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JORDAN HOMOMORPHISMS IN PROPER JCQ*-TRIPLES

S. KABOLI GHARETAPEH!, S. TALEBI?, CHOONKIL PARK? AND MADJID ESHAGHI
GORDJI**

Dedicated to Themistocles M. Rassias on the occasion of his sixztieth birthday

ABSTRACT. In this paper, we investigate Jordan homomorphisms in proper
JCQ*-triples associated with the generalized 3-variable Jesnsen functional
equation

r+y+z
PFEEEE) < @)+ £) + £2),

with r € (0,3) \ {1}. We moreover prove the Hyers-Ulam-Rassias stability of
Jordan homomorphisms in proper JCQ@Q*-triples.

1. INTRODUCTION AND PRELIMINARIES

Let A be a linear space and A is a x-algebra contained in A as a subspace.
We say that A is a quasi *-algebra over Ay if

(i) the right and left multiplications of an element of A and an element of A,
are defined and linear;

(ii) z1(z2a) = (x122)a, (ax)re = a(r122) and 1 (axe) = (z1a)zy for all xy, g €
Ag and all a € A;

(iii) an involution #, which extends the involution of Ay, is defined in A with
the property (ab)* = b*a* whenever the multiplication is defined.

A quasi x-algebra (A, Ag) is said to be a locally convex quasi *-algebra if in A
a locally convex topology 7 is defined such that
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(i) the involution is continuous and the multiplications are separately continu-
ous;

(i) Ap is dense in A[r].

We should notify that a locally convex quasi #-algebra (A[r], Ag) is complete.
For an overview on partial x-algebra and related topics we refer to [2].

In a series of papers [7, 15, 17, 18], many authors have considered a special
class of quasi x-algebras, called proper C'Q*-algebras, which arise as completions
of C*-algebras. They can be introduced in the following way:

Let A be a right Banach module over the C*-algebra Ag with involution % and
C*-norm || - ||o such that Ay C A. We say that (A, Ay) is a proper CQ*-algebra if

(i) Ag is dense in A with respect to its norm || - [|;

(ii) (ab)* = b*a* for all a,b € Ay;

(1) [[yllo = supae a,jap <1 lay} for all y € Ao.

Several mathematician have contributed works on these subjects (see [1], [4]-
[10], [12]-[16], [19], [201, [26], 28], [36]-[38], [60], [61], [63], [64]).

A classical question in the theory of functional equations is that “when is it
true that a function which approximately satisfies a functional equation & must
be somehow close to an exact solution of £7. Such a problem was formulated by
Ulam [65] in 1940 and solved in the next year for the Cauchy functional equation
by Hyers [32]. It gave rise to the stability theory for functional equations.

In 1978, Th.M. Rassias [51] formulated and proved the following theorem, which
implies Hyers’ Theorem as a special case. Suppose that £ and F' are real normed
spaces with F' a complete normed space, f : E — F' is a function such that for
each fixed z € F the mapping t — f(tz) is continuous on R. If there exist € > 0
and p € [0, 1) such that

1f (@ +y) = @) = fF)ll < e(llz]]” + llyl]*) (1.1)
for all x,y € F, then there exists a unique linear function 7' : £ — F' such that

€ll|[”

[f(z) = T(2)]| < m

forallz € E.In 1991, Gajda [29] answered the question for p > 1, which was rased
by Th.M. Rassias. This new concept is known as Hyers-Ulam-Rassias stability
of functional equations. It was shown by Gajda [29], as well as by Th.M. Rassias
and Semrl [57] that one cannot prove a Th.M. Rassias’ type theorem when p = 1.
The counterexamples of Gajda [29], as well as of Th.M. Rassias and Semrl [57]
have stimulated several mathematicians to invent new definitions of approzimately
additive or approximately linear mappings, cf. P. Gavruta [30], who among others
studied the Hyers-Ulam-Rassias stability of functional equations.

Bourgin is the first mathematician dealing with the stability of ring homomor-
phisms. The topic of approximate ring homomorphisms was studied by a number
of mathematicians (see [3], [21]-[24], [33]-[35], [42], [55]) and references therein.

