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ON THE (p,q)-GROWTH OF ENTIRE FUNCTION SOLUTIONS
OF HELMHOLTZ EQUATION
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ABSTRACT. The (p, q)-growth of entire function solutions of Helmholtz equa-
tions in R? has been studied. We obtain some lower bounds on order and type
through function theoretic formulae related to those of associate. Our results
extends and improve the results studied by McCoy [10].

1. INTRODUCTION AND PRELIMINARIES

The Helmholtz equation be given in the form

1 1
[0 + ;ar + T—Qagg + F(r3)]¢(r,0) = 0, (1.1)

where (r, ) are polar co-ordinates in R?* and F'(r?) # 0 is a real valued entire
function with analytic continuation as an entire function of z € C.
Regular solution of (1.1) at the origin has a local representation via the Bergman
operator [1,7] of the first kind
' 2 (1-1¢%) 2\—1/2
o,0) = Bl 2) = | B0 0SS - eyt 2)

-1

where
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E(r t) =1+ Q" (?) (1.3)
n=1
is a real valued analytic function for ¢ € [—1,41] that is entire for r € [0, 00)
and known as Bergman 'E Function’. the coefficients Q*™ are themselves entire
functions defined from the recurrences

0-(Q(7)) +2P(r) = 0,Q™(0) =0,
(2n + 1)0,(QP"?) +20,(rQP™) + F(T)Q®" — nd,(Q™") =0,

Q(2n+2) (7_> |7-:0 =0

forn =1,2,3,---. Thus the solution of (1.1) has an expansion in a neighborhood
of the origin as

(b(ra 9) = Z an¢n<ra 9)7
n=0

where
1

Dn(r,0) = (e /2)" G (r); Gp(r) = / E(r? t)(1 — tz)"_l/th

—1
forn=20,1,2,---, and the B, associate of ¢ is given by

f(z) = Z anz". (1.4)

Since the analytic continuation of the perturbation term, F(2?%) is taken as an
entire function, it can be easily seen from Gilbert and Coltan [4] that ¢(r,0) is an
entire function if, and only if, the associate f(z) is taken as an entire function. The
formulae (1.1)—(1.4) hold throughout the C-plane and an identifying characteristic
of entire function solutions ¢(r,#), as in function theory, is that

lim sup |a, |'/™ = 0.

For classifying entire functions by their growth, the concept of order was intro-
duced. If the order is a (finite) positive number, then the concept of type permits
a sub classification. For the classes of order 6 = 0 and § = oo no sub classifi-
cation is possible. For example, all entire functions that grow at least as fast as
exp(exp(z)) has to be kept in one class. For this reason, numerous attempts have
been made to refine the concept of order and type. Amongst them, proposals by
Lindelof and by Valiron have gained some attention.

Function theoretic methods extended these properties to harmonic functions
in several variables (see Gelbert [2, 3] and McCoy [8]). McCoy [9] studied the
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growth on the disk of regularity for solutions of the Helmholtz equation in R?.
The method modified Bergman'’s integral operator of the first kind [1] to develop a
suitable basis for function theoretic extension. Kreyezig and Kracht [7] discussed
entire function solutions in terms of associated analytic functions of two complex
variables. They obtained an upper bound on the order that was computed from
coefficients of the associate. The type of a solution was not studied in that paper.
McCoy [10] studied the fast growth of entire function solution ¢(r, ) in terms
of order § and type 7 using the concept of index k, i.e., §(k — 1) = oo and
d(k) < 0o. Moreover, they obtained bounds on the order and type of ¢(r, ) that
reflect their antecedents in the theory of analytic functions of a single complex
variable. It has been noticed that his results do not give any precise information
about the growth of those functions for which §(k — 1) = oo and §(k) = 0. To
refine this scale, in the present paper we pick up a concept of (p,q)-order and
(p, q)-type introduced by Juneja et al. [5, 6]. Roughly speaking, this concept is
a modification of the classical definition of order and type, obtained by replacing
logarithms by iterated logarithms, where the degrees of iteration are determined
by p and ¢. In univariate case, important results are formulae for order and
type of an entire function in terms of Taylor’s coefficients about the origin. Our
approach unifies the above approaches and at the same time is applicable to every
entire function, whether of slow or fast growth. Moreover, we make an attempt
to characterize (p, ¢)-growth of ¢(r, §) and obtain some bounds on order and type
through function theoretic formulae related to those of the associate f(z).

