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ISOMORPHISMS AND GENERALIZED DERIVATIONS IN
PROPER CQ∗-ALGEBRAS

CHOONKIL PARK1,∗ AND DEOK-HOON BOO2

Dedicated to Professor Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. In this paper, we prove the Hyers-Ulam-Rassias stability of homo-
morphisms in proper CQ∗-algebras and of generalized derivations on proper
CQ∗-algebras for the following Cauchy-Jensen additive mappings:

f

(
x + y + z

2

)
+ f

(
x− y + z

2

)
= f(x) + f(z),

f

(
x + y + z

2

)
− f

(
x− y + z

2

)
= f(y),

2f

(
x + y + z

2

)
= f(x) + f(y) + f(z),

which were introduced and investigated in [3, 30].
This is applied to investigate isomorphisms in proper CQ∗-algebras.

1. Introduction and preliminaries

In a series of papers [1, 2], [4]–[9] and [46]–[48], many authors have considered
a special class of quasi ∗-algebras, called proper CQ∗-algebras, which arise as
completions of C∗-algebras. They can be introduced in the following way:

Let A be a Banach module over the C∗-algebra A0 with involution ∗ and C∗-
norm ‖ · ‖0 such that A0 ⊂ A. We say that (A,A0) is a proper CQ∗-algebra
if

(i) A0 is dense in A with respect to its norm ‖ · ‖;
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(ii) an involution ∗, which extends the involution of A0, is defined in A with
the property (xy)∗ = y∗x∗ for all x, y ∈ A whenever the multiplication is defined;

(iii) ‖y‖0 = supx∈A,‖x‖≤1 ‖xy‖ for all y ∈ A0.

Definition 1.1. Let (A,A0) and (B, B0) be proper CQ∗-algebras. A C-linear
mapping H : A → B is called a proper CQ∗-algebra homomorphism if H(x) ∈ B0

and H(xz) = H(x)H(z) for all x ∈ A0 and all z ∈ A. If, in addition, the mapping
H : A → B and the mapping H|A0 : A0 → B0 are bijective, then the mapping
H : A → B is called a proper CQ∗-algebra isomorphism.

Definition 1.2. A C-linear mapping δ : A → A is called a generalized derivation
if

δ(xyz) = δ(xy)z + xδ(y)z + xδ(yz)

for all x, y, z ∈ A0 (see [13]).

Ulam [49] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was
the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε > 0,
does there exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ
for all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε
for all x ∈ G?

By now an affirmative answer has been given in several cases, and some inter-
esting variations of the problem have also been investigated. We shall call such
an f : G → G′ an approximate homomorphism.

Hyers [20] considered the case of approximately additive mappings f : E → E ′,
where E and E ′ are Banach spaces and f satisfies Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and that L : E → E ′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.

Th.M. Rassias [38] provided a generalization of Hyers’ Theorem which allows
the Cauchy difference to be unbounded.

Theorem 1.3. (Th.M. Rassias). Let f : E → E ′ be a mapping from a normed
vector space E into a Banach space E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)

2n
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exists for all x ∈ E and L : E → E ′ is the unique additive mapping which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for
x 6= 0. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L
is R-linear.

Th.M. Rassias [39] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for
p ≥ 1. Gajda [14] following the same approach as in Th.M. Rassias [38], gave
an affirmative solution to this question for p > 1. It was shown by Gajda [14],
as well as by Th.M. Rassias and P. Šemrl [44] that one cannot prove a Th.M.
Rassias’ type theorem when p = 1. The counterexamples of Gajda [14], as well
as of Th.M. Rassias and P. Šemrl [44] have stimulated several mathematicians to
invent new definitions of approximately additive or approximately linear mappings,
cf. P. Găvruta [15], who among others studied the Hyers-Ulam-Rassias stability
of functional equations. The inequality (1.1) that was introduced for the first
time by Th.M. Rassias [38] provided a lot of influence in the development of a
generalization of the Hyers-Ulam stability concept. This new concept is known as
Hyers-Ulam-Rassias stability of functional equations (cf. the books of P. Czerwik
[10, 11], D.H. Hyers, G. Isac and Th.M. Rassias [21]).

