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Abstract. This paper deals with the study of conditioning for three-point
boundary value problems associated with first order matrix Lyapunov systems,
with the help of Kronecker product of matrices. Further, we obtain the close
relationship between the stability bounds of the problem on one hand , and
the growth behavior of the fundamental matrix solution on the other hand.

1. Introduction

Matrix Lyapunov type systems arise in a number of applied mathematics such
as dynamical programming, optimal filters, quantum mechanics, and systems en-
gineering.The study of conditioning of boundary value problems is an interesting
area of current research due to their invaluable use in estimating the global error
due to small perturbations.

In this direction, Hoog and Mattheije [1], and Murty and Lakshmi [3] have ob-
tained results of this type for two-point boundary value problems associated with
system of first order matrix differential equations satisfying two-point bound-
ary conditions. Further, Murty and Rao [4] studied conditioning for three-point
boundary value problems associated with system of first order rectangular ma-
trix differential equations. Due to the importance of matrix Lyapunov systems
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in the theory of differential equations, Murty and Rao [5] studied existence and
uniqueness criteria associated with two-point boundary value problems. Further,
Murty, Rao and Kumar [6] have studied controllability, observability, and real-
izability criteria for matrix Lyapunov systems. Furthermore, Murty and Suresh
Kumar [7] obtain results on dichotomy and conditioning for two-point boundary
value problems associated with matrix Lyapunov systems.

Now, we consider the general first order matrix Lyapunov system of the form

LX = X ′(t)− (A(t)X(t) + X(t)B(t)) = F (t), a ≤ t ≤ c (1.1)

satisfying three-point boundary conditions

MX(a)S + NX(b)T + RX(c)U = Q, (1.2)

where A(t), B(t), F (t) ∈ [Lp(a, c)]n×n for some p satisfying the condition
1 ≤ p < ∞, and M,N, R, S, T, U,Q are all of constant square matrices of order
n.

In this paper we investigate the close relationship between the stability bounds
of three-point boundary value problems for matrix Lyapunov systems on the one
hand, and the growth behavior of the fundamental matrix solution on the other
hand. We also show that condition number is the right criterion to indicate
possible error amplification of the perturbed boundary conditions.

The paper is well organized as follows. In Section 2 we present some basic def-
initions and preliminary results relating to existence and uniqueness of solutions
of the corresponding Kronecker product three-point boundary value problem as-
sociated with (1.1) satisfying (1.2).The properties of the Green’s matrix are also
studied. In Section 3 we discuss about conditioning of the boundary value prob-
lem and present a stability analysis of this algorithm and also show that the
condition number is an important quantity in estimating the global error.

2. Existence and uniqueness of solutions

In this section we convert the given boundary value problem into a Kronecker
product three-point boundary value problem and obtain existence and uniqueness
of solution of three-point boundary value problems with the help of a Green’s
matrix. Also study the properties of Green’s matrix and obtain stability bounds
with the help of Kronecker product of matrices.

Definition 2.1.[2] Let A ∈ Cm×n (Rm×n) and B ∈ Cp×q (Rp×q) then the
Kronecker product of A and B written A ⊗ B is defined to be the partitioned
matrix

A⊗B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB

. . . . . .
am1B am2B . . . amnB




is an mp× nq matrix, and is in Cmp×nq (Rmp×nq).

Definition 2.2.[2] Let A = [aij] ∈ Cm×n (Rm×n), we denote
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Â = VecA =




A.1

A.2

.

.
A.n




, where A.j =




a1j

a2j

.

.
amj




(1 ≤ j ≤ n) .

The Kronecker product has the following properties and rules, we refer to [2]and[6].
1. (A⊗B)∗ = A∗ ⊗B∗

2. (A⊗B)−1 = A−1 ⊗B−1

3. The mixed product rule;
(A⊗B)(C ⊗D)=( AC ⊗BD)

this rule holds, provided the dimension of the matrices are such that the various
expressions exist.
4. ||A⊗B|| = ||A||||B||
5. (A + B)⊗ C = (A⊗ C) + (B ⊗ C)
6. If A(t) and B(t) are matrices, then

(A⊗B)′ = A′ ⊗B + A⊗B′(′= d/dt)
7. Vec (AY B) = (B∗ ⊗ A) Vec Y
8. If A and B are matrices both of order n× n then

(i) Vec (AX) = (In ⊗ A) Vec X
(ii) Vec (XA) = (A∗ ⊗ In) Vec X.

