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SOME COMMON FIXED POINT RESULTS
IN NON-NORMAL CONE METRIC SPACES

ZORAN KADELBURG1∗ AND STOJAN RADENOVIĆ2

Abstract. The aim of this paper is to obtain extended variants of some
common fixed point results in cone metric spaces in the case that the underlying
cone is not normal. The first result concerns g-quasicontractions of D. Ilić and
V. Rakočević [Common fixed points for maps on cone metric space, J. Math.
Anal. Appl. 341 (2008), 876–882], and the second is concerned with Hardy-
Rogers-type conditions and extends some recent results of M. Abbas, B. E.
Rhoades and T. Nazir [Common fixed points for four maps in cone metric
spaces, Appl. Math. Comput. 216 (2010), 80–86].

1. Introduction and preliminaries

In 2007, Huang and Zhang [7] reintroduced the concept of a cone metric space,
replacing the set of real numbers by an ordered Banach space in the definition of
metric, and obtained some fixed point theorems for contractive type mappings.
Since then, there has been a lot of activity in this area and several interesting
fixed point results have appeared in cone metric spaces (e.g., [1, 2, 3, 7, 8, 9,
11, 12, 13, 14, 15]). Most of the papers dealt with fixed point results in normal
cone metric spaces ([1, 2, 7, 8, 9]). In this paper, unlike other authors, we do not
impose the normality condition on cones. Our proofs only require the assumption
that the interior of the cone be non-empty (such cones are usually called solid).
It is worth mentioning that we neither use continuity of the vector metric d nor
the Sandwich Theorem.
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The following definitions and results will be needed in the sequel.

Definition 1.1. [6] Let E be a real Banach space. A subset P of E is called a
cone if:

(a) P is closed, non-empty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax + by ∈ P ;
(c) P ∩ (−P ) = {θ}.

For a given cone P , we define the partial ordering ¹ with respect to P by x ¹ y
if and only if y − x ∈ P . We shall write x ¿ y for y − x ∈ int P , where int P
stands for the interior of P and use x ≺ y for x ¹ y and x 6= y.

There exist two kinds of cones, normal and non-normal ones. The cone P in
the normed space E is called normal whenever there is a number k > 0 such that
for all x, y ∈ E, θ ¹ x ¹ y implies ‖x‖ ≤ k‖y‖. For details see [6].

Definition 1.2. [7] Let X be a non-empty set. Suppose that a mapping d :
X ×X → E satisfies:

(d1) θ ¹ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) ¹ d(x, y) + d(y, z) for all x, y, z ∈ X.

The function d is called a cone metric and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.
For basic notions concerning cone metric spaces we refer to [7].

Let (X, d) be a cone metric space. The following properties are often used,
particularly in the case when the underlying cone is non-normal, so that some
standard tools as the continuity of the metric and the Sandwich Theorem cannot
be used. The only assumption is that the cone P is solid, i.e., its interior is
nonempty.

(p1) If a ¹ ha where a ∈ P and h ∈ [0, 1), then a = θ.
(p2) If θ ¹ u ¿ c for each c, θ ¿ c, then u = θ.
(p3) If a ¹ b + c for each c, θ ¿ c, then a ¹ b.
(p4) If u ¹ v and v ¿ w, then u ¿ w.
(p5) If c ∈ int P , θ ¹ an and an → θ, then there exists k ∈ N such that for all

n > k we have an ¿ c.

For details about these properties see [11, 13].
The aim of this paper is to obtain extended variants of some common fixed point

results in cone metric spaces in the case that the underlying cone is not normal.
The first result concerns so-called g-quasicontractions of Ilić and Rakočević [8],
and the second is concerned with Hardy-Rogers-type conditions and extends some
recent results of Abbas, Rhoades and Nazir [3].

2. Results

2.1. Common fixed points of g-quasicontractions. The following theorem
gives a proper generalization of results from [4, 5, 8, 9, 14, 15] (see Example 2.4
given below). Our main result is obtained without using the normality condition
and without making use of the notions of commutativity and continuity.
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Recall the definition of g-quasicontractions on cone metric spaces from [8]. Such
mappings are generalizations of Das-Naik’s mappings from the frame of metric
spaces [5].