Beginning around the year 1980 the topic of approximate homomorphisms and
their stability theory in the field of functional equations and inequalities was
taken up by several mathematicians (cf. D.H. Hyers and Th.M. Rassias [22],
Th.M. Rassias [42] and the references therein).

J.M. Rassias [32] following the spirit of the innovative approach of Th.M. Ras-
sias [38] for the unbounded Cauchy difference proved a similar stability theorem
in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with
p + q 6= 1 (see also [33] for a number of other new results).

Găvruta [15] provided a further generalization of Th.M. Rassias’ Theorem. In
1996, G. Isac and Th.M. Rassias [21] applied the Hyers-Ulam-Rassias stability
theory to prove fixed point theorems and study some new applications in Nonlin-
ear Analysis. In [22], D.H. Hyers, G. Isac and Th.M. Rassias studied the asymp-
toticity aspect of Hyers-Ulam stability of mappings. During the several papers
have been published on various generalizations and applications of Hyers-Ulam
stability and Hyers-Ulam-Rassias stability to a number of functional equations
and mappings, for example: quadratic functional equation, invariant means, mul-
tiplicative mappings - superstability, bounded nth differences, convex functions,
generalized orthogonality functional equation, Navier-Stokes equations. Several
mathematician have contributed works on these subjects (see [12], [16]–[19], [23]–
[37], [40]–[43], [45]).

Throughout this paper, assume that (A,A0) is a proper CQ∗-algebra with C∗-
norm ‖ · ‖A0 , norm ‖ · ‖A and unit e, and that (B,B0) is a proper CQ∗-algebra
with C∗-norm ‖ · ‖B0 , norm ‖ · ‖B and unit e′.
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The purpose of this paper is to investigate the Hyers-Ulam-Rassias stability of
homomorphisms in proper CQ∗-algebras and of generalized derivations on proper
CQ∗-algebras.

This paper is organized as follows: In Sections 2 and 4, we prove the Hyers-
Ulam-Rassias stability of homomorphisms in proper CQ∗-algebras and of gener-
alized derivations on proper CQ∗-algebras for the Cauchy-Jensen additive map-
pings.

In Section 3, we investigate isomorphisms in proper CQ∗-algebras, associated
to the Cauchy-Jensen additive mappings.

2. Stability of homomorphisms in proper CQ∗-algebras

For a given mapping f : A → B, we define

Cµf(x, y, z) := f

(
µx + µy + µz

2

)
+ µf

(
x− y + z

2

)
− µf(x)− µf(z)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A.
We prove the Hyers-Ulam-Rassias stability of homomorphisms in proper CQ∗-

algebras for the functional equation Cµf(x, y, z) = 0.

Theorem 2.1. Let r > 1 and θ be nonnegative real numbers, and let f : A → B
be a mapping such that f(x0) ∈ B0 and

‖Cµf(x, y, z)‖B ≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A), (2.1)

‖C1f(x0, y0, z0)‖B0 ≤ θ(‖x0‖r
A0

+ ‖y0‖r
A0

+ ‖z0‖r
A0

), (2.2)

‖f(x0z)− f(x0)f(z)‖B ≤ θ(‖x0‖2r
A + ‖z‖2r

A ) (2.3)

for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. Then there exists a unique
proper CQ∗-algebra homomorphism H : A → B such that

‖f(x)−H(x)‖B ≤ (2r + 2)θ

2r − 2
‖x‖r

A (2.4)

for all x ∈ A.

Proof. Letting µ = −1 and x = y = z = 0 in (2.1), we get f(0) = 0. Letting
µ = 1 and y = 2x and z = x in (2.1), we get

‖f(2x)− 2f(x)‖B ≤ (2r + 2)θ‖x‖r
A (2.5)

for all x ∈ A. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥
B
≤ (2r + 2)θ

2r
‖x‖r

A

for all x ∈ A. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥
B

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
B

≤ (2r + 2)θ

2r

m−1∑

j=l

2j

2rj
‖x‖r

A (2.6)
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for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.6) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.6), we
get (2.4).

