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B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS
IN GENERALIZED COMPLEX SPACE FORMS

S.S. SHUKLA! AND PAWAN KUMAR RAO?*

ABSTRACT. The aim of the present paper is to study Chen inequalities for
slant, bi-slant and semi-slant submanifolds in generalized complex space forms.

1. INTRODUCTION

In [7] B.Y. Chen recalls one of the basic problems in submanifold theory as
to find simple relationships between the main extrinsic invariants and the main
intrinsic invariants of a submanifold. In [5] he established a sharp inequality
for the sectional curvature of a submanifold in a real space forms in terms of
the scalar curvature and squared mean curvature. Afterward several geometers
[16],[20],[23] obtained similar inequalities for submanifolds in generalized complex
space forms. Many geometers also studied contact version of above inequalities
[1],[13],[15]. In this article, we establish Chen inequalities for bi-slant and semi-
slant submanifolds in generalized complex space forms.

2. PRELIMINARIES

Let M be an almost Hermitian manifold with an almost complex structure J
and Riemannian metric g. If J is integrable, i.e. the Nijenhuis tensor [/, J] of J
vanishes, then M is called a Hermitian manifold. The fundamental 2-form € of

M is defined by
(2.1) QX,Y) =g(X,JY), for all, X,Y € TM.
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An almost Hermitian manifold M is called an almost Kaehler manifold if the
fundamental 2-form €2 is closed and it becomes Kaehler manifold if V.J = 0,
where V' denotes the operator of covariant differentiation with respect to g on
M.

If an almost complex structure J satisfies
(2.2) (Vx )Y + (VyJ)X =0,

for any vector fields X and Y on M, then the manifold is called a nearly Kachler
manifold.

A. Gray [14] introduced the notion of constant type for a nearly Kaehler manifold,
which led to the definition of RK-manifolds. An RK-manifold M is an almost
Hermitian manifold for which the curvature tensor R is J-invariant, i.e.

(2.3) R(JX,JY,JZ, JW)=R(X,Y, Z, W),
for all vector fields X,Y, Z, W € TM.

An almost Hermitian manifold M is said to have (pointwise) constant type if for

each p € M and for all vector fields X,Y, Z € T,M such that
(2.4) 9(X,Y) =9(X,2) = g(X,JY) = g(X,JZ) =0,
gVY)=1=9(Z 2),

we have

(25) R(X,Y,X,Y)—R(X,Y,JX,JY)=R(X,Z,X,2)— R(X,Z,JX,]Z).

An RK-manifold M has (Pointwise) constant type if and only if there is a
differentiable function o« on M such that

(26)  R(X,Y,X,Y)=-R(X,Y,JX,JY) = o{g(X,X)g(Y.Y) - g*(X,Y)
— A (X, JY)},
for all vector fields X,Y e TM.

Furthermore, M has global constant type if o is constant. The function « is called
the constant type of M. An RK-manifold of constant holomorphic sectional cur-
vature ¢ and constant type « is called a generalized complex space form, denoted
by M(c, ). The curvature tensor R of M(c, @) has the following expression:

(2'7) R(X7 Y? Z? W) = %{Q(XZ Z)g(Y7 W) - g(X7 W)Q(Y? Z)}
+ 59X, 2)g(JY, W) — g(JX,W)g(JY, Z)
+29(X, JY)g(Z, JW)},

for all vector fields X,Y, Z, W € TM.
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If ¢ = «, then M(c,a) is a space of constant curvature. A complex space form
M(c) (i.e., a Kaehler manifold of constant holomorphic sectional curvature c)
belongs to the class of almost Hermitian manifold M(c, ) (with constant type
Z€ro).

Let M be a Riemannian manifold and K(m) the sectional curvature of M
associated with a plane section 7 C T,M, p € M.

For any orthonormal basis {ei,.....,e,} of the tangent space T,M, the scalar
curvature 7 at p is defined by

(2.8) 7(p) = 2 K(ei Aej).

i<y
We denote by
(2.9) (inf K)(p) =inf {K(7) : @ C T,M, dim 7 = 2}.
The first Chen invariant d,/(p) is given by
(2.10) ou(p) = 7(p) — (inf K)(p).