Definition 2.1. [8] Let (X, d) be a cone metric space, and f, g : X → X. Then, f
is called a g-quasi-contraction if for some constant λ ∈ (0, 1) and for all x, y ∈ X,
there exists

u ∈ {d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)},
such that

d(fx, fy) ¹ λ · u. (2.1)

It was proved in [8], using normality of the cone, that f and g have a unique
common fixed point in X, if fX ⊂ gX, g(X) is complete, f commutes with g,
f or g is continuous, and they satisfy (2.1). The normality condition was later
removed in the case g = iX in [13] and [15]. The case of g-quasicontractions
under the assumption 0 ≤ λ < 1

2
was treated in [14].

Theorem 2.2. Let (X, d) be a cone metric space over a solid cone P , and let
f, g : X → X be such that fX ⊂ gX and gX is complete. If f is a g-quasi-
contraction, then f and g have a coincidence point in X. Moreover, if f and g
are weakly compatible, then f and g have a unique common fixed point.

Recall that a point y ∈ X is called a point of coincidence for mappings f, g :
X → X if there exists x ∈ X such that f(x) = g(x) = y. Then, x is called
a coincidence point. Mappings f and g are called weakly compatible if they
commute at their coincidence points.

Proof. The condition fX ⊂ gX implies that starting with an arbitrary x0 ∈ X,
we can construct a sequence {yn} of points in X such that yn = fxn = gxn+1 for
all n ≥ 0. We shall prove that {yn} is a Cauchy sequence in X. Consider two
cases.

1. First, suppose that there exists an n0 such that yn0 = yn0+1. Then sequence
{yn} is constant for n ≥ n0. Indeed, from (2.1) it follows that

d(yn0+1, yn0+2) = d(fxn0+1, fxn0+2) ¹ λ · u, (2.2)

where

u ∈ {d(gxn0+1, gxn0+2), d(gxn0+1, fxn0+1), d(gxn0+2, fxn0+2),
d(gxn0+1, fxn0+2), d(gxn0+2, fxn0+1)}

= {d(yn0 , yn0+1), d(yn0 , yn0+1), d(yn0+1, yn0+2), d(yn0 , yn0+2), d(yn0+1, yn0+1)}
= {θ, θ, d(yn0+1, yn0+2), d(yn0 , yn0+2), θ} = {θ, d(yn0+1, yn0+2), d(yn0 , yn0+2)}.

Taking into account (2.2), we have to consider the following cases:
10 d(yn0+1, yn0+2) ¹ λ · θ = θ, which implies that yn0+1 = yn0+2,
20 d(yn0+1, yn0+2) ¹ λ · d(yn0+1, yn0+2) ⇒ d(yn0+1, yn0+2) = θ, that is, yn0+1 =

yn0+2,
30 d(yn0+1, yn0+2) ¹ λ · d(yn0 , yn0+2) ¹ λ · d(yn0 , yn0+1) + λ · d(yn0+1, yn0+2) =

λd(yn0+1, yn0+2 ⇒ d(yn0+1, yn0+2) = θ, that is, yn0+1 = yn0+2.
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Continuing this process, we obtain that yn = yn0 for each n ≥ n0. Therefore,
in this case {yn} turns out to be an eventually constant sequence and hence a
Cauchy one.

2. Suppose now that yn 6= yn+1 for all n ≥ 0. We shall show that for each
n ∈ N, n ≥ 2, there exist 1 ≤ m ≤ n such that

d(yn, yn−1) ¹ λn−1d(y0, ym). (2.3)

For the proof of inequality (2.3), we use the following relation:

d(yn, yn−1) ¹ λn−1d(yn−1, yn−2) or d(yn, yn−1) ¹ λn−1d(yn−2, yn). (2.4)

Indeed, according to (2.1), we have

d(yn, yn−1) = d(fxn, fxn−1) ¹ λ · un,n−1,

where

un,n−1

∈ {d(gxn, gxn−1), d(gxn, fxn), d(gxn−1, fxn−1), d(gxn, fxn−1), d(gxn−1, fxn)}
= {d(yn−1, yn−2), d(yn−1, yn), d(yn−2, yn−1), d(yn−1, yn−1), d(yn−2, yn)}
= {d(yn−1, yn−2), d(yn−1, yn), θ, d(yn−2, yn)}.