It follows from (2.1) that
∥∥∥∥H

(
x + y + z

2

)
+ H

(
x− y + z

2

)
−H(x)−H(z)

∥∥∥∥
B

= lim
n→∞

2n

∥∥∥∥f

(
x + y + z

2n+1

)
+ f

(
x− y + z

2n+1

)
− f

( x

2n

)
− f

( z

2n

)∥∥∥∥
B

≤ lim
n→∞

2nθ

2nr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So

H

(
x + y + z

2

)
+ H

(
x− y + z

2

)
= H(x) + H(z) (2.7)

for all x, y, z ∈ A.
Letting y = 0 in (2.7), we get

2H

(
x + z

2

)
= H(x) + H(z) (2.8)

for all x, z ∈ A.
Since H(0) = limn→∞ 2nf

(
0
2n

)
= limn→∞ 2nf(0) = 0, by letting y = 2x and

z = x in (2.7), we get

H(2x) = 2H(x)

for all x ∈ A.
Replacing x by 2x and z by 2z in (2.8), we get

H(x + z) = H(x) + H(z)

for all x, z ∈ A. Hence H : A → B is Cauchy additive.
Letting y = 0 and z = x in (2.1), we get

‖f(µx)− µf(x)‖B ≤ θ‖x‖r
A

for all µ ∈ T1 and all x ∈ A. So

H(µx) = lim
n→∞

2nf
(µx

2n

)
= lim

n→∞
µ · 2nf

( x

2n

)
= µH(x) (2.9)

for all µ ∈ T1 and all x ∈ A.
By the same reasoning as in the proof of Theorem 2.1 of [29], the mapping

H : A → B is C-linear.



24 C. PARK, D. BOO

It follows from (2.2) that H(x) = limn→∞ 2nf
(

x
2n

) ∈ B0 for all x ∈ A0. So it
follows from (2.3) that

‖H(xz)−H(x)H(z)‖B = lim
n→∞

4n
∥∥∥f

(xz

4n

)
− f

( x

2n

)
f

( z

2n

)∥∥∥
B

≤ lim
n→∞

4nθ

4nr
(‖x‖2r

A + ‖z‖2r
A ) = 0

for all x ∈ A0 and all z ∈ A. So

H(xz) = H(x)H(z)

for all x ∈ A0 and all z ∈ A.
Now, let T : A → B be another Cauchy-Jensen additive mapping satisfying

(2.4). Then we have

‖H(x)− T (x)‖B = 2n
∥∥∥H

( x

2n

)
− T

( x

2n

)∥∥∥
B

≤ 2n
(∥∥∥H

( x

2n

)
− f

( x

2n

)∥∥∥
B

+
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
B

)

≤ 2(2r + 2)

2r − 2
· 2n · θ

2nr
‖x‖r

A,

which tends to zero as n →∞ for all x ∈ A. So we can conclude that H(x) = T (x)
for all x ∈ A. This proves the uniqueness of H. Thus the mapping H : A → B
is a unique proper CQ∗-algebra homomorphism satisfying (2.4). ¤

Theorem 2.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → B
be a mapping satisfying (2.1), (2.2) and (2.3) such that f(x) ∈ B0 for all x ∈ A0.
Then there exists a unique proper CQ∗-algebra homomorphism H : A → B such
that

‖f(x)−H(x)‖B ≤ (2 + 2r)θ

2− 2r
‖x‖r

A (2.10)

for all x ∈ A.

Proof. It follows from (2.5) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
B

≤ (2 + 2r)θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
B

≤ (2 + 2r)θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (2.11)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.11) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since B



ISOMORPHISMS AND DERIVATIONS IN PROPER CQ∗-ALGEBRAS 25

is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.11), we
get (2.10).