Let L be a subspace of T, M of dimension & > 2 and {ey, ....., ¢4 } an orthonormal
basis of L. Define 7(L) be the scalar curvature of the k-plane section L by

(2.11) T(L) =Y K(e;Nej), i,j=1,...., k.

i<j
Given an orthonormal basis {ey, ....., e, } of the tangent space T, M, we denote by
T1..., the scalar curvature of k-plane section spanned by ey, ..... ,er. The scalar

curvature 7(p) of M at p is the scalar curvature of the tangent space of M at p.
If L is a 2-plane section, then 7(L) reduces to the sectional curvature K (L) of
the plane section L. If K () is the sectional curvature of M for a plane section
min T,M, p € M, then scalar curvature 7(p) at p is given by

1<J
where {ej,.....,e,} is an orthonormal basis for 7,M and K;; is the sectional

curvature of the plane section spanned by e; and e; at p € M.
We recall the following Lemma of Chen [6].

Lemma 2.1. Let n > 2 and ay, .....,a,, b be (n+1)-real numbers, such that

n

(2.13) (> a)? = (n— 1)(:1a§+b).

=1 7

Then 2aias > b with equality holding if and only if
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Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex
space form M (c, ) and we denote by h, V and V+ the second fundamental form
of M, the induced connection on M and the normal bundle 7M. Then, the
Gauss and Weingarten formulae are given respectively

(2.14) VxY = VxY +h(X,Y)
and
(2.15) VxV = -AyX + V%V,

for all vector fields X, Y tangent to M and vector field V' normal to M, where
Ay is the shape operator in the direction of V. The second fundamental form
and the shape operator are related by

(2.16) g(h(X,Y),V) = g(Ay X, Y).

Let R be the Riemannian curvature tensor of M, then the equation of Gauss
is given by,

(2.17) R(X,Y,Z,W) = R(X,Y, Z,W) + g(h(X,W), (Y, Z))
- g<h<X7 Z)? h(Y7 W))v

for any vector fields X, Y, Z, W tangent to M.

Let p € M and {ey, ....., e, } an orthonormal basis of the tangent space T,M. We
denote by H(p) the mean curvature vector at p, that is

(2.18) H(p) =1 Z h(e;, e;).

Also, we set

(2.19) hi; = g(h(ei, ej),er), 1,5 € {1, i, ,nt, re{n+1,...,2m},
and
(2.20) 111> = 32 g(hlei e;), hles €5))-

ij=1
For any p € M and X € T,M, we put
(2.21) JX =PX + FX,

where PX and F'X are the tangential and normal components of JX respec-
tively.

Let us denote

(2.22) 1PIE = 3 g*(Pesey).

,j=1



286 S.S. SHUKLA, PAWAN KUMAR RAO

Now, we recall that for a submanifold M in a Riemannian manifold, the relative
null space of M at a point p is defined by

N, = {X € T,M| h(X,Y) =0, for all Y € T,M}.

Definition(2.1)[2]. A differential distribution D on M is called a slant distri-
bution if for each p € M and each non-zero vector X € D,, the angle 0p(X)
between JX and the vector subspace D, is constant, which is independent of the
choice of p € M and X € D,. In this case, the constant angle 0p is called the
slant angle of the distribution D.

Definition(2.2)[2]. A submanifold M is said to be a slant submanifold if for
any p € M and X € T,M, the angle between JX and T,M is constant, i.e., it
does not depend on the choice of p € M and X € T,M. The angle 0 € [0, %] is

N 2
called the slant angle of M in M.

Invariant and anti-invariant submanifolds are slant submanifolds with slant
angle § = 0 and ¢ = 7, respectively. A slant submanifold which is neither
invariant nor anti-invariant is called a proper slant submanifold.

Definition(2.3)[3]. A submanifold M is called a bi-slant submanifold of M if
there exist two orthogonal distributions D; and Dy on M, such that

(i) TM admits the orthogonal direct decomposition T'M = Dy & Ds,
(ii) for any ¢ = 1,2, D; is slant distribution with slant angle 6.