Since, yn 6= yn+1 for all n ≥ 0 it follows that un,n−1 ∈ {d(yn−1, yn−2), d(yn−2, yn)}.
Hence, (2.4) holds.

Following the arguments given in the proof of [15, Theorem 2.1], we can prove
(2.3). This means that for each a, b ∈ {y0, y1, y2, . . . } there exists δ(x0) ∈ P such

that d(a, b) ¹ δ(x0) where δ(x0) = (
∞∏
i=1

1+λi

1−λi )d(y0, y1).

Based on this we get that {yn} is a Cauchy sequence. Indeed, for k > n ≥ 1

d(yn, yk) ¹ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yk−1, yk)

¹ λnd(y0, ym1) + λn+1d(y0, ym2) + · · ·+ λk−1d(y0, ymk
)

¹ (λn + λn+1 + · · ·+ λk−1)δ(x0)

= λn 1− λk−n

1− λ
δ(x0) ¹ λn

1− λ
δ(x0) → θ, as n →∞.

By properties (p5) and (p4) it follows that {yn} is a Cauchy sequence. Therefore,
yn → gz ∈ gX for some z ∈ X.

We shall prove that fz = gz. Taking x = xn, y = z in (2.1) we get

d(fxn, fz) ¹ λ · un,

where

un ∈ {d(gxn, gz), d(gxn, fxn), d(gz, fz), d(gxn, fz), d(gz, fxn)}.
Letc, θ ¿ c, be given. Then we have the following cases:

10 d(fxn, fz) ¹ λ · d(gxn, gz) ¿ λ c
λ

= c, for n > n0 = n0(c).
20 d(fxn, fz) ¹ λ · d(gxn, fxn) ¿ λ c

λ
= c, for n > n1 = n1(c).

30 d(fxn, fz) ¹ λ · d(gz, fz) ¹ λd(gz, fxn) + λd(fxn, fz) ⇒ d(fxn, fz) ¹
1

1−λ
d(gz, fxn) ¿ 1

1−λ
· (1− λ)c = c, for n > n2 = n2(c).



RESULTS IN NON-NORMAL CONE METRIC SPACES 197

40 d(fxn, fz) ¹ λ · d(gxn, fz) ¹ λd(gxn, fxn) + λd(fxn, fz) ⇒ d(fxn, fz) ¹
λ

1−λ
d(gxn, fxn) ¿ λ

1−λ
· (1−λ)c

λ
= c, for n > n3 = n3(c).

50 d(fxn, fz) ¹ λ · d(gz, fxn) ¿ λ c
λ

= c, for n > n4 = n4(c).
Hence, fxn → fz, i.e., fz = gz and f, g have a coincidence point. Let fz =

w = gz. Since f and g are weakly compatible, then gw = gfz = fgz = fw.
Now we shall show that fw = w. For this we have

d(w, fw) = d(fz, fw) ¹ λ · u(z, w),

where

u(z, w) ∈ {d(gz, gw), d(gz, fz), d(gw, fw), d(gz, fw), d(gw, fz)}
= {d(fz, fw), θ, θ, d(fz, fw), d(fw, fz)} = {d(fz, fw), θ}.

Hence, d(fz, fw) ¹ λ · d(fz, fw) or d(fz, fw) ¹ λ · θ = θ, which implies that
fz = fw, and w is a common fixed point of f and g.

For the proof of uniqueness, suppose that w1 is also a fixed point of f and g.
Then from (2.1),

d(w, w1) = d(fw, fw1) ¹ λ · u(w,w1),

where

u(w,w1) ∈ {d(gw, gw1), d(gw, fw), d(gw1, fw1), d(gw, fw1), d(gw1, fw)}
= {d(w, w1), d(w,w), d(w1, w1), d(w, w1), d(w1, w)} = {d(w,w1), θ}.

Hence, we obtain that d(w, w1) ¹ λ ·d(w,w1) or d(w,w1) ¹ θ, which implies that
w = w1. ¤

Remark 2.3. Since fz = w = gz, it follows that w is a point of coincidence of
maps f and g. If this point of coincidence is unique, then, by [1, Proposition 1.4],
w is the unique fixed point of f and g.

