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RANDOM STABILITY OF QUADRATIC FUNCTIONAL
EQUATIONS: A FIXED POINT APPROACH
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Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. Using the fixed point method, we prove the generalized Hyers-
Ulam stability of the following quadratic functional equations
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in random Banach spaces.

1. Introduction

The stability problem of functional equations was originated from a question
of Ulam [42] concerning the stability of group homomorphisms. Hyers [14] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Th.M.
Rassias [31] for linear mappings by considering an unbounded Cauchy difference.
The paper of Th.M. Rassias [31] has provided a lot of influence in the development
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of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability
of functional equations. A generalization of the Th.M. Rassias theorem was
obtained by Găvruta [10] by replacing the unbounded Cauchy difference by a
general control function in the spirit of the Th.M. Rassias’ approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The generalized
Hyers-Ulam stability of the quadratic functional equation was proved by Skof
[41] for mappings f : X → Y , where X is a normed space and Y is a Banach
space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. Czerwik [7] proved the generalized
Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see
[1, 8, 11, 15, 17], [32]–[38]).

2. Preliminaries

We define the notion of a random normed space, which goes back to Sherstnev
(see, e.g., [12, 40]).

In the sequel, we adopt the usual terminology, notations and conventions of
the theory of random normed spaces, as in. Throughout this paper, let ∆+ is the
space of distribution functions, that is,

∆+ : = {F : R ∪{−∞,∞} → [0, 1] : F is left− continuous,

non− decreasing on R, F (0) = 0 and F (+∞) = 1}
and the subset D+ ⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}, where
l−f(x) denotes the left limit of the function f at the point x. The space ∆+ is
partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is
the distribution function given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 2.1. ([39]) A function T : [0, 1] × [0, 1] → [0, 1] is a continuous
triangular norm (briefly, a t−norm) if T satisfies the following conditions:

(TN1) T is commutative and associative;
(TN2) T is continuous;
(TN3) T (a, 1) = a for all a ∈ [0, 1];
(TN4) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t−norms are TP (a, b) = ab, TM(a, b) = min(a, b)
and TL(a, b) = max(a + b − 1, 0) (the ÃLukasiewicz t-norm). Recall (see [12, 13])
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that if T is a t−norm and {xn} is a given sequence of numbers in [0, 1], T n
i=1xi is

defined recurrently by

T n
i=1xi =

{
x1, if n = 1,

T (T n−1
i=1 xi, xn), if n ≥ 2.

T∞
i=nxi is defined as T∞

i=1xn+i.

Definition 2.2. ([40]) A random normed space (briefly, RN -space) is a triple
(X, Λ, T ), where X is a vector space, T is a continuous t−norm, and Λ is a
mapping from X into D+ such that the following conditions hold:

(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) Λαx(t) = Λx(
t
|α|) for all x ∈ X, α 6= 0;

(RN3) Λx+y(t + s) ≥ T (Λx(t), Λy(s)) for all x, y ∈ X and all t, s ≥ 0.
Every normed space (X, ‖ . ‖) defines a random normed space (X, Λ, TM), where
Λu(t) = t

t+‖u‖ for all t > 0 and TM is the minimum t−norm. This space is called

the induced random normed space.

Definition 2.3. Let (X, Λ, T ) be an RN -space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0
and λ > 0, there exists a positive integer N such that Λxn−x(ε) > 1−λ whenever
n ≥ N .

(2) A sequence {xn} in X is called Cauchy if, for every ε > 0 and λ > 0, there
exists a positive integer N such that Λxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .

(3) An RN -space (X, Λ, T ) is said to be complete if every Cauchy sequence in
X is convergent to a point in X. A complete RN -space is said to be a random
Banach space.

Theorem 2.4. ([39]) If (X, Λ, T ) is an RN -space and {xn} is a sequence such
that xn → x, then limn→∞ Λxn(t) = Λx(t) almost everywhere.

Starting with the paper [23], the stability of some functional equations in the
framework of fuzzy normed spaces or random normed spaces has been investigated
in [18]–[26].