2. MEASURES OF (p,q)-GROWTH
We define the (p, ¢)-order of an entire function h(z) by

los® M (r B
d(p,q) = limsup o LA (r.h)

: 2.1
r—00 log[q] T ( )

where p and ¢ are integers such that p > ¢ > 0, M (r, h) = max{|h(z)| : |z| = r}.
Ifb<d(p,q) < oo, where b=1if p=gqand b =0if p > ¢, then the (p, ¢)-type is

_ log”~! M (r, h)
T(p.g, h) = Jim sup (log® T 1) <T(p.q,h) < o0 (2.2)
and log™ 2 = expl=™l 2 = log(log[m_l] z) = exp(expl™™ Uz),m =0,41,42,-- -,
provided that 0 < log[m_l] x < oo with log[o] z = exp”l # = 2. The entire function

h(z) is said to be of (p,q)-order § if it is of index-pair (p,q) and ¢ is given by
(2.1). (For the definition of index-pair etc., see [5]).

3. (p,q)-GROWTH OF SOLUTIONS

Theorem 3.1. Let ¢(r,0) be an entire function, which is a solution of the
Helmholtz equation with expansion

¢(T7 0) = Zwiozoangbn(rv 0)



(p,q)-GROWTH OF ENTIRE FUNCTION SOLUTIONS OF HELMHOLTZ EQUATION 95

Let ¢ and By, associated with f, be entire functions of (p,q)-order §(p,q, ) and
d(p,q, f) for a pair of integers (p,q), p > 2, ¢ > 1. Then the (p,q)-order of ¢ is
bounded below by

<1) [1/5(21f)4i1/0(21E) (27 17¢)
{(0°(2.2,E) +1> 0 ,2 D)i i 6(2,2,6) > (2.2, )}
3) 00,0, E, )+ 1< 8(p,q,0): for3<p=q > oo,
where
1 lim fIOg[q] |a,|~1/m
—— =liminf ———«—,
5(p7 q, .f) n—0oo 1og[p_1] n
1 1 —1/n
————— = liminf 08 |Gn(Cn21)|
0'(2, ]_, E) n—oo 10gn
—1/n
1 = lim inf loglog |G (Cn22)|
0'(2, 2,E> n— o0 1Ogn
1 log 1 1/n
- — liminf 0g 108 ’Gn(CnQ,Q)‘
0_*(2,2, E) n—oo logn
and
1 logla=2119 —1/n [q—3] (p—2] ﬁ
- — liminf 0og { €|Gn(Cn,p,q)| pr (log ’l’L) }7
0(paQa E, f) n—oo log[p_ ]n
3<p=¢q< o0,
with
= (n/8(2,1,$))7@ra _ et
Cn,2,1 =n ’ 7¢ ” 7<n7272 = eXp(m 2,
and

Copg = eXP[q—l](log[p—ﬂn)m?n —92.3.... .

Proof. By Cauchy estimates we have

anGn(r)/2] = |ou(r,0)/r"] = |3 [i7 ¢(r,0)e ™dg] < M2y > 0, n =
0,1,2,---. Now using the definition of (p, q)-order of ¢(r,0), we have for e > 0,
there exists an A(g) > 0 such that

lanGn(r)] < 2"A(e) eXp[p_l]{(log[q_l]r)‘;(l’,q’(ﬁ)-&-e],r—n (3.1)
for (p,q) = (2,1) it gives
|a, G (r)| < 2" A(e) exp(rP@1oTeymn, (3.2)

The right hand side is minimized at the sequence of points

’

Crot = Conn(6(2,1,0) = (n/8(2,1,) + &) T@roT n = 2,3, ...,
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with ¢, 21 = lim._g C;z,2,1 (see Juneja et al [5]). This leads with (3.2) to

log |a,| + log ‘Gn<C;L,2,1)’
n

n n
< _
S3e L0 +: dELe)re CEE L e BT

or

i b eim - log(n/d(2,1,¢
log |ay| Y +10g |Grn(Crai)l V> 5((2/1 (¢)+5))

In order to connect the (2,1)-orders of ¢ and f, we use the order coefficient
formulae for the associate [5].