The rest of the proof is similar to the proof of Theorem 2.1. ¤
Theorem 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : A → B
be a mapping such that f(x0) ∈ B0 and

‖Cµf(x, y, z)‖B ≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A, (2.12)

‖C1f(x0, y0, z0)‖B0 ≤ θ · ‖x0‖
r
3
A0
· ‖y0‖

r
3
A0
· ‖z0‖

r
3
A0

, (2.13)

‖f(x0z)− f(x0)f(z)‖B ≤ θ · ‖x0‖r
A · ‖z‖r

A (2.14)

for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. Then there exists a unique
proper CQ∗-algebra homomorphism H : A → B such that

‖f(x)−H(x)‖B ≤ 2
r
3 θ

2r − 2
‖x‖r

A (2.15)

for all x ∈ A.

Proof. Letting µ = −1 and x = y = z = 0 in (2.12), we get f(0) = 0. So, letting
µ = 1 and y = 2x and z = x in (2.12), we get

‖f(2x)− 2f(x)‖B ≤ 2
r
3 θ‖x‖r

A (2.16)

for all x ∈ A. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥
B
≤ θ

4
r
3

‖x‖r
A

for all x ∈ A. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥
B

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
B

≤ θ

4
r
3

m−1∑

j=l

2j

2rj
‖x‖r

A (2.17)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.17) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.17), we
get (2.15).

The rest of the proof is similar to the proof of Theorem 2.1. ¤
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Theorem 2.4. Let r < 1 and θ be nonnegative real numbers, and let f : A → B be
a mapping satisfying (2.12), (2.13) and (2.14) such that f(x) ∈ B0 for all x ∈ A0.
Then there exists a unique proper CQ∗-algebra homomorphism H : A → B such
that

‖f(x)−H(x)‖B ≤ 2
r
3 θ

2− 2r
‖x‖r

A (2.18)

for all x ∈ A.

Proof. It follows from (2.16) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
B

≤ 2
r
3 θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
B

≤ 2
r
3 θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (2.19)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(2.19) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (2.19), we
get (2.18).

The rest of the proof is similar to the proof of Theorem 2.1. ¤

3. Isomorphisms in proper CQ∗-algebras

For a given mapping f : A → B, we define

Dµf(x, y, z) := f

(
µx + µy + µz

2

)
− µf

(
x− y + z

2

)
− µf(y)

for all µ ∈ T1 and all x, y, z ∈ A.
We investigate isomorphisms in proper CQ∗-algebras, associated to the func-

tional equation Dµf(x, y, z) = 0.

Theorem 3.1. Let r > 1 and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping such that f(x0) ∈ B0 and

‖Dµf(x, y, z)‖B ≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A), (3.1)

‖D1f(x0, y0, z0)‖B0 ≤ θ(‖x0‖r
A0

+ ‖y0‖r
A0

+ ‖z0‖r
A0

), (3.2)

f(x0z) = f(x0)f(z) (3.3)
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for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. If f |A0 : A0 → B0 is bijective
and limn→∞ 2nf( e

2n ) = e′, then the mapping f : A → B is a proper CQ∗-algebra
isomorphism.

Proof. Letting µ = 1 , y = x and z = 2x in (3.1), we get

‖f(2x)− 2f(x)‖B ≤ (2r + 2)θ‖x‖r
A (3.4)

for all x ∈ A. So ∥∥∥f(x)− 2f(
x

2
)
∥∥∥

B
≤ (2r + 2)θ

2r
‖x‖r

A

for all x ∈ A. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥
B

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
B

≤ (2r + 2)θ

2r

m−1∑

j=l

2j

2rj
‖x‖r

A (3.5)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(3.5) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (3.5), we
get

‖f(x)−H(x)‖B ≤ (2r + 2)θ

2r − 2
‖x‖r

A

for all x ∈ A.
It follows from (3.1) that

∥∥∥∥H

(
x + y + z

2

)
−H

(
x− y + z

2

)
−H(y)