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric
on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Let (X, d) be a generalized metric space. An operator T : X → X satisfies

a Lipschitz condition with Lipschitz constant L if there exists a constant L ≥ 0
such that d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less
than 1, then the operator T is called a strictly contractive operator. Note that
the distinction between the generalized metric and the usual metric is that the
range of the former is permitted to include the infinity. We recall the following
theorem by Margolis and Diaz.

Theorem 2.5. [3, 9] Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then
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for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [16] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors
(see [4, 5], [27]–[29], [30]).

This paper is organized as follows: In Section 3, we prove the generalized
Hyers-Ulam stability of the quadratic functional equation

cf

(
n∑

i=1

xi
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+

n∑
j=2

f

(
n∑

i=1

xi − (n + c− 1)xj

)
(2.1)

= (n + c− 1)

(
f(x1) + c

n∑
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in random Banach spaces by using the fixed point method. In Section 4, we prove
the generalized Hyers-Ulam stability of the quadratic functional equation

Q
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i=1

dixi

)
+

∑
1≤i<j≤n

didjQ(xi − xj) =

(
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i=1
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diQ(xi)
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(2.2)

in random Banach spaces.
Throughout this paper, assume that X is a vector spaces and (Y, µ, T ) is a

complete RN -space.

3. Generalized Hyers-Ulam stability of the quadratic functional
equation (2.1) in RN-spaces

For a given mapping f : X → Y , consider the mapping Pf : Xn → Y , defined
by

Pf(x1, x2, · · · , xn) = cf

(
n∑

i=1

xi

)
+

n∑
j=2

f

(
n∑

i=1

xi − (n + c− 1)xj

)

−(n + c− 1)

(
f(x1) + c

n∑
i=2

f(xi) +
n∑

i<j,j=3

(
n−1∑
i=2

f(xi − xj)

))

for all x1, · · · , xn ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability

of the quadratic functional equation Pf(x1, · · · , xn) = 0 in complete RN-spaces.
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Theorem 3.1. Let v := 2 − n − c > 1. Let ρ : Xn → D+ be a mapping
(ρ(x1, · · · , xn) is denoted by ρx1,··· ,xn) such that, for some 0 < α < v2,

ρvx1,··· ,vxn(αt) ≥ ρx1,··· ,xn(t) (3.1)

for all x1, · · · , xn ∈ X and all t > 0. Suppose that an even mapping f : X → Y
with f(0) = 0 satisfies the inequality

µPf(x1,··· ,xn)(t) ≥ ρx1,··· ,xn(t) (3.2)

for all x1, · · ·xn ∈ X and all t > 0. Then there exists a unique quadratic mapping
Q : X → Y such that

µf(x)−Q(x)(t) ≥ ρ0,x,0,··· ,0
(
(v2 − α)t

)

for all x ∈ X and all t > 0.

Proof. Putting x2 = x and x1 = x3 = x4 = · · · = xn = 0 in (3.2), we get

µf((2−c−n)x)−(2−c−n)2f(x)(t) ≥ ρ0,x,0,··· ,0(t) (3.3)

for all x ∈ X and all t > 0. Replacing 2− c− n by v in (3.3), we get

µf(vx)−v2f(x)(t) ≥ ρ0,x,0,··· ,0(t) (3.4)

for all x ∈ X and all t > 0. Therefore,

µ f(vx)

v2 −f(x)
(t) ≥ ρ0,x,0,··· ,0(v2t) (3.5)

for all x ∈ X and all t > 0.
Let S be the set of all even mappings h : X → Y with h(0) = 0 and introduce

a generalized metric on S as follows:

d(h, k) = inf
{

u ∈ R+ : µh(x)−k(x)(ut) ≥ ρ0,x,0,··· ,0(t), ∀x ∈ X, ∀t > 0
}

,

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is a generalized
complete metric space (see [19, Lemma 2.1]).

Now we define the mapping J : S → S

Jh(x) :=
h (vx)

v2

for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε. Therefore

µJg(x)−Jf(x)

(αu

v2
t
)

= µ g(vx)

v2 − f(vx)

v2

(αu

v2
t
)

= µg(vx)−f(vx)(αut)

≥ ρ0,vx,0,··· ,0(αt) ≥ ρ0,x,0,··· ,0(t),

that is, if d(f, g) < ε we have d(Jf, Jg) < α
v2 ε. Hence

d(Jf, Jg) ≤ α

v2
d(f, g)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on S with the
Lipschitz constant α/v2(< 1).

