ≤ γ2 < 1 let fm ∈ Hp (m,n; β; γ1; t; λ) and Fm ∈
Hp (m,n; β; γ2; t; λ). Then fm ∗ Fm ∈ Hp (m, n; β; γ2; t; λ) ⊆ Hp (m,n; β; γ1; t; λ).

Next, we show that Hp(m,n, β, γ, t, λ) is closed under convex combinations of
its members.

Theorem 2.7. The class Hp (m,n; β; γ; t; λ) is closed under convex combination.
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