To prove that this is the case, let w1 be another point of coincidence of f and g.
This means that there exist z and z1 such that fz = gz = w and fz1 = gz1 = w1.
Hence, we have

d(w, w1) = d(fz, fz1) ¹ λ · u(z, z1),

where

u(z, z1) ∈ {d(gz, gz1), d(gz, fz), d(gz1, fz1), d(gz, fz1), d(gz1, fz)}
= {d(w, w1), d(w, w), d(w1, w1), d(w,w1), d(w1, w)} = {d(w, w1), θ}.

Now, we get that d(w,w1) ¹ λ · d(w,w1) or d(w, w1) ¹ λ · θ = θ, which implies
that w = w1.

In the previous theorem the cone P in ordered Banach space E is only supposed
to have non-empty interior (it is not necessarily normal). If g = iX , identity
mapping on X, we obtain a result from [15]. If E = R, P = [0, +∞), ‖ · ‖ = | · |,
we obtain the results of Ćirić [4] if g = iX and Das-Naik [5] if g 6= iX , for metric
spaces.
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Example 2.4. This example verifies that Theorem 2.2 is a proper generalization
of results from [5] and [8].

Let X = [0, 1], E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E :

x(t) ≥ 0}. Define d : X × X → E by d(x, y)(t) := |x − y|et. It is easy to see
that d is a cone metric on X and (X, d) is a complete cone metric space. Take
functions fx = ax, gx = bx, 0 < a < b < 1 which map the set X into X. The
mapping f is a g−quasicontraction, but it is not a quasicontraction. Indeed, if
λ ∈ [a

b
, 1) then for each x, y ∈ X there exists u(x, y) = d(gx, gy) such that

d(fx, fy) ¹ λ · u(x, y) = λd(gx, gy) ⇔ |fx− fy|et ≤ λ|gx− gy|et ⇔ a ≤ λb.

The mappings f and g are weakly compatible since they commute at their fixed
point x = 0. All the conditions of Theorem 2.2 are fulfilled, and so the mappings
f and g have a unique common fixed point x = 0. On the other hand, since
the cone P is non-normal, in this case it is not possible to apply results from [5]
and [8].

Remark 2.5. Let y = gz = limk→∞ yk. Then we have the following estimate for
the distance between yn, n ∈ N and y:

d(yn, y) ¹ λn

1− λ
δ(x0).

Indeed,

d(yn, y) ¹ d(yn, yk) + d(yk, y) ¹ λn

1− λ
δ(x0) + d(yk, y).

Since, yk → y as k →∞ then for each c ∈ int P there exists k0 such that k > k0:
d(yk, y) ¿ c. Now, according to property (p3), we obtain that

d(yn, y) ¹ λn

1− λ
δ(x0).

2.2. Hardy-Rogers-type results. Our next theorem extends and slightly im-
proves Theorem 2.8 and Corollaries 2.10–2.12 from [3].

Theorem 2.6. Let f, g, S and T be self-maps on a cone metric space (X, d) with
a solid cone, satisfying that f(X) ⊂ T (X), g(X) ⊂ S(X) and

d(fx, gy) ¹ pd(Sx, Ty)+qd(fx, Sx)+rd(gy, Ty)+sd(fx, Ty)+td(gy, Sx) (2.5)

for all x, y ∈ X, where p, q, r, s, t are nonnegative real numbers with p+q+r+s+
t < 1, and q = r or s = t. If one of f(X), g(X), S(X), or T (X) is a complete
subspace of X, then {f, S} and {g, T} have a unique point of coincidence in X.
Moreover, if {f, S} and {g, T} are weakly compatible, then f, g, S and T have a
unique common fixed point.

Proof. For an arbitrary point x0 ∈ X, we construct sequences {xn} and {yn} in
X such that

fx2n−2 = Tx2n−1 = y2n−1, and gx2n−1 = Sx2n = y2n.
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We have from (2.5),

d(y2n+1, y2n+2) = d(fx2n, gx2n+1)

¹ pd(Sx2n, Tx2n+1) + qd(fx2n, Sx2n) + rd(gx2n+1, Tx2n+1)

+ sd(fx2n, Tx2n+1) + td(gx2n+1, Sx2n)

= pd(y2n, y2n+1) + qd(y2n+1, y2n) + rd(y2n+2, y2n+1)

+ sd(y2n+1, y2n+1) + td(y2n+2, y2n),

and so

d(y2n+1, y2n+2) ¹ p + q + t

1− r − t
d(y2n, y2n+1).