Now by applying the Vec operator to the matrix Lyapunov system (1.1), sat-
isfying the boundary conditions (1.2), and using the above properties, we have

X̂ ′(t) = H(t)X̂(t) + F̂ (t) (2.1)

satisfying

(S∗ ⊗M)X̂(a) + (T ∗ ⊗N)X̂(b) + (U∗ ⊗R)X̂(c) = Q̂, (2.2)

where H(t) = (B∗ ⊗ In) + (In ⊗ A), X̂ = Vec X, F̂ = Vec F , and Q̂ = Vec Q.
The corresponding homogeneous system of (2.1) is

LX̂ = X̂ ′(t)−H(t)X̂(t) = 0. (2.3)

Lemma 2.1. Let Y (t) and Z(t) be the fundamental matrices for the systems

X ′(t) = A(t)X(t), (2.4)

and

X ′(t) = B∗(t)X(t) (2.5)

respectively. Then the matrix Z(t)⊗ Y (t) is a fundamental matrix of (2.3), and

every solution of (2.3) is of the form X̂(t) = (Z(t)⊗Y (t))c, where c is a n2-column
vector.
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Proof. Consider

(Z(t)⊗ Y (t))′ = (Z ′(t)⊗ Y (t)) + (Z(t)⊗ Y ′(t))

= (B∗(t)Z(t)⊗ Y (t)) + (Z(t)⊗ A(t)Y (t))

= (B∗(t)⊗ In)(Z(t)⊗ Y (t)) + (In ⊗ A(t))(Z(t)⊗ Y (t))

= [B∗(t)⊗ In + In ⊗ A(t)](Z(t)⊗ Y (t))

= H(t)(Z(t)⊗ Y (t)).

Since Y (t) and Z(t) are nonsingular, then Z(t)⊗Y (t) is also nonsingular. Hence

Z(t) ⊗ Y (t) is a fundamental matrix of (2.3). Clearly X̂(t) = (Z(t) ⊗ Y (t))c, is
a solution of (2.3), and every solution is of this form. ¤
Theorem 2.1. Let Y (t) and Z(t) be the fundamental matrices for the systems
(2.4) and (2.5), then any solution of non-homogeneous system (2.1) is of the form

X̂(t) = (Z(t)⊗ Y (t))c + (Z(t)⊗ Y (t))

t∫

a

(Z−1(s)⊗ Y −1(s))F̂ (s)ds.

Proof. First, we show that any solution of (2.1) is of the form

X̂(t) = (Z(t)⊗ Y (t))c + X̃(t), where X̃(t) is a particular solution of (2.1) and
is given by

X̃(t) =

t∫

a

(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))F̂ (s)ds.

Let u(t) be any other solution of (2.1), write w(t) = u(t) − X̃(t), then w(t)

satisfies (2.3), hence w(t) = (Z(t)⊗ Y (t))c, u(t) = (Z(t)⊗ Y (t))c + X̃(t).

Next, we consider the vector X̃(t) = (Z(t)⊗Y (t))v(t), where v(t) is an arbitrary
vector to be determined, so as to satisfy equation (2.1). Consider

X̃ ′(t) = (Z(t)⊗ Y (t))′v(t) + (Z(t)⊗ Y (t))v′(t)

⇒ H(t)X̃(t) + F̂ (t) = H(t)(Z(t)⊗ Y (t))v(t) + (Z(t)⊗ Y (t))v′(t)

⇒ (Z(t)⊗ Y (t))v′(t) = F̂ (t)

⇒ v′(t) = (Z−1(t)⊗ Y −1(t))F̂ (t)

⇒ v(t) =

∫ t

a

(Z−1(s)⊗ Y −1(s))F̂ (s)ds.

Hence the desired expression follows immediately. ¤
Definition 2.3. The system (2.3) satisfying

(S∗ ⊗M)X̂(a) + (T ∗ ⊗N)X̂(b) + (U∗ ⊗R)X̂(c) = 0 (2.6)

is called a homogeneous Kronecker product boundary value problem. By a solu-
tion of this problem we mean a solution of (2.3) whose values at ‘a’, ‘b’ and ‘c’
are such that the relation (2.6) is satisfied.