J.M. Rassias [47] following the spirit of the innovative approach of Th.M. Ras-
sias [51] for the unbounded Cauchy difference proved a similar stability theorem
in which he replaced the factor ||z|” + ||y||” by ||z||” - |ly||? for p,q € R with
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p+ q # 1 (see also [48] for a number of other new results). Several mathemati-
cian have contributed works on these subjects (see [39]-[43], [49], [50], [53]-[56],
[59]).-

Let C be a C*-algebra. Then C with the Jordan product zoy := w, is called
a Jordan C*-algebra (see [40], [41]). A C*-algebra A, endowed with the Jordan
triple product

1
{z,z,w} = E(z:c*w + wz*z)
for all z,z,w € A, is called a JC*-triple (see [27]). Note that
{z,x,w} =(zozx")ow+ (wox*)oz— (zow)ox™

A proper CQ*-algebra (A, Ap), endowed with the Jordan triple product
1
{z,z,w} = §(zac*w + wz*z)

for all z € A and all z,w € Ay, is called a proper JCQ*-triple, and denoted by
(A’ Ao, {" ) })

Let (A, Ao{-,-,-}) and (B, Bo{-, -, -}) be proper JCQ*-triples. A C-linear map-
ping H : A — B is called a proper JCQ*-triple Jordan homomorphism if H(z) €
By and

H({zx,2}) = {H(z), H(x), H(z)}
for all z € Ay and all x € A. If, in addition, the mapping H : A — B and the
mapping H |4, : Ag — By are bijective, then the mapping H : A — B is called a
proper JCQ*-triple Jordan isomorphism.

In this paper, we investigate Jordan homomorphisms in proper JC@Q*-triples
for the 3-variable Jensen functional equation. Moreover, we prove the Hyers-
Ulam-Rassias stability of Jordan homomorphisms in proper JCQ*-triples.

From now on, assume that (A, Ag,{-,-,-}) is a proper JCQ*-triple with C*-
norm || - |4, and norm || - ||4, and that (B, By, {-,-,-}) is a proper JCQ*-triple
with C*-norm || - || g, and norm || - || 5.

2. JORDAN ISOMORPHISMS IN PROPER JCQ*-TRIPLES

We start our work with the following theorem, which investigate Jordan iso-
morphisms in proper JCQ*-triples.

Theorem 2.1. Let r < 1 and 6 be nonnegative real numbers, and let f : A — B
be a bijective mapping such that

‘ rf (W) —puf(x) = nf(y) — nf(2)

rf () ) — flwn) — flws)
i ( )

r

< O-llella- Nyl - 1zl1% (2.1)

B

< 0+ Jlwoll 4, - llwll, - llwaB2)
B

fQuw,z,wh) = {f(w), f(x), flw)}  (23)
forall p € T, all w,wy, wy,ws € Ag and all z,y,z € A. Iflim,_ g—Zf (%) =¢
and fla, : Ao — DBy is bijective, then the mapping f : A — B is a proper
JCQ*-triple Jordan isomorphism.
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Proof. Let us assume p =1 and x =y = z in (2.1). Then we get
< 0f][[’y (2.4)

of () -

-3 (‘°’$> B

m—

forallz € A. So
0 I8
< Sl

Tj'H 3]'-1-11,
s (oo
P ( ) 3]+1 rit+l B
O T iz
< 32 gl

for all nonnegative integers m and [ with m > [ and all z € A. From this it follows
that the sequence {g—z f (?’:—f)} is a Cauchy sequence for all z € A. Since B is

for all z € A. Hence

7l 3l 3Mx
3/ (7) - —f( )

M

B

complete, the sequence {g—z f (?;n—f)} converges. Thus one can define the mapping

H:A— Bby
H(z) := lim —f (3% )

for all x € A. Since f({w,z,w}) = {f(w), f(x), f(w)} for all w € Ay and all
r €A,

o7 3w 3"z 3w
H{w,z,w}) = Jl_)lilogﬁ{f( - >’f(r_n)’f< v )}
. 3w "r\ " (3w
(B L) 5 ()

= {H(w),H(z), H(w)}
for all w € Ay and all z € A.
It follows from (2.2) that H(w) = lim, e 5 f (22) € By for all w € A,.
By (2.2), we can show that H is additive, and by (2.1), we can show that H is

C-linear.
On the other hand, by the assumption,

H(z) = H(ex)= lim ﬁf (%%) = lim ﬂf ({&,&,x})

n—00 32n

=t {5 (5) s (5) @} = e s

= f(z)
for all x € A. Hence the bijective mapping f : A — B is a proper JCQ*-triple
Jordan isomorphism. O

Theorem 2.2. Let 1 < r < 3 and 0 be nonnegative real numbers, and let f : A —
B be a bijective mapping satisfying (2.1), (2.2) and (2.3). Iflim, o 2 f (%) = €

rn 3n
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and fla, : Ao — By is bijective, then the mapping f : A — B is a proper JCQ*-
triple Jordan isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there is a unique