Also

d(y2n+1, y2n) = d(fx2n, gx2n−1)

¹ pd(Sx2n, Tx2n−1) + qd(fx2n, Sx2n) + rd(gx2n−1, Tx2n−1)

+ sd(fx2n, Tx2n−1) + td(gx2n−1, Sx2n)

= pd(y2n, y2n−1) + qd(y2n+1, y2n) + rd(y2n, y2n−1)

+ sd(y2n+1, y2n−1) + td(y2n, y2n),

i.e.,

d(y2n+1, y2n) ¹ p + r + s

1− q − s
d(y2n, y2n−1).

Now by induction, we get that, for each n

d(y2n+1, y2n+2) ¹ p + q + t

1− r − t
d(y2n, y2n+1) ¹ p + q + t

1− r − t

p + r + s

1− q − s
d(y2n−1, y2n)

¹ p + q + t

1− r − t

p + r + s

1− q − s

p + q + t

1− r − t
d(y2n−2, y2n/1)

¹ · · · ¹ p + q + t

1− r − t

(
p + r + s

1− q − s

p + q + t

1− r − t

)n

d(y0, y1),

and

d(y2n, y2n+1) ¹ p + r + s

1− q − s
d(y2n, y2n−1) ¹ p + r + s

1− q − s

p + q + t

1− r − t
d(y2n−1, y2n−2)

¹ · · · ¹
(

p + r + s

1− q − s

p + q + t

1− r − t

)n

d(y0, y1).

Let a =
p + q + t

1− r − t
, b =

p + r + s

1− q − s
. If q = r, then

a · b =
p + q + t

1− q − t

p + r + s

1− q − s
=

p + q + t

1− r − s

p + q + s

1− r − t
< 1 · 1 = 1,

and if s = t, then

a · b =
p + q + t

1− q − t

p + r + s

1− q − s
=

p + q + t

1− q − s

p + r + s

1− q − t
< 1 · 1 = 1.
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Now, for n < m, we have

d(y2n+1, y2m+1) ¹ d(y2n+1, y2n+2) + d(y2n+2, y2n+3) + · · ·+ d(y2m, y2m+1)

¹
(

a

m−1∑
i=n

(ab)i +
m∑

i=n+1

(ab)i

)
d(y0, y1)

¹
(

a(ab)n

1− ab
+

(ab)n+1

1− ab

)
d(y0, y1) = (1 + b)

a(ab)n

1− ab
d(y0, y1).

Similarly, we obtain

d(y2n, y2m+1) ¹ (1 + a)
(ab)n

1− ab
d(y0, y1),

d(y2n, y2m) ¹ (1 + a)
(ab)n

1− ab
d(y0, y1),

d(y2n+1, y2m) ¹ (1 + b)
a(ab)n

1− ab
d(y0, y1).

Hence, there exists p > 0 such that for p < n < m,

d(yn, ym) ¹ max

{
(1 + a)

(ab)p

1− ab
, (1 + b)

a(ab)p

1− ab

}
d(y0, y1) → θ, as p →∞.

According to properties (p5) and (p4) {yn} is a Cauchy sequence. Suppose that
S(X) is complete. Then there exists a point u in S(X) such that Sx2n = y2n → u
as n →∞. Consequently, we can find v in X such that Sv = u.

Now we shall show that fv = u. Using (2.5),

d(fv, u) ¹ d(fv, gx2n−1) + d(gx2n−1, u)

¹ pd(Sv, Tx2n−1) + qd(fv, Sv) + rd(gx2n−1, Tx2n−1)

+ sd(fv, Tx2n−1) + td(gx2n−1, Sv) + d(gx2n−1, u).

This implies that

d(fv, u) ¹ 1 + r + s

1− q − s
d(u, Tx2n−1) +

1 + r + t

1− q − s
d(gx2n−1, u).