It follows from (3.5) that

µJf(x)−f(x)

(
1

v2
t

)
≥ ρ0,x,0,··· ,0(t)
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for all x ∈ X and all t > 0, which means that d(Jf, f) ≤ 1
v2 .

By Theorem 2.5, there exists a unique mapping Q : X → Y such that Q is a
fixed point of J , i.e., Q (2x) = 4Q(x) for all x ∈ X.

Also, d(Jmg,Q) → 0 as m →∞, which implies the equality

lim
m→∞

f (vmx)

v2m
= Q(x)

for all x ∈ X.
It follows from (3.1) and (3.2) that

µPf(vmx1,··· ,vmxn)

v2m
(t) ≥ ρvmx1,··· ,vmxn

(
v2mt

)
= ρvmx1,··· ,vmxn

(
αm

(
v2

α

)m

t

)

≥ ρx1,··· ,xn

((
v2

α

)m

t

)
(3.6)

for all x1, · · · , xn ∈ X and all t > 0. Letting m → ∞ in (3.6), we find that
µPQ(x1,··· ,xn)(t) = 1 for all t > 0, which implies PQ(x1, · · · , xn) = 0. Therefore,
the mapping Q : X → Y is quadratic.

Since Q is the unique fixed point of J in the set Ω = {g ∈ S : d(f, g) < ∞}, Q
is the unique mapping such that

µf(x)−Q(x)(ut) ≥ ρ0,x,0,··· ,0(t)

for all x ∈ X and all t > 0. Using the fixed point alternative, we obtain that

d(f, Q) ≤ 1

1− L
d(f, Jf) ≤ 1

v2(1− L)
=

1

v2
(
1− α

v2

) ,

which implies the inequality

µf(x)−Q(x)

(
1

v2 − α
t

)
≥ ρ0,x,0,··· ,0(t)

for all x ∈ X and all t > 0. So

µf(x)−Q(x)(t) ≥ ρ0,x,0,··· ,0
(
(v2 − α)t

)

for all x ∈ X and all t > 0. ¤

Theorem 3.2. Let ρ : Xn → D+ be a mapping (ρ(x1, · · · , xn) is denoted by
ρx1,··· ,xn) such that, for some α > v2,

ρx1
v

,··· , xn
v

(t) ≥ ρx1,··· ,xn(αt) (3.7)

for all x1, · · · , xn ∈ X and all t > 0. Suppose that an even mapping f : X → Y
satisfying f(0) = 0 and (3.2). Then there exists a unique quadratic mapping
Q : X → Y such that

µf(x)−Q(x)(t) ≥ ρ0,x,0,··· ,0
(
(α− v2)t

)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
3.1.

Now we consider the mapping J : S → S defined by

Jh(x) := v2h
(x

v

)

for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε. Then

µJg(x)−Jf(x)

(
v2u

α
t

)
= µv2g(x

v )−v2f(x
v )

(
v2u

α
t

)
= µg(x

v )−f(x
v )

(u

α
t
)

≥ ρ0, x
v
,0,··· ,0

(
t

α

)
≥ ρ0,x,0,··· ,0(t), (3.8)

that is, if d(f, g) < ε we have d(Jf, Jg) < v2

α
ε. This means that

d(Jf, Jg) ≤ v2

α
d(f, g)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on S with the
Lipschitz constant v2

α
(< 1).

By Theorem 2.5, there exists a unique mapping Q : X → Y such that Q is a
fixed point of J , i.e., Q

(
x
v

)
= 1

v2 Q(x) for all x ∈ X.
Also, d(Jmg,Q) → 0 as m →∞, which implies the equality

lim
m→∞

v2mf
( x

vm

)
= Q(x)

for all x ∈ X.
It follows from (3.7) that

µJf(x)−f(x)

(
1

α
t

)
≥ ρ0, x

v
,0,··· ,0(

t

α
) ≥ ρ0,x,0,··· ,0(t)

for all x ∈ X and all t > 0, which implies that d(Jf, f) ≤ 1
α
.