C-linear mapping H : A — B satisfying H(w) € By for all w € Ay. The mapping
H : A — B is given by

for all z € A.
The rest of the proof is similar to the proof of Theorem 2.1. O

3. JORDAN HOMOMORPHISMS IN PROPER JC'@Q*-TRIPLES
We investigate Jordan homomorphisms in proper JCQ*-triples.

Theorem 3.1. Let r € (0,3) \ {1} and 6 be nonnegative real numbers and f :
A — B a mapping satisfying f(w) € By for all w € Ay such that

lif(x) + F(y) + F)ll + | f{w, a,w}) — {f(w), f(a), f(w)}]s
< rf (B2 + 02wl + llall?) (3.1)

forallp e TV :={\ € C: |N=1}, dll w € Ay and all x,y,z € A. Then the
mapping f : A — B is a proper JCQ*-triple Jordan homomorphism.

Proof. Letting p =1, =y =2=a=w =01in (3.1), we obtain
13£ ()5 + 117(0) = {(0), (0), f(0) }IB < l[rf(0)]| 5-

It follows that
13f0)l|5 < [Irf(0)]lB,
and f(0) = 0.
Letting @ = w = 0 in (3.1), we obtain

s+ £+ 5l < o (32)

for all z,y, 2 € A.
Letting u = 1,2 = —y, 2z = 0 in (3.2), we obtain

1f (@) + f(=2) + f(0)[|5 < |Irf(0)llz = 0.
Hence, f(—z) = —f(z) for all x € A.
Letting u =1,z = —x — y in (3.2), by the oddness of f, we get
1f(z) + f(y) = fle+y)lls=f(z)+ fly) + f(—z = y)lls < [|rf(O)][z =0

for all z,y € A. It follows that f(z) + f(y) = f(x 4+ y) for all z,y € A. So
f: A — B is Cauchy additive.

Letting z = 0 and y = —px in (3.2), we get f(uz) = pf(z) for all z € A. By
the same reasoning as in the proof of Theorem 2.1 of [40], the mapping f : A — B
is C-linear.

(i) Assume that r» < 1. It follows from (3.1) that

ur+y+z
T

B
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I f({w, z,w}) = {f(w), f(x), fw)}p < OCIw[ +ll=[%)  (3.3)
for all w € Ag and all x € A. By (3.3), we get

1w, zw)) — (). f(z), Fw)}s
= i L ) — LF(20), £(2), (20l

nr

< lim ——0(2wl[¥ + [lz[F) =0

8n
for all w € Ap and all z € A. So

fw,z,w}) = {f(w), f(z), f(w)}
for all w € Ay and all z € A.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one
can prove that the mapping f : A — B satisfies

fQuw,z,wl) = {f(w), f(z), f(w)}
for all w € Ay and all z € A.
Since f(w) € By for all w € Ay, the mapping f : A — B is a proper JCQ*-
triple homomorphism, as desired. [

Theorem 3.2. Let v € (0,3) \ {1} and 6 be nonnegative real numbers, and
f:A— B a mapping satisfying (3.1) and f(w) € By for all w € Ay such that

1f ({w, 2, w}) = {f(w), f(2), f(w)}s <0 [Jwl - =] (3.4)
for all w € Ay and all x € A. Then the mapping f : A — B is a proper
JCQ*-triple Jordan homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, the mapping f :
A — B is C-linear.
(i) Assume that r < 1. By (3.4),

If(w.z,w}) — (), f(a). Fw)} s
= i L ) — LF20), £2), (20l

nr
< lim
n—oo 8N

for all w € Ag and all x € A. So

fw, z,w}) = {f(w), f(z), fw)}
for all w € Ay and all z € A.

(ii) Assume that > 1. By a similar method to the proof of the case (i), one
can prove that the mapping f : A — B satisfies

fw, z,w}) = {f(w), f(z), f(w)}
for all w € Ay and all z € A.

Therefore, the mapping f : A — B is a proper JCQ*-triple Jordan homomor-
phism. O

0 wllX - flly =0
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4. STABILITY OF JORDAN HOMOMORPHISMS IN PROPER JCQ*-TRIPLES

In this section, we prove the Hyers-Ulam-Rassias stability of Jordan homomor-
phisms in proper JCQ*-triples.