Definition 2.4. The dimension of the solution space of the homogeneous bound-
ary value problem (2.3) satisfying (2.6) is called the index of compatibility of the
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problem. If the index of compatibility is zero then we say that the boundary
value problem is incompatible.

Definition 2.5. If Y (t), Z(t) are fundamental matrices for the systems (2.4),
(2.5), then the matrix

D = (S∗⊗M)(Z(a)⊗Y (a))+(T ∗⊗N)(Z(b)⊗Y (b))+(U∗⊗R)(Z(c)⊗Y (c)) (2.7)

is called the characteristic matrix for the boundary value problem (2.3) and (2.6).

Theorem 2.2. Let Y (t), Z(t) be the fundamental matrices for the systems (2.4),
(2.5) and suppose that the homogeneous boundary value problem (2.3) satisfying
(2.6) is incompatible. Then there exists a unique solution to three-point boundary
value problem (2.1) satisfying (2.2) is of the form

X̂(t) = (Z(t)⊗ Y (t))D−1Q̂ +

c∫

a

G(t, s)F̂ (s)ds, (2.8)

where G is the Green’s matrix for the homogeneous boundary value problem (2.3)
and (2.6).

Proof. From Theorem 2.1 any solution of (2.1) is of the form

X̂(t) = (Z(t)⊗ Y (t))C + (Z(t)⊗ Y (t))

t∫

a

(Z−1(s)⊗ Y −1(s))F̂ (s)ds, (2.9)

where (Z(t) ⊗ Y (t)) is a fundamental matrix for the equation (2.3) and C is
constant matrix. Substituting (2.9) in (2.6), we get

[(S∗⊗M)(Z(a)⊗Y (a))]C+[(T ∗⊗N)(Z(b)⊗Y (b))]C

+(T ∗ ⊗N)(Z(b)⊗ Y (b))

b∫

a

(Z(s)⊗ Y (s))−1F̂ (s)ds + [(U∗ ⊗R)Z(c)⊗ Y (c))]C

+(U∗ ⊗R)(Z(c)⊗ Y (c))

c∫

a

(Z(s)⊗ Y (s))−1F̂ (s)ds = 0,

⇒ C = −D−1[(T ∗ ⊗N)(Z(b)⊗ Y (b))

b∫

a

(Z(s)⊗ Y (s))−1F̂ (s)ds

+(U∗ ⊗R)(Z(c)⊗ Y (c))

c∫

a

(Z(s)⊗ Y (s))−1F̂ (s)ds]

where D is the characteristic matrix for the boundary value problem. Thus

X̂(t) =

c∫

a

G(t, s)F̂ (s)ds,



120 M.S.N. MURTY, D. ANJANEYULU, G. SURESH KUMAR

where

G(t, s)
t∈[a,b]

=





(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1(T ∗ ⊗N)
(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1(U∗ ⊗R)

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),
a < s < t ≤ b < c,

−(Z(t)⊗ Y (t))D−1(T ∗ ⊗N)(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))
−(Z(t)⊗ Y (t))D−1(U∗ ⊗R)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a ≤ t < s < b < c,
−(Z(t)⊗ Y (t))D−1(U∗ ⊗R)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a < t < b < s < c,
(2.10)

G(t, s)
t∈[b,c]

=





(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1(U∗ ⊗R)
(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a < b < s < t ≤ c,
−(Z(t)⊗ Y (t))D−1(U∗ ⊗R)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a < b ≤ t < s < c,
(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1(T ∗ ⊗N)
(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1(U∗ ⊗R)

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),
a < s < b < t < c.

(2.11)
¤

Theorem 2.3. The Green’s matrix has the following properties:

(i) G(t, s) as a function of t with fixed s have continuous derivatives every-
where except at t = s. At the point t = s, G(t, s) has a jump discontinuity
and its jump is

G(s+, s)−G(s−, s) = I.

(ii) G(t, s) is a formal solution of the homogeneous boundary value problem
(2.3) satisfying (2.6). G fails to be a true solution because of the discon-
tinuity at t = s .

(iii) G(t, s) satisfying the properties (i) and (ii) is unique.

