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MINIMAX INEQUALITY FOR A SPECIAL CLASS OF
FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF

THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN
ONE-DIMENSIONAL CASE

G.A. AFROUZI∗, S. HEIDARKHANI, H. HOSSIENZADEH, AND A. YAZDANI

Abstract. In this paper, we establish an equivalent statement of minimax
inequality for a special class of functionals. As an application, a result for the
existence of three solutions to the Dirichlet problem{ −(|u′|p−2u′)′ = λf(x, u),

u(a) = u(b) = 0,

where f : [a, b] × R → R is a continuous function, p > 1 and λ > 0, is
emphasized.

1. Introduction and preliminaries

Given two Gâteaux differentiable functionals Φ and T on a real Banach space
X, the minimax inequality

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))), ρ ∈ R, (1.1)

plays a fundamental role for establishing the existence of at least three critical
points for the functional Φ(u)− λT (u).

In this paper some conditions that imply the minimax inequality (1) are point
out and equivalent formulations are proved.

The main result of this paper (Theorem 2.1) establishes an equivalent statement
of minimax inequality (1) for a special class of functionals, while its consequences
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(Theorem 2.4 and Theorem 2.6) guarantee some conditions so that minimax
inequality holds.

Finally, we apply Theorem A to elliptic equations, by using an immediate
consequence of Theorem 2.1, and we consider the boundary value problem

{ −(|u′|p−2u′)′ = λf(x, u),
u(a) = u(b) = 0,

(1.2)

where f : [a, b] × R → R is a continuous function, p > 1 and λ > 0, and we
establish some conditions on f so that problem (2) admits at least three weak
solutions. We say that u is a weak solution to (2) if u ∈ W 1,p

0 ([a, b]) and
∫ b

a

|u′(x)|p−2u′(x)v′(x)dx− λ

∫ b

a

f(x, u(x))v(x)dx = 0

for every v ∈ W 1,p
0 ([a, b]).

Also by a similar arguments as in the problem (2), we will have the existence
of at least three weak solutions for the problem

{ −(|u′|p−2u′)′ = λh1(x)h2(u),
u(a) = u(b) = 0,

(1.3)

where h1 ∈ C([a, b]) is a function and h2 ∈ C(R) is a positive function, and for
the problem { −(|u′|p−2u′)′ = λf(u),

u(a) = u(b) = 0,
(1.4)

where f : R → R is a continuous function.
In recent years, many authors have studied multiple solutions from several

points of view and with different approaches and we refer to [1-3] and the ref-
erences therein for more details, for instance, in their interesting paper [1], the
authors studied problem {

u′′ + λf(u) = 0,
u(0) = u(1) = 0,

(1.5)

(independent of λ, in the case) by using a multiple fixed-point theorem to obtain
three symmetric positive solutions under growth conditions on f .

In particular, in [2], the author proves multiplicity results for the problem (5)
which for each λ ∈ [0, +∞[, admits at least three solutions in W 1,2

0 ([0, 1]) when
f is a continuous function.

2. Main results

First, we recall the three critical points theorem of B. Ricceri [4] by choos-
ing h(λ) = λρ:

Theorem A. Let X be a separable and reflexive real Banach space; Φ : X −→ R
a continuously Gâteaux differentiable and sequentially weakly lower semicontin-
uous functional whose Gâteaux derivative admits a continuous inverse on X∗;
Ψ : X −→ R a continuously Gâteaux differentiable functional whose Gâteaux
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derivative is compact.
Assume that

lim
||u||→+∞

(Φ(u) + λΨ(u)) = +∞
for all λ ∈ [0, +∞[, and that there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + λρ) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + λρ).

Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0

has at least three solutions in X whose norms are less that than q.