1-0(1). (3.3)

log |an|~/" < log &L=
is valid on some sequence of indices. Using (3.3) we obtain
1 10g |G (Crz0)| " 1
6(2,1,f) —¢ logn ~0(2,1,0) + ¢

for infinitely many indices. Proceeding to limits it gives

1 . log‘Gn(Cn21)|_1/n 1
- 1 f 1<y >
5@ 1f) e logn = 8(2.1,9)

+O(1)

or
1 1 1

521 f)  e@LE) Zs2le)

This completes the proof of (1).
(2) Substituting (p,q) = (2,2) in (3.1), we get

lan G ()] < 27A(e) exp{(log r)232P)Fep—n, (3.4)

The larger factor is minimized at the sequence of points

’ ’ n 1
Cnoo = Guo2(0(2,2,0)) = exp(m) @CR29-14 n =23, ...,
with G2 = lim. 0 (;, 5, (see Juneja et al. [5]). In view of (3.4) it gives
log an| ™" +10g |G (G p2) 7" (35)
n 3(2,2,9) — 1+«

) GEze T (

1
BCEOEE S2gre TR

The (2, 2)-order coefficient formulae for the associate [5] is
log |a,|~/" < nGEIHT=
valid on some sequence of indices. Using this in (3.5), we get

2a27¢)_1+5
0(2,2,¢) ¢

n

= (5(2,2,¢) +e

)m(é(

log |Gn(§;,2,2) |_1/n )

o 1
_psEETE log2 — —log A(e)
n

or



(p,q)-GROWTH OF ENTIRE FUNCTION SOLUTIONS OF HELMHOLTZ EQUATION 97

5(2’ 2’ ¢) —1+e 5(2,2,0)—5(2,2,f)+2¢
— nG228)-1+)(3(2,2,
5(2,2,6)1e nGeEzo-1+96ezN++ 4+ 0(1)]

(0(2,2,9) 4 €)3@20-1+=
If (2,2, ¢) < (2,2, f), then

1
> nBEze -1+ |

log log |G, (C. —1/n 1
g g] (Cn,zz)‘ > X 0(1).
logn 3(2,2,9) — 1+«
Proceeding to limits, we get
log 1 —i/n 1
lim inf oglog |G (Cn22)| >
n—oo logn 5(2,2,9) — 1

or
5(2,2,0) > 0(2,2,F) + 1
Also if §(2,2,¢) > 0(2,2, f), then after a simple calculation we get

1/n
lim inf log log‘Gn(Cn’Q’QN < !
n—o0 logn 5(2a27f) -1
or
1 . loglog |G(Gup2)| /"
5(2,2, f) < 1+0%2,2,F), ————— = liminf — :
(2,2,f) <1+07(2,2, )’0*(2’27E) ey logn

(3) For 3 < p = g < oo, the right hand side of (3.1) is minimized at the
sequence of points

/ ’

Crna = G304 9)) = explt™Y (log ™ m) T 752
with ¢, 4 = lim._o C,;Lp’q [5]. Now from (3.1) we have
1og |a,| 4 1og |G (¢, p, )] < n — nexpli=(loglP=? n)m +nlog2 + logA(e)
or
log |ay| ™" +log |Gu (', p )| 7/"
> expli~(loglP—2 n)m —1—1log2— %logA(a).
The (p, q)-order coefficient formulae for the associate [5] is
1og |a,| ™" < expli= (loglP—2 n)ﬂTlﬁ—f, 3<p=gq< o0,
valid on some sequence of indices. Now we have
log |G (¢, p )| 7"
> expli~(loglP—2 n)m — explt(loglP~Fn) — 1 —log2 — %log Ale)
expld—3l(logP~? n)W

1/n expla—3] (logP~2 ) sar—
2e(A(e))/m expla—3l(log®? " n)

= log
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or
logli=21 19 ~1/n gypli=31(10gP~2 1) 767 1
lim inf 28 {2e|Gn(Grpa)l ei(p (log n) } > .
n—0oo log[p_ ) n 5(p7 g, ¢)
This completes the proof of (iii). O

Theorem 3.2. Let ¢(r,0) be an entire function, which is a solution of the
Helmholtz equation with expansion

= Z an¢n<ru 9)
n=0

Let ¢(r,0) and Bs-associate f(z) have the same index-pair (p,q). Then the (p,q)-
types satisfy
(1) [1(2,1,9)]7=re

5 (2, 1 5(2,1,f)
> PELIITZNT 172, 1, f))5@
6(2,L,¢) 710

o (2) 5 TSI |Gy (6.0.1) 7] /2

M \GoorT M \GEZF=T Tim ( - —)
(2) (T(2—2f))( CENIEY > (W)(é(mw D liminf,,_[n SETH T SET T ]
L. _ (92,2, f) 5(2,2,f)—1)(6(2,2,/)=1)
+ hmlnfn—wo[” (5@29°1 log |G(€n 1)), where M = (((5(g,)2,f)))5<2,2,f)

5(2,2,0)— 1)(5(2 12,0)—1)
and M’ = (3(2,2,9))7 2.