Proof. The proof of this theorem is obvious. ¤
We shall now see how the expression (2.8) can be used to examine the condi-

tioning of (2.1), (2.2). We make use of the following notations. Let

‖v‖p =




c∫

a

|v(s)|pds




1
p

, 1 ≤ p < ∞,

and
‖v‖∞ = sup

t∈[a,c]

|v(t)|

be its limiting value as p →∞. Then we have from (2.8)

‖X̂‖ = ‖X̂‖∞ ≤ η|Q̂|+ γq‖F̂‖p,
1

p
+

1

q
= 1, (2.12)
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where

η = ‖(Z(t)⊗ Y (t))D−1‖, (2.13)

and

γq = sup
t∈[a,c]




c∫

a

|G(t, s)|qds




1
q

. (2.14)

The most appropriate norm in (2.12) actually depends on the problem under
consideration. We shall discuss the case when p = 1, and all the arguments used
here can be extended easily to an arbitrary p, 1 < p < ∞.

When p = 1, (2.12)-(2.14) reduce to

‖X̂‖ ≤ η|Q̂|+ γ‖F̂‖, (2.15)

η = ‖(Z(t)⊗ Y (t))D−1‖, (2.16)

and

γ = sup
t,s
|G(t, s)|. (2.17)

If in addition, we assume that the boundary conditions (2.2) are scaled in such a
way that

(S∗S ⊗MM∗) + (T ∗T ⊗NN∗) + (U∗U ⊗RR∗) = In2 ,

then

|(Z(t)⊗ Y (t))D−1|2 = |G(t, a)G∗(t, a) + G(t, b)G∗(t, b) + G(t, c)G∗(t, c)|,
and hence

η2 ≤ γ2 + γ2 + γ2

η ≤
√

3γ.

Hence the stability constant γ gives a measure for the sensitivity of (2.1) satisfying
(2.2) to the changes in the data. Further, we note from (2.16), (2.17) that both the
fundamental matrix, and the boundary conditions (2.2) will actually determine
the magnitude of the stability constants η and γ. Thus it is possible to construct
systems for which no boundary conditions exist such that η and γ are of moderate
size; it is also possible to find boundary conditions for (2.1) so that η and γ are
large. Hence, if system (2.1) can support a well conditioned problem then the
conditioning is intimately related to the choice of the boundary conditions.

3. Conditioning of three-point boundary value problems

In this section we show that the condition number is the right criterion to
indicate possible error amplification of the perturbed boundary conditions.

If the solution of the boundary value problem

X̂(t) = H(t)X̂(t) + F̂ (t) (3.1)

satisfying

(In ⊗M)X̂(a) + (In ⊗N)X̂(b) + (In ⊗R)X̂(c) = Q̂ (3.2)



122 M.S.N. MURTY, D. ANJANEYULU, G. SURESH KUMAR

(for convenience taking S = In, T = In and U = In in (2.2)) is unique, then the
characteristic matrix

D = (In⊗M)(Z(a)⊗Y (a))+(In⊗N)(Z(b)⊗Y (b))+(In⊗R)(Z(c)⊗Y (c)) (3.3)

must be non-singular, and in this case the boundary value problem is said to be
well-posed.
Definition 3.1. The condition number η of the boundary value problem (3.1),
(3.2) is defined as

η = sup
a≤t≤c

‖(Z(t)⊗ Y (t))D−1‖.
It is easily seen that, the number η is independent of the choice of the fundamental
matrix.

We consider the variation X̂(t) of (3.1) with respect to the small perturbation
in the boundary conditions, the perturbation of (3.2) in the form

[In ⊗ (M + δM)] X̂(a) + [In ⊗ (N + δN)] X̂(b)

+ [In ⊗ (R + δR)] X̂(c) = Q̂ + δQ̂
(3.4)

Then the perturbed characteristic matrix

D1 = [In ⊗ (M + δM)] (Z(a)⊗ Y (a)) + [In ⊗ (N + δN)] (Z(b)⊗ Y (b))
+ [In ⊗ (R + δR)] (Z(c)⊗ Y (c))

= [(In ⊗M) + (In ⊗ δM)] (Z(a)⊗ Y (a))
+ [(In ⊗N) + (In ⊗ δN)] (Z(b)⊗ Y (b))
+ [(In ⊗R) + (In ⊗ δR)] (Z(c)⊗ Y (c))

= [(In ⊗M)(Z(a)⊗ Y (a)) + (In ⊗N)(Z(b)⊗ Y (b)) + (In ⊗R)(Z(c)⊗ Y (c))]
+(In ⊗ δM)(Z(a)⊗ Y (a)) + (In ⊗ δN)(Z(b)⊗ Y (b))
+(In ⊗ δR)(Z(c)⊗ Y (c))

= D + δD.