∥∥∥∥
B

= lim
n→∞

2n

∥∥∥∥f

(
x + y + z

2n

)
− f

(
x− y + z

2n

)
− f

( y

2n

)∥∥∥∥
B

≤ lim
n→∞

2nθ

2nr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So

H

(
x + y + z

2

)
−H

(
x− y + z

2

)
= H(y) (3.6)

for all x, y, z ∈ A.
Letting z = x + y in (3.6), we get

H(x + y) = H(x) + H(y)

for all x, y ∈ A. Hence the mapping H : A → B is Cauchy additive.
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Letting x = 0 and z = y in (3.1), we get

‖f(µy)− µf(y)‖B ≤ 2θ‖y‖r
A

for all µ ∈ T1 and all y ∈ A. So

H(µx) = lim
n→∞

2nf
(µx

2n

)
= lim

n→∞
µ · 2nf

( x

2n

)
= µH(x) (3.7)

for all µ ∈ T1 and all x ∈ A.
By the same reasoning as in the proof of Theorem 2.1 of [29], the mapping

H : A → B is C-linear.
Since f(xz) = f(x)f(z) for all x ∈ A0 and all z ∈ A,

H(xz) = lim
n→∞

4nf
( x

2n
· z

2n

)
= lim

n→∞
2nf

( x

2n

)
· 2nf

( z

2n

)
= H(x)H(z)

for all x ∈ A0 and all z ∈ A. So the mapping H : A → B is a proper CQ∗-algebra
homomorphism.

It follows from (3.2) that H(x) = limn→∞ 2nf
(

x
2n

) ∈ B0 for all x ∈ A0. So it
follows from (3.3) that

H(x) = H(ex) = lim
n→∞

2nf
(ex

2n

)
= lim

n→∞
2nf

( e

2n
x
)

= lim
n→∞

2nf
( e

2n

)
f(x)

= e′f(x) = f(x)

for all x ∈ A. Hence the bijective mapping f : A → B is a proper CQ∗-algebra
isomorphism. ¤

Theorem 3.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping satisfying (3.1), (3.2) and (3.3) such that f(x) ∈ B0 for
all x ∈ A0. If f |A0 : A0 → B0 is bijective and limn→∞ 1

2n f(2ne) = e′, then the
mapping f : A → B is a proper CQ∗-algebra isomorphism.

Proof. It follows from (3.4) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
B

≤ (2 + 2r)θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
B

≤ (2 + 2r)θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (3.8)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(3.8) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

1

2n
f(2nx)
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for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (3.8), we
get

‖f(x)−H(x)‖B ≤ (2 + 2r)θ

2− 2r
‖x‖r

A

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 3.1. ¤

Theorem 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping satisfying (3.3) such that f(x0) ∈ B0 and

‖Dµf(x, y, z)‖B ≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A, (3.9)

‖D1f(x0, y0, z0)‖B0 ≤ θ · ‖x0‖
r
3
A0
· ‖y0‖

r
3
A0
· ‖z0‖

r
3
A0

, (3.10)

for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. If f |A0 : A0 → B0 is bijective
and limn→∞ 2nf( e

2n ) = e′, then the mapping f : A → B is a proper CQ∗-algebra
isomorphism.

Proof. Letting µ = 1 , y = x and z = 2x in (3.9), we get

‖f(2x)− 2f(x)‖B ≤ 2
r
3 θ‖x‖r

A (3.11)

for all x ∈ A. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥
B
≤ θ

4
r
3

‖x‖r
A

for all x ∈ A. Hence
∥∥∥2lf

( x

2l

)
− 2mf

( x

2m

)∥∥∥
B

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
B

≤ θ

4
r
3

m−1∑

j=l

2j

2rj
‖x‖r

A (3.12)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(3.12) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (3.12), we
get

‖f(x)−H(x)‖B ≤ 2
r
3 θ

2r − 2
‖x‖r

A

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorem 2.3 and 3.1. ¤

Theorem 3.4. Let r < 1 and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping satisfying (3.3), (3.9) and (3.10) such that f(x) ∈ B0 for
all x ∈ A0. If f |A0 : A0 → B0 is bijective and limn→∞ 1