Since Q is the unique fixed point of J in the set Ω = {g ∈ S : d(f, g) < ∞}, Q
is the unique mapping such that

µf(x)−Q(x)(ut) ≥ ρ0,x,0,··· ,0(t)

for all x ∈ X and all t > 0. Using the fixed point alternative, we obtain that

d(f,Q) ≤ 1

1− L
d(f, Jf) ≤ 1

α(1− L)
=

1

α
(
1− v2

α

) ,

which implies the inequality

µf(x)−Q(x)

(
1

(α− v2)
t

)
≥ ρ0,x,0,··· ,0(t)

for all x ∈ X and all t > 0. So

µf(x)−Q(x)(t) ≥ ρ0,x,0,··· ,0
(
(α− v2)t

)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.1. ¤
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4. Generalized Hyers-Ulam stability of the quadratic functional
equation (2.2) in RN-spaces

For a given mapping Q : X → Y , we define

DQ(x1, · · · , xn) := Q

(
n∑

i=1

dixi

)
+

∑
1≤i<j≤n

didjQ (xi − xj)−
n∑

i=1

di

(
n∑

i=1

diQ (xi)

)

for all x1, · · · , xn ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability

of the functional equation DQ(x1, · · · , xn) = 0 in random Banach spaces

Theorem 4.1. Let d :=
∑n

i=1 di. Let ρ : Xn → D+ be a mapping (ρ(x1, · · · , xn)
is denoted by ρx1,··· ,xn) such that, for some 0 < α < d2,

ρdx1,··· ,dxn(αt) ≥ ρx1,··· ,xn(t) (4.1)

for all x1, · · · , xd ∈ X and all t > 0. Suppose that an even mapping f : X → Y
with f(0) = 0 satisfies the inequality

µDQ(x1,··· ,xn)(t) ≥ ρx1,··· ,xn(t) (4.2)

for all x1, · · · x2l ∈ X and all t > 0. Then there exists a unique quadratic mapping
R : X → Y such that

µQ(x)−R(x)(t) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(
(d2 − α)t

)

for all x ∈ X and all t > 0.

Proof. Putting x1 = · · · = xn = x in (4.2), we get

µQ(dx)−d2Q(x)(t) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(t) (4.3)

for all x ∈ X and all t > 0. It follows from (4.3) that

µQ(dx)

d2 −Q(x)
(t) ≥ ρx, · · · , x︸ ︷︷ ︸

n times

(d2t) (4.4)

for all x ∈ X and all t > 0.
Let S be the set of all even mappings h : X → Y with h(0) = 0 and introduce

a generalized metric on S as follows:

d(h, k) = inf
{

u ∈ R+ : µh(x)−k(x)(ut) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(t), ∀x ∈ X, ∀t > 0
}

,

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is a generalized
complete metric space (see [19, Lemma 2.1]).

Now we consider the mapping J : S → S defined by

Jh(x) :=
h (dx)

d2
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for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε. Then

µJg(x)−Jf(x)

(αu

d2
t
)

= µ g(dx)

d2 − f(dx)

d2

(αu

d2
t
)

= µg(dx)−f(dx)(αut)

≥ ρdx, · · · , dx︸ ︷︷ ︸
n times

(αt) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(t),

that is, if d(f, g) < ε we have d(Jf, Jg) < α
d2 ε. This means that

d(Jf, Jg) ≤ α

d2
d(f, g)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on S with the
Lipschitz constant α

d2 .
It follows from (4.4) that

µJQ(x)−Q(x)

(
1

d2
t

)
≥ ρx, · · · , x︸ ︷︷ ︸

n times

(t)

for all x ∈ X and all t > 0, which implies that d(JQ, Q) ≤ 1
d2 .

By Theorem 2.5, there exists a unique mapping R : X → Y such that R is a
fixed point of J , i.e., R (dx) = d2R(x) for all x ∈ X.