Assume that D1 is nonsingular. Let X̃(t) be the unique solution of (3.1) satisfying
(3.4).
Lemma 3.1. ‖δDD−1‖ ≤ (‖δM‖+ ‖δN‖+ ‖δR‖) η.

Proof. Consider

‖δDD−1‖ = ‖ [(In ⊗ δM)(Z(a)⊗ Y (a) + (In ⊗ δN)(Z(b)⊗ Y (b))
+(In ⊗ δR)(Z(c)⊗ Y (c))]D−1‖

≤ ‖(In ⊗ δM)‖‖(Z(a)⊗ Y (a))D−1‖+ ‖(In ⊗ δN)‖‖(Z(b)⊗ Y (b))D−1‖
+‖(In ⊗ δR)‖‖(Z(c)⊗ Y (c))D−1‖

= ‖In‖‖δM‖‖(Z(a)⊗ Y (a))D−1‖+ ‖In‖‖δN‖‖(Z(b)⊗ Y (b))D−1‖
+‖In‖‖δR‖‖(Z(c)⊗ Y (c))D−1‖

≤ (‖δM‖+ ‖δN‖+ ‖δR‖) ‖(Z(t)⊗ Y (t))D−1‖
≤ (‖δM‖+ ‖δN‖+ ‖δR‖) η.

¤
Theorem 3.1. Let ε > 0 be such that 0 < ε < 1

(1+k)δη
, where

δ = max
{
‖δM‖, ‖δN‖, 2‖δR‖, ‖δQ̂‖, ‖δD‖

}
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and

k =

∫ c

a

‖(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds.

Then the solution X̃(t) of (3.1) satisfying (3.4) is such that

δη(1−k) (‖Z(a)‖‖Y (a)‖+ ‖Z(b)‖‖Y (b)‖+ 2‖Z(c)‖‖Y (c)‖) ≤ max
t∈[a,c]

‖X̃(t)−X̂(t)‖

≤ δη(1 + k) (‖Z(a)‖‖Y (a)‖+ ‖Z(b)‖‖Y (b)‖+ 2‖Z(c)‖‖Y (c)‖) .

Proof. Here we consider the case when s ∈ [a, b] and the other cases can be dealt
with similarly. From Theorem 2.2 any solution of X(t) of (1.1) and (1.2) is given

by (2.8). And any solution X̃(t) of (3.1) satisfying (3.3) is given by

X̃(t) = (Z(t)⊗ Y (t))D−1
1

(
Q̂ + δQ̂

)
+

c∫

a

G1(t, s)F̂ (s)ds,

where

G1(t, s)
t∈[a,b]

=





(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1
1 (In ⊗N1)

(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1
1 (In ⊗R1)

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),
a < s < t ≤ b < c,

−(Z(t)⊗ Y (t))D−1
1 (In ⊗N1)(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))

−(Z(t)⊗ Y (t))D−1
1 (In ⊗R1)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a ≤ t < s < b < c,
−(Z(t)⊗ Y (t))D−1

1 (In ⊗R1)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),
a < t < b < s < c,

G1(t, s)
t∈[b,c]

=





(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1
1 (In ⊗R1)

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),
a < b < s < t ≤ c,

−(Z(t)⊗ Y (t))D−1
1 (In ⊗R1)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a < b ≤ t < s < c,
(Z(t)⊗ Y (t))(Z−1(s)⊗ Y −1(s))− (Z(t)⊗ Y (t))D−1

1 (In ⊗N1)
(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))

−(Z(t)⊗ Y (t))D−1
1 (In ⊗R1)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s)),

a < s < b < t < c.