2n f(2ne) = e′, then the
mapping f : A → B is a proper CQ∗-algebra isomorphism.
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Proof. It follows from (3.11) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
B

≤ 2
r
3 θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
B

≤ 2
r
3 θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (3.13)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(3.13) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since B

is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (3.13), we
get

‖f(x)−H(x)‖B ≤ 2
r
3 θ

2− 2r
‖x‖r

A

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorem 2.4 and 3.1. ¤

4. Stability of generalized derivations on proper CQ∗-algebras

For a given mapping f : A → B, we define

Eµf(x, y, z) := 2f

(
µx + µy + µz

2

)
− µf(x)− µf(y)− µf(z)

for all µ ∈ T1 and all x, y, z ∈ A.
We prove the Hyers-Ulam-Rassias stability of generalized derivations on proper

CQ∗-algebras for the functional equation Eµf(x, y, z) = 0.

Theorem 4.1. Let r > 1 and θ be nonnegative real numbers, and let f : A → A
be a mapping such that

‖Eµf(x, y, z)‖A ≤ θ(‖x‖r
A + ‖y‖r

A + ‖z‖r
A), (4.1)

‖f(x0y0z0)− f(x0y0)z0 − x0f(y0)z0 − x0f(y0z0)‖A

≤ θ(‖x0‖3r
A + ‖y0‖3r

A + ‖z0‖3r
A ) (4.2)

for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. Then there exists a unique
generalized derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤ (2r + 2)θ

2r − 2
‖x‖r

A (4.3)

for all x ∈ A.
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Proof. Letting µ = 1, y = 2x and z = x in (4.1), we get

‖f(2x)− 2f(x)‖A ≤ (2r + 2)θ‖x‖r
A (4.4)

for all x ∈ A. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥
A
≤ (2r + 2)θ

2r
‖x‖r

A

for all x ∈ A. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥
A

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
A

≤ (2r + 2)θ

2r

m−1∑

j=l

2j

2rj
‖x‖r

A (4.5)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(4.5) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since A

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

δ : A → A by

δ(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.5), we
get (4.3).

It follows from (4.1) that
∥∥∥∥2δ

(
x + y + z

2

)
− δ(x)− δ(y)− δ(z)

∥∥∥∥
A

= lim
n→∞

2n

∥∥∥∥2f

(
x + y + z

2n+1

)
− f

( x

2n

)
− f

( y

2n

)
− f

( z

2n

)∥∥∥∥
A

≤ lim
n→∞

2nθ

2nr
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A) = 0

for all x, y, z ∈ A. So

2δ

(
x + y + z

2

)
= δ(x) + δ(y) + δ(z) (4.6)

for all x, y, z ∈ A. Letting x = y = z = 0 in (4.6), we get δ(0) = 0.
Letting z = x + y in (4.6), we get

δ(x + y) = δ(x) + δ(y)

for all x, y ∈ A. Hence the mapping δ : A → A is Cauchy additive.
Letting y = x and z = 0 in (4.1), we get

‖f(µx)− µf(x)‖A ≤ θ‖x‖r
A

for all µ ∈ T1 and all y ∈ A. So

δ(µx) = lim
n→∞

2nf
(µx

2n

)
= lim

n→∞
µ · 2nf

( x

2n

)
= µδ(x) (4.7)

for all µ ∈ T1 and all x ∈ A.
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By the same reasoning as in the proof of Theorem 2.1 of [29], the mapping
δ : A → A is C-linear.

It follows from (4.2) that

‖δ(xyz)− δ(xy)z − xδ(y)z − xδ(yz)‖A

= lim
n→∞

8n
∥∥∥f

(xyz

8n

)
− f

(xy

4n

) z

2n
− x

2n
f

( y

2n

) z

2n
− x

2n
f

(yz

4n

)∥∥∥
A

≤ lim
n→∞

8nθ

8nr
(‖x‖3r

A + ‖y‖3r
A + ‖z‖3r

A ) = 0

for all x, y, z ∈ A0. So

δ(xyz) = δ(xy)z + xδ(y)z + xδ(yz)

for all x, y, z ∈ A0.
Now, let T : A → A be another Cauchy-Jensen additive mapping satisfying