On the other hand, CR-submanifolds of M are bi-slant submanifolds with 8; = 0
and 0 = 7.

Let 2d; =dimD; and 2d, =dimDs.

If either d; or dy vanishes, the bi-slant submanifold is a slant submanifold. Thus,
slant submanifolds are particular cases of bi-slant submanifolds.

Definition(2.4)[3]. A submanifold M is said to be a semi-slant submanifold of
M if there exist two orthogonal distributions Dy and Dy on M, such that

(i) TM admits the orthogonal direct decomposition TM = Dy & D,
(ii) the distribution D; is an invariant distribution, that is, J(D;) = Dy,
(iii) the distribution D, is slant with angle 6 # 0.

The invariant distribution of a semi-slant submanifold is a slant distribution
with zero slant angle. Thus, it is obvious that, semi-slant submanifolds are par-
ticular cases of bi-slant submanifolds. However if 2d; =dimD; and 2ds =dimD,
(a) dy = 0, then M is an invariant submanifold.

(b) di =0 and 6 = 7, then M is an anti-invariant submanifold.
(c) dy =0 and 0 # 7, then M is a proper slant submanifold, with slant angle 6.

A semi-slant submanifold is proper if dyds # 0 and 6 # 7.
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3. B.Y. CHEN INEQUALITIES

In this section, we establish Chen inequalities for proper bi-slant submanifolds

in a generalized complex space form. We consider a plane section 7 invariant by
P and denote dimD; = 2d; and dimD, = 2d,.

Theorem 3.1. Let M be an n-dimensional proper bi-slant submanifold of a
2m-dimensional generalized complex space form M (c,a). Then

(I) For any plane section m invariant by P and tangent to Dy,
n— Tl2 C (6%

(3.1) o < "FSIHIP + <52 (n + 1)}

+ 29 03(d; — 1) cos? 0y + 3ds cos? O}
and

(II) For any plane section m invariant by P and tangent to Ds,
n— ’fl2 C (6%

(3-2) o < PR{SIH|P + <2 (n+ 1)}

+ 52{3d; cos® 01 + 3(dy — 1) cos® b}

The equality case of inequalities (3.1) and (3.2) hold at a point p € M if and only
if there exists an orthonormal basis {e1, e, .....,en} of T,M and an orthonormal
basis {€ni1,seers om} Of TpLM such that the shape operators of M in M(c,a) at
p have the following forms:

a 0 0 ... 0
0 b 0 ... 0
(3.3) Apii =10 0 u ... 01, a—+b=pu,
000 ... 1
Ry, hiy, 0 .. 0
h{z _h}’ll“l O ..... 0
(3.4) A=l0 0 o0 .. 0
0 0 0 ... 0
where
(3.5) A=A, r=n+1,...,2m.
(3.6) hi; = g(h(ei,ej),e.), T=n+1,...,2m.

Proof. The Gauss equation for the submanifold M is given by

(3.7) R(X,Y,Z,W) = R(X,Y,Z, W)+ g(h(X,W), h(Y, Z))
- g(h(X, Z)= h<Y7 W)>7
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for all vector fields X, Y, Z, W € T'M, where R, R denote the curvature tensors
of M(c,) and M respectively.

The curvature tensor R of M (¢, «) has the following expression [20]:

(38) R(X7 Y, Z, W) - %{Q(X, Z)g(Y7 W) - g(X7 W)Q(Y? Z)}
+ SH9(JX, Z)g(JY, W) — g(JX,W)g(JY, Z)
+29(X, JY)g(Z, JW)},

for any vector fields X, Y, Z, W € T'M.