M1 = M + δM , N1 = N + δN and R1 = R + δR.
Now consider

‖X̃(t)− X̂(t)‖ ≤ ‖(Z(t)⊗ Y (t))
[
D−1

1 (Q̂ + δQ̂)−D−1Q̂
]
‖

+

∫ t

a

‖(Z(t)⊗ Y (t))
[
D−1

1 (In ⊗M1)−D−1(In ⊗M)
]

(Z(a)⊗ Y (a))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds

+

∫ b

t

‖(Z(t)⊗ Y (t))
[
D−1

1 (In ⊗N1)−D−1(In ⊗N)
]

(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds. (3.5)
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+

∫ b

t

‖(Z(t)⊗ Y (t))
[
D−1

1 (In ⊗R1)−D−1(In ⊗R)
]

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds.

+

∫ c

b

‖(Z(t)⊗ Y (t))
[
D−1

1 (In ⊗R1)−D−1(In ⊗R)
]

(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds.

In accordance with the linear terms, we have the following rough estimates;

D−1
1 (Q̂ + δQ̂)−D−1Q̂ = (D + δD)−1(Q̂ + δQ̂)−D−1Q̂

= D−1
(
In2 + D−1δD

)−1
(Q̂ + δQ̂)−D−1Q̂

∼= D−1
[
In2 −D−1δD

]
(Q̂ + δQ̂)−D−1Q̂

∼= D−1δQ̂.

Similarly
D−1

1 (In ⊗M1)−D−1(In ⊗M) ∼= D−1(In ⊗ δM),

D−1
1 (In ⊗N1)−D−1(In ⊗N) ∼= D−1(In ⊗ δN).

and
D−1

1 (In ⊗R1)−D−1(In ⊗R) ∼= D−1(In ⊗ δR).

Using these estimates in (3.5), we get

‖X̃(t)− X̂(t)‖ ≤ ‖(Z(t)⊗ Y (t))D−1δQ̂‖

+

∫ t

a

‖(Z(t)⊗ Y (t))D−1(In ⊗ δM)(Z(a)⊗ Y (a))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds

+

∫ b

t

‖(Z(t)⊗ Y (t))D−1(In ⊗ δN)(Z(b)⊗ Y (b))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds

+

∫ b

t

‖(Z(t)⊗ Y (t))D−1(In ⊗ δR)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds

+

∫ c

b

‖(Z(t)⊗ Y (t))D−1(In ⊗ δR)(Z(c)⊗ Y (c))(Z−1(s)⊗ Y −1(s))F̂ (s)‖ds

≤ ‖(Z(t)⊗ Y (t))D−1δQ̂‖+ ‖(Z(t)⊗ Y (t))D−1[(In ⊗ δM)(Z(a)⊗ Y (a))

+(In⊗δN)(Z(b)⊗Y (b))+2(In⊗δR)(Z(c)⊗Y (c))]‖
∫ c

a

‖(Z−1(s)⊗Y −1(s))F̂ (s)‖ds

≤ ‖(Z(t)⊗ Y (t))D−1δQ̂‖+ ‖(Z(t)⊗ Y (t))D−1‖
‖ [(In ⊗ δM)(Z(a)⊗ Y (a)) + (In ⊗ δN)(Z(b)⊗ Y (b) + 2(In ⊗ δR)(Z(c)⊗ Y (c))] ‖k
≤ δη+δηk [‖Z(a)‖‖Y (a)‖+ ‖Z(b)‖‖Y (b)‖+ 2‖Z(c)‖‖Y (c)‖]
≤ (1+k)δη [‖Z(a)‖‖Y (a)‖+ ‖Z(b)‖‖Y (b)‖+ 2‖Z(c)‖‖Y (c)‖] .
The reverse inequality follows by noting the fact that

‖X̃(t)− X̂(t)‖ ≥ ‖(Z(t)⊗ Y (t))D−1δQ̂‖ −
∫ c

a

‖G1(t, s)−G(t, s)‖‖F̂ (s)‖ds.

¤



CONDITIONING OF TPBVP WITH MATRIX LYAPUNOV SYSTEMS 125

One may choose η such that

η = sup
a≤t≤c

‖(Z(t)⊗ Y (t))‖‖D−1‖,

to obtain a more reliable quantity for η. The estimate in the above theorem
depends on well-known quantities and on the value of the fundamental matrix at
the boundary points.
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