(4.3). Then we have

‖δ(x)− T (x)‖A = 2n
∥∥∥δ

( x

2n

)
− T

( x

2n

)∥∥∥
A

≤ 2n
(∥∥∥δ

( x

2n

)
− f

( x

2n

)∥∥∥
A

+
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
A

)

≤ 2(2r + 2)θ

(2r − 2)2nr
‖x‖r

A,

which tends to zero as n →∞ for all x ∈ A. So we can conclude that δ(x) = T (x)
for all x ∈ A. This proves the uniqueness of δ. Thus the mapping δ : A → A is a
unique generalized derivation satisfying (4.3). ¤

Theorem 4.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be a mapping satisfying (4.1) and (4.2). Then there exists a unique generalized
derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤ (2 + 2r)θ

2− 2r
‖x‖r

A (4.8)

for all x ∈ A.

Proof. It follows from (4.4) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
A

≤ (2 + 2r)θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
A

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
A

≤ (2 + 2r)θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (4.9)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(4.9) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since A
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is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

δ : A → A by

δ(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.9), we
get (4.8).

The rest of the proof is similar to the proof of Theorem 4.1. ¤

Theorem 4.3. Let r > 1 and θ be nonnegative real numbers, and let f : A → A
be a mapping such that

‖Eµf(x, y, z)‖A ≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A, (4.10)

‖f(x0y0z0)− f(x0y0)z0 − x0f(y0)z0 − x0f(y0z0)‖A

≤ θ · ‖x0‖r
A · ‖y0‖r

A · ‖z0‖r
A (4.11)

for all µ ∈ T1, all x0, y0, z0 ∈ A0 and all x, y, z ∈ A. Then there exists a unique
generalized derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤ 2
r
3 θ

2r − 2
‖x‖r

A (4.12)

for all x ∈ A.

Proof. Letting µ = 1, y = 2x and z = x in (4.10), we get

‖f(2x)− 2f(x)‖A ≤ 2
r
3 θ‖x‖r

A (4.13)

for all x ∈ A. So ∥∥∥f(x)− 2f
(x

2

)∥∥∥
A
≤ θ

4
r
3

‖x‖r
A

for all x ∈ A. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥
A

≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
A

≤ θ

4
r
3

m−1∑

j=l

2j

2rj
‖x‖r

A (4.14)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(4.14) that the sequence

{
2nf

(
x
2n

)}
is a Cauchy sequence for all x ∈ A. Since A

is complete, the sequence
{
2nf

(
x
2n

)}
converges. So one can define the mapping

δ : A → A by

δ(x) := lim
n→∞

2nf
( x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.14), we
get (4.12).

The rest of the proof is similar to the proof of Theorem 4.1. ¤
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Theorem 4.4. Let r < 1 and θ be nonnegative real numbers, and let f : A → A
be a mapping satisfying (4.10) and (4.11). Then there exists a unique generalized
derivation δ : A → A such that

‖f(x)− δ(x)‖A ≤ 2
r
3 θ

2− 2r
‖x‖r

A (4.15)

for all x ∈ A.

Proof. It follows from (4.13) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
A

≤ 2
r
3 θ

2
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

1

2l
f(2lx)− 1

2m
f(2mx)

∥∥∥∥
A

≤
m−1∑

j=l

∥∥∥∥
1

2j
f(2jx)− 1

2j+1
f(2j+1x)

∥∥∥∥
A

≤ 2
r
3 θ

2

m−1∑

j=l

2rj

2j
‖x‖r

A (4.16)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from
(4.16) that the sequence

{
1
2n f(2nx)

}
is a Cauchy sequence for all x ∈ A. Since A

is complete, the sequence
{

1
2n f(2nx)

}
converges. So one can define the mapping

δ : A → A by

δ(x) := lim
n→∞

1

2n
f(2nx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.16), we
get (4.15).

The rest of the proof is similar to the proofs of Theorems 4.1 and 4.3. ¤
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