Also, d(Jmg,Q) → 0 as m →∞, which implies the equality

lim
m→∞

Q (dmx)

d2m
= R(x)

for all x ∈ X.
It follows from (4.1) and (4.2) that

µDQ(dmx1,··· ,dmxn)

d2m
(t) ≥ ρdmx1,··· ,dmxn

(
d2mt

)
= ρx1,··· ,xn

((
d2

α

)m

t

)
(4.5)

for all x1, · · · , xn ∈ X and all t > 0. Letting m → ∞ in (4.5), we find that
µDR(x1,··· ,xn)(t) = 1 for all t > 0, which implies DR(x1, · · · , xn) = 0. Since Q is
even, R is even. So the mapping R : X → Y is quadratic.

Since R is the unique fixed point of J in the set Ω = {g ∈ S : d(f, g) < ∞}, R
is the unique mapping such that

µQ(x)−R(x)(ut) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(t)

for all x ∈ X and all t > 0. Using the fixed point alternative, we obtain that

d(Q,R) ≤ 1

1− L
d(Q, JQ) ≤ 1

d2(1− L)
=

1

d2
(
1− α

d2

) =
1

d2 − α
,

which implies the inequality

µQ(x)−R(x)

(
1

d2 − α
t

)
≥ ρx, · · · , x︸ ︷︷ ︸

n times

(t)

for all x ∈ X and all t > 0. So

µQ(x)−R(x)(t) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(
(d2 − α)t

)
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for all x ∈ X and all t > 0. ¤

Theorem 4.2. Let ρ : Xn → D+ be a mapping (ρ(x1, · · · , xn) is denoted by
ρx1,··· ,xn) such that, for some α > d2,

ρx1
d

,··· , xn
d

(t) ≥ ρx1,··· ,xn(αt) (4.6)

for all x1, · · · , xn ∈ X and all t > 0. Suppose that an even mapping Q : X → Y
satisfying Q(0) = 0 and (4.2). Then there exists a unique quadratic mapping
R : X → Y such that

µR(x)−Q(x)(t) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(
(α− d2)t

)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
4.1.

Now we consider the mapping J : S → S defined by

Jh(x) := d2h
(x

d

)

for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε. Then

µJg(x)−Jf(x)

(
d2ε

α
t

)
= µd2g(x

d)−d2f(x
d)

(
d2ε

α
t

)
= µg(x

d)−f(x
d)

( ε

α
t
)

≥ ρx

d
, · · · ,

x

d︸ ︷︷ ︸
n times

(
t

α

)
≥ ρx, · · · , x︸ ︷︷ ︸

n times

(t),

that is, if d(f, g) < ε we have d(Jf, Jg) < d2

α
ε. This means that

d(Jf, Jg) ≤ d2

α
d(f, g)

for all f, g ∈ S, that is, J is a strictly contractive self-mapping on S with the
Lipschitz constant d2

α
.

By Theorem 2.5, there exists a unique mapping R : X → Y such that R is a
fixed point of J , i.e., R

(
x
d

)
= 1

d2 R(x) for all x ∈ X.
Also, d(Jmg,R) → 0 as m →∞, which implies the equality

lim
m→∞

d2mQ
( x

dm

)
= R(x)

for all x ∈ X.
It follows from (4.3) that

µJQ(x)−Q(x)

(
1

α
t

)
≥ ρx, · · · , x︸ ︷︷ ︸

n times

(t)

for all x ∈ X and all t > 0, which implies that d(JQ, Q) ≤ 1
α
.
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Since R is the unique fixed point of J in the set Ω = {g ∈ S : d(f, g) < ∞}, R
is the unique mapping such that

µQ(x)−R(x)(ut) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(t)

for all x ∈ X and all t > 0. Using the fixed point alternative, we obtain that

d(Q,R) ≤ 1

1− L
d(Q, JQ) ≤ 1

α(1− L)
=

1

α
(
1− d2

α

) =
1

α− d2
,

which implies the inequality

µQ(x)−R(x)

(
1

α− d2
t

)
≥ ρx, · · · , x︸ ︷︷ ︸

n times

(t)

for all x ∈ X and all t > 0. So

µQ(x)−R(x)(t) ≥ ρx, · · · , x︸ ︷︷ ︸
n times

(
(α− d2)t

)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 4.1. ¤
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