Let θ ¿ c be given. Since yn → u, there exists N = N(c) such that for each
n > N we have that

d(u, Tx2n−1) ¿ 1− q − s

1 + r + s

c

2
and d(gx2n−1, u) ¿ 1− q − s

1 + r + t

c

2
,

which implies that d(fv, u) ¿ c. By property (p2) it follows that fv = u.
Since u ∈ T (X), we can find a point w in X such that Tw = u. Now we shall

show that gw = u. Using (2.5), we have

d(gw, u) ¹ d(fx2n, gw) + d(fx2n, u)

¹ d(fx2n, u) + pd(Sx2n, Tw) + qd(fx2n, Sx2n)

+ rd(gw, Tw) + sd(fx2n, Tw) + td(gw, Sx2n)

and so

d(gw, u) ¹ 1 + q + s

1− r − t
d(fx2n, u) +

p + q + t

1− r − t
d(Sx2n, u).
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Following arguments similar to those given above, we obtain d(gw, u) ¿ c for
each θ ¿ c. Hence, gw = Tw = fv = Sv = u. If the pairs {f, S} and {g, T} are
weakly compatible, then

fu = fSv = Sfv = Su = w1 (say), and

gu = gTw = Tgw = Tu = w2 (say).

Again, using (2.5),

d(w1, w2) = d(fu, gu)

¹ pd(Su, Tu) + qd(fu, Su) + rd(gu, Tu) + sd(fu, Tu) + td(gu, Su)

= pd(w1, w2) + q · θ + r · θ + sd(w1, w2) + td(w1, w2)

= (p + s + t)d(w1, w2),

which implies w1 = w2. Therefore fu = gu = Su = Tu. Now we show that
u = gu. Using (2.5),

d(u, gu) = d(fv, gu)

¹ pd(Sv, Tu) + qd(fv, Sv) + rd(gu, Tu) + sd(fv, Tu) + td(gu, Sv)

= (p + s + t)d(u, gu),

which implies that gu = u. Hence, u is a common fixed point of f, g, S and
T . Clearly, (2.5) implies the uniqueness of common fixed point. The proofs for
the cases when g(X), f(X) or T (X) is complete are similar, and therefore are
omitted. ¤

The following corollary extends and improves results in [2] and [14].

Corollary 2.7. Let f, g and T be self-maps on a cone metric space (X, d) over
a solid cone, satisfying f(X) ∪ g(X) ⊂ T (X) and

d(fx, gy) ¹ pd(Tx, Ty) + qd(fx, Tx) + rd(gy, Ty) + sd(fx, Ty) + td(gy, Tx)

for all x, y ∈ X, where p, q, r, s, t are nonnegative real numbers with p + q + r +
s + t < 1, and q = r or s = t. If one of f(X), g(X) or T (X) is a complete
subspace of X, then {f, T} and {g, T} have a unique point of coincidence in X.
Moreover, if {f, T} and {g, T} are weakly compatible, then f, g and T have a
unique common fixed point.

The following two corollaries extend and improve results in [1] and [11]. Note
that the case of ordered cone metric spaces and weakly increasing functions was
treated in [12].

Corollary 2.8. Let f and T be self-maps on a cone metric space (X, d) over a
solid cone, satisfying f(X) ⊂ T (X) and

d(fx, fy) ¹ pd(Tx, Ty) + qd(fx, Tx) + rd(fy, Ty) + sd(fx, Ty) + td(fy, Tx)

for all x, y ∈ X, where p, q, r, s, t are nonnegative real numbers with p+q+r+s+
t < 1. If one of f(X) or T (X) is a complete subspace of X, then f and T have
a unique point of coincidence in X. Moreover, if f and T are weakly compatible,
then f and T have a unique common fixed point.
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Corollary 2.9. Let f be a self-map on a cone metric space (X, d) over a solid
cone, satisfying

d(fx, fy) ¹ pd(x, y) + qd(fx, x) + rd(fy, y) + sd(fx, y) + td(fy, x)

for all x, y ∈ X, where p, q, r, s, t are nonnegative real numbers with p + q + r +
s + t < 1. If f(X) is a complete subspace of X, then f has a unique fixed point
in X.
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