Theorem 4.1. Let 0 < r < 1 and 6 be nonnegative real numbers, and let f :
A — B be a mapping such that f(w) € By for all w € Ay and

chﬂiﬂtuﬁ)—ﬂﬂ@—uﬂw—uﬂ@B

r
—FHTf (w0+w1+w2> wl) f(w2>

<Ol Nyl - 2015 + 0 - fleoll, - s, - flwsll,,
1f ({w, 2, w}) = {f(w), f(@), f)Hp <0 [wl - [ (4.2)

for all p € T, all w,wy, wy,ws € Ay and all x,y,2 € A. Then there exists a
unique proper JCQ*-triple Jordan homomorphism H : A — B such that
r’
T ——— 4.
I1£(@) = H@)ls < 5———lalls (43)

(4.1)

for all x € A.
Proof. 1t follows from (4.1) that

ot (BEEEEIE) Cufo) - uf ) - ()

for all p € T' and all z,y,2 € A. Let us assume g =1 and x = y = z in (4.4).

Then we get
i (%) 310

o)

m—

<O-llella-Nylla- Nzl (4.4)
B

< 0|’
B

forallz € A. So

< jaly

ritl i+l
e
= ( ) 3i+1 ri+l ”
0 '« 173"
ggzymwA

for all nonnegative integers m and [ with m > [ and all x € A. From this it follows
that the sequence {g—: f (?’:—f)} is a Cauchy sequence for all z € A. Since B is

complete, the sequence {g—z f (?f—f)} converges. Thus one can define the mapping
H:A— Bby

w

B
for all x € A. Hence

l 3l U™
o ()5 (%)

P1

B
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for all z € A. Moreover, letting [ = 0 and passing the limit m — oo in (4.5), we
get (4.3).
It follows from (4.4) that

HrH (M) — pH(z) — pH(y) — pH(z)

" B
r+y+=z 3"x 3"y 31,
:th 2f< ( )>—,uf(_n)_'uf(_n —nf o
e ™ r T r B
TL3TL7‘9
< Tim el -yl D05 = 0

for all u € T! and all z,y,2 € A. So

[ + py + pz
oit (M) )+ o) + )
for all 4 € T and all #,y,2 € A. By the same reasoning as in the proof of
Theorem 2.1 of [40], the mapping H : A — B is C-linear.

Now, let T': A — B be another 3-variable Jensen mapping satisfying (4.3).
Then we have

|H(z) — ()Hs—gn H<3:n)_T(T_"x) p
<5 () )L A G

7,1"—4—1 ngnrg
npnr r r || ”A’
(3 rm — - 37)

<

which tends to zero as n — oo for all x € A. So we can conclude that H(z) = T'(z)
for all z € A. This proves the uniqueness of H.
On the other hand, by (4.1), we get

Wo + W1 + Wa
rf —

) ~ Fwo) — flwn) — flu)

B

for all w, wg, wy,wy € Ag and all z,y, z € A.
It follows from (4.6) that H(w) = lim,_ 3nf (3" ) € By for all w € Ag. So
it follows from (4.2) that

[H({w,z,w}) — {H(w), H(z), H(w)}|

' 7“3n 33n w, T, w 3w 3" 3
) (20 ()02
n—o00 T r r r
3n33nr 9
<t SO Y el = 0

for all w € Ag and all x € A. So

H({wvwi}) = {H(w),H(m),H(w)}

for all w € Ag and all z € A.

<0 [Jwoll, - llwalld, - llwal|3(4.6)

)}

B
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Thus the mapping H : A — B is a unique proper JCQ*-triple Jordan homo-
morphism satisfying (4.3), and the proof is complete. O

Theorem 4.2. Let 1 < r < 3 and 6 be nonnegative real numbers, and let f :
A — B be a mapping satisfying (4.1) and (4.2) such that f(w) € By for all
w € Ag. Then there exists a unique proper JCQ*-triple Jordan homomorphism
H : A — B such that

r"0 .
[f(z) — H(z)|ls < m”qu (4.7)
for all x € A.
Proof. 1t follows from (4.1) that
3, /rx r"0 .,
1@ -20(5)| <5l
for all z € A. So
3! rlr 3m rmoy m—1 RY rig 3i+1 ritly
#(7) = (F, < 2 (E) = ()
B j=l B
m—1 55 4
r"0 o
< Ty el (4.9

for all nonnegative integers m and [ with m > [ and all x € A. From this it follows
that the sequence {fj—z f (gl—f)} is a Cauchy sequence for all x € A. Since B is
complete, the sequence {i—: f (’%"")} converges. So one can define the mapping

H:A— Bby
3" r'x
H(z):= lim —f | —
(@) ﬁ&wf(y)
for all x € A. Moreover, letting [ = 0 and passing the limit m — oo in (4.8), we
get (4.7).
The rest of the proof is similar to the proof of Theorem 4.1. OJ
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