(3) For3<p=gq< o0,

b—21 ),

lo
T(p,q,¢) > liminf o8 ——
720 Loglt |G (€ ) |1/ explo (12220 5T )

implicity here

21 = ( n )m n22 = exp( - )W
(2, L,0)(T'(2,1,9)) o 6(2,2,0)1(2,2,9)
and
Enpq = exp[q ”h}g(pw) ot T n=23..

Proof. (1) The approach is similar to Theorem 3.1. Let ¢(r,#) have (p, ¢)-order
d(p, q, @) and (p,q)-type T(p,q, d). Let € > 0 be given. Then there is a B(e) > 0
such that

M(r,¢) < B(e) exp? 1 {(T(p, g, ¢) + &) (logl" ! )"0} (3.6)

for all » > 0. This bound is placed in the Cauchy estimate as in Theorem 3.1, we
get

|anGn(r)] < 2"B(e) exp? (T (p, 4, ¢) + ) (log"~ 1 )" Pa?}r=m - (3.7)

For (p,q) = (2,1) the expression an right hand side is minimized at the points

f;L,Q,l - §n2 1( (27 17¢)) [

n

0(2,1,0)(T(2,1,¢) +¢)

|55e



(p,q)-GROWTH OF ENTIRE FUNCTION SOLUTIONS OF HELMHOLTZ EQUATION 99

Now from (3.7), we obtain

log |a, G (5;1,2,1) |

n n n

S e1e) i1e) el Te e o

) +nlog2 +log B(e)
or

log ‘an‘il/n + log ’Gn(§;,2,1)|71/n

> ! log( n ) — !

02 L0) T2, 1,0)(T(2,1,90) +e)" 4(2,1,0)
Using the (2, 1)-type coefficient formulae [6] to obtain the bound

—log2+ O(1).

—1/n 1 n
sl < S e pae e H—o)

valid for the subsequence of indices, we get
1 n ’
1 log |G, —i/n
53,17 MG T T ) - o) TGl
1 n 1
log( ) —
(2,1,0) 76(2,1,0)(T(2,1,¢) +¢)"  0(2,1,9)
After a simple calculation we get
(T(2,1,¢)7@@

1
2.1 52.1.)
> (021,1) F—(T(2, 1, £)) 750 lim inf[(5) 500 500 |G, (€, 00)]7) /2.
(0(2,1,9))5@19 n—oo e

(2) For (p,q) = (2,2) the right hand factor of (3.7) is minimized a the points
/ ’ n

571,2,1 - 5n,2,1<T(27 27 ¢)> - exp(5<2’ 2, ¢)(T(2, 2’ ¢) + 5)
Substituting this in (3.7) for (p,q) = (2,2), we obtain

|anG(&,20)| < 2" Ble) exp{(T(2.2,¢) + e)(5

> 5 —log2+ O(1).

1
) 5(2.2,¢)—1F¢)

5(2,2,¢)

n )(m)}

(2,2,0)(T(2,2,¢) +¢)

[eXp(a(z, 2,0)(T(2,2,6) + o)

)Eze T | "

or it gives
log |an|_1/n + log |Gn(£;z,2,1)|_1/n
> (#
T(2,2,¢)+¢
5(2,2,¢) — 1 1
( 5(2,2,0) )<n(T(2, 2,0) +¢)
The (2, 2)-type coefficient formulae

1

Gz [(——
Je ey

1
) sEze-TTe)

)m —log2 + O(1)].

1
—)4(6(2,27f)—1)
T(2727f)_5

M

log |a,| /™ < (
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valid for many infinitely many indices (Juneja et al. [6]). Putting this information

in

it

in

above we get the relation

log |Gn(£;z,2,1)|71/n

’

1 M 1 _ 1 1
> n 822,01 [(—>n(6(2,2,¢)71 6(2,2,]‘)—1)
- T(2,2,0) +< n(T(22,0)+2)
M 52 21f) 1 log 2 O(1
_(T(2’2,f)—8) - }_ Og + ( )
gives
( M )TEETT > ( l )@ lim inf{nFEze 1 sm2nT)}
T2z T \TEae) T
. 1
Himinf o a1 108 1Gn(&n22) [}
(3) For 3 < p = ¢ < oo following the same technique as earlier and using
/ ’ log[p_z] n 1
£ =& (T(p,q ) =expl | —"—|GGaoro
T(p,4,0) + =
(3.7) with (p, q)-type coefficient formulae [6]
1 1
log |an| /™ < expld=2{( loglP~2 n)swan }
(T(pv q, f) - 5)
valid for subsequence of infinite indices, we can easily prove the result (3).
Therefore, the proof of Theorem 3.2 is completed. 0
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