Let p € M, we choose an orthonormal basis {e,ea, .....,e,} of T,M and an
orthonormal basis {€n11,.....,eam} of T;-M. By substituting X = Z =¢;, YV =
W = e; in equation (3.8), we have

(39) R(ei> €j, €, ej) = %{Tﬂ - n}
+ Cza{_g(‘]eh ej)g(J€j7 ei) + 29(6727 Jej)g(€i7 Jej)

=2 {n® —n}+ 523 3Z $*(Jei e))}

1,j=1

Let M be a proper bi-slant submanifold of M (c, o) and dim M = n = 2d; + 2ds.
We consider an adapted bi-slant orthonormal frames

_ _1 _ 1
(310) €1,€9 = cos 0, Pel, ...... ,ezdl_l, 62d1 = _c0501 Pegdl_l,

_ 1
€2d1+15 €2d14+2 = 550, Pega, 11,

€2y 2dy—15 Cody+2d> = oy P2 +2dr—1-
Obviously, we have
(3.11) g*(Jes, eir1) = cos? 0y, for i € {1,.....,2d; — 1} and
= 050y, for i € {2d; + 1, .....,2d; + 2dy — 1}.

Then, we have

(3.12) > g*(Jei, e5) = 2(dy cos? 01 + dy cos? 6y).

1,j=1

Substituting (3.12) into (3.9), we have

(3.13) Rlei, e, €;,¢5) = “E2n? — n} + <S2{6(d; cos® 61 + dy cos? ) }.

The equation (3.7) gives

(3.14) R(e;, e;,ei,e5) =27 + ||h]]* — n?||H||?.

By using equations (3.13) and (3.14), we get
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(3.15) 21 = n?||H|]>—||h| P+ {n(n—1)}+52{6(ds cos® §;+d; cos® ) }.
If we set

(3.16) e =21 — 2 (n — 2)||H|]? — &2 n(n — 1)} — S2{6(d; cos® 6 +

do cos? 63) },

in equation (3.15), we get

(317)  w2lH|E = (n—1)(e+ [Ihl?).

Let pe M, m C T,M, dimm = 2 and 7 invariant by P.
Now, we consider two cases:

Case (a): The plane section 7 is tangent to D;.

We may assume that m = sp{e;,ep}. We choose e,41 = H—Ign

From the equation (3.17) becomes,
n 2m n
(3.18) () =m-D{ X X (h)*+e}.
i=1 r=n+14,j=1
The above equation implies
n n 2m n
(3.19) (2 hit)? = (= D{Z (> + (R + 32 30 (h)* + e}

i=1 i#j r=n+21i,j5=1

Using the Lemma (2.1) and equation (3.19), we obtain

2m n
(3200 AU SO S S () e
i#£j r=n+21,j=1

From the Gauss equation for X = Z =¢; and Y = W = ey, we get

2m
(3.21) K(m) =<2 + 3<% cos? 0 + > [hf hhy — (hy)?]
r=n+1
2m n
> e 43¢ cos® Oy + 5[ ()P + X X (h)® + ]
1#£] r=n+21,j=1
2m 2m
+ 2 bk — X ()
r=n+2 r=n+1
2m
= cffe 4 3¢ cos?fy + 1 Z'(h?fl)2 +1 > > (hi;)?
i#] r=n+21,j>2
2m
T 20 () () + (5] +
r=n 7>

> c+43a + Bcza C082 01 + %
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From the equations (3.16), (3.21) and (2.9), it follows that
(3.22) inf K > <559 4 3528 cos? ) + 7 — 525 (n — 2)| | H|?
— B fn(n — 1)} — 2{6(dy cos® 0y + dy cos® 0) }.
From the equations (3.22) and (2.10), we get

n— n2 C (073
(3.23) ou < "2{I5[|H|]P + <2 (n+1)}

+ 2{3(d1 — 1) cos® 0y + 3d, cos® b},
where d); is Chen invariant. This proves the inequality (3.1).
Case (b): The plane section 7 is tangent to Ds.

From the equation (3.17), we have
n 2m n
(Ch)?=m-1D{ X X (hij)*+e}
=1 r=n+11,j5=1
The above equation implies
n n 2m n
(3.24) (R == DI+ 2+ X X (h)* + e}

i=1 i=1 i#£j r=n+21i,j=1

Using the Lemma (2.1) and equation (3.24), we obtain

2m n
(3.25) 2hi et > (R Y X (ki) e
iF£] r=n+21,j=1

From the Gauss equation for X = Z =¢; and Y = W = ey, we get

2m
(3.26) K(rm) = <% +3%% cos? 0o+ 3[R by — (B7,)]

r=n-+1

2m n
> efda 4 38 cos? Oy + [ (T2 4+ X D0 (h)? 44

1#£] r=n+21i,j=1
2m 2m
+ >0 hithiy— >0 (hip)?
r=n+2 r=n+1
2m n
= e gty + LSNP HE S5 ()
1#] r=n+21,j>2
2m
+5 2 (i +hs)® + S ((RT)? + (g )% + 5
r=n-+2 7j>2

> cfie 4 3¢9 cos? f, + &.

From the relations (3.16), (3.26) and (2.9), it follows that
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(3.27) inf K > e 4 3620 0082 ) + 7 — s (n — 2)|| H |2

— B fn(n — 1)} — 2{6(d; cos? 01 + dy cos? ) }.

From the equations (3.27) and (2.10), we get

2

(3.28) ou < PP{SIHIP + <52 (n + 1)},

+ <52{3d; cos® ; + 3(dy — 1) cos® 6, }.

This proves the inequality (3.2).

The equality case at a point p holds, if and only if equality holds in each of
inequalities (3.20), (3.23) and (3.28) and Lemma (2.1). So we have

Wit =0, Vi#j, i,j>2,

hi=0,Vi#j i,j>2 r=n+1...2m,
hiy+hsy =0, Vr=n+2 ... ,2m,

Wt =gt =0,V 5> 2,

R T = AR = = h

We may choose {ej,es} such that h}y' = 0 and we denote by a = hyy, b =
Ry, = hgadt = ... = h™F. Then the shape operators take the desired forms.

Now, we can state the following:

Corollary 3.2. Let M be an n-dimensional proper semi-slant submanifold of a
2m-dimensional generalized complex space form M (c,a). Then

(I) For any plane section m invariant by P and tangent to Dy,

(3.29) Sar < P2 + < (0 4 1)}

n—1

+ 2203(dy — 1) + 3dy cos® 0}
and

(1I) For any plane section m invariant by P and tangent to Ds,

(3.30) op < "F2{ESIH|? + <22 (n + 1)}

n—1

+ 52{3d; + 3(d, — 1) cos® 6}.

The equality case of inequalities (3.29) and (3.30) holds at a point p € M if and
only if there exists an orthonormal basis {e, ez, .....,en} of T,M and an orthonor-
mal basis {€p i1, -...., €am } of TPLM such that the shape operators of M in M(c, o)
at p have the forms (3.3) and (3.4).
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Corollary 3.3. Let M be an n-dimensional 0-slant submanifold of a 2m-dimensional
generalized complex space form M(c,«). Then

(3.31) Sar < PSP HI? 4 <532 (n 4 1) + 3559 cos? ).

The equality case of the inequality (3.31) holds at a point p € M if and only if
there exists an orthonormal basis {e1, .....,e,} of T,M and an orthonormal basis
{€ni1y ey €2m} Of TPLM such that the shape operators of M in M(C, a) at p have
the forms (3.3) and (3.4).

Corollary 3.4. Let M be an n-dimensional invariant submanifold of a 2m-
dimensional generalized complez space form M(c,a). Then

(3.32) ov < P IHIP + <2 (n+ 1) + 3552}

The equality case of the inequality (3.32) holds at a point p € M if and only if
there exists an orthonormal basis {e1, .....,en} of T,M and an orthonormal basis
{€ens1y ey €2m} Of TpLM such that the shape operators of M in M(c,«) at p have
the forms (3.3) and (3.4).

Corollary 3.5. Let M be an n-dimensional anti-invariant submanifold of a 2m-
dimensional generalized complez space form M (c,a). Then

(3.33) Ou < BFR2{ES|[H|P + <22 (n+ 1)}
The equality case of the inequality (3.33) holds at a point p € M if and only if
there exists an orthonormal basis {ey, .....,e,} of T,M and an orthonormal basis

{€ni1y-eers €2m} Of TpLM such that the shape operators of M in M(c, a) at p have
the forms (3.3) and (3.4).
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