Here and in the sequel, X will denote the Sobolev space W 1,p
0 ([a, b]) with the

norm

|| u || :=

(∫ b

a

|u′(x)|pdx

)1/p

,

p > 1, f : [a, b] × R → R is a continuous function and g : [a, b] × R → R is the
function defined as follows

g(x, t) =

∫ t

0

f(x, ξ)dξ

for each (x, t) ∈ [a, b]×R.
We now introduce two positive special functionals on the Sobolev space X as

follows

Φ(u) :=
||u||p

p
for every u ∈ X, and

T (u) :=

∫ b

a

g(x, u(x))dx

for every u ∈ X.
Let ρ, r ∈ R, w ∈ X be such that 0 < ρ < Ψ(w) and 0 < r < Φ(w). We put

β1(ρ, w) := ρ
Φ(w)

T (w)
, (2.1)

β2(r, w) := r
T (w)

Φ(w)
(2.2)

and

β3(ρ, w) :=
1

2
(b− a)

p−1
p (p β1(ρ, w))1/p, (2.3)

Clearly, β1(ρ, w), β2(r, w) and β3(ρ, w) are positive. Now, we put

δ1 := inf{1

2
(b− a)

p−1
p || u ||∈ R+; T (u) ≥ ρ},

δ2 := inf{1

2
(b−a)

p−1
p || u ||∈ R+; (b−a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p ||u||, 1

2
(b−a)

p−1
p ||u||]

g(x, t) ≥ ρ}



4 AFROUZI, HEIDARKHANI, HOSSIENZADEH, AND YAZDANI

and

δρ := δ1 − δ2. (2.4)

Clearly, δ1 ≥ δ2.

Taking into account that for every u ∈ X, one has

|u(x)| ≤ 1

2
(b− a)

p−1
p ||u||

for all u ∈ X and for all x ∈ [a, b], so that

T (u) =

∫ b

a

g(x, u(x))dx ≤ (b− a) max g(x, t)

where (x, t) ∈ [a, b]× [−1
2
(b− a)

p−1
p ||u|| , 1

2
(b− a)

p−1
p ||u||].

Namely

T (u) ≤ (b− a) max g(x, t),

where (x, t) ∈ [a, b]× [−1
2
(b− a)

p−1
p || u || , 1

2
(b− a)

p−1
p || u || ];

therefore, the set {1
2
(b− a)

p−1
p ||u|| ∈ R+; T (u) ≥ ρ} is a subset of the set

{1

2
(b−a)

p−1
p || u ||∈ R+; (b−a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p ||u|| , 1

2
(b−a)

p−1
p ||u|| ]

g(x, t) ≥ ρ }.

So, we have

inf{1
2
(b− a)

p−1
p || u ||∈ R+; T (u) ≥ ρ} ≥

inf{1

2
(b−a)

p−1
p || u ||∈ R+; (b−a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p ||u|| , 1

2
(b−a)

p−1
p ||u|| ]

g(x, t) ≥ ρ }.

Hence δρ ≥ 0.

The main result of this paper is the following theorem:

Theorem 2.1. Assume that there exist ρ ∈ R, w ∈ X such that

(i) 0 < ρ < T (w),
(ii) (b− a) max(x,t)∈[a,b]×[−β3(ρ,w)+δρ , β3(ρ,w)−δρ] g(x, t) < ρ;

where β3(ρ, w) is given by (8) and δρ by (9).
Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

Proof: From (ii), we obtain

β3(ρ, w)− δρ /∈ {l ∈ R+; (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ}.
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Moreover

inf{l ∈ R+; (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ} ≥ β3(ρ, w)− δρ;

in fact, arguing by contradiction, we assume that there is l1 ∈ R+ such that

(b− a) max
(x,t)∈[a,b]×[−l1,l1]

g(x, t) ≥ ρ

and
l1 < β3(ρ, w)− δρ,

so

(b− a) max
(x,t)∈[a,b]×[−β3(ρ,w)+δρ , β3(ρ,w)−δρ]

g(x, t) ≥ (b− a) max
(x,t)∈[a,b]×[−l1,l1]

g(x, t) ≥ ρ

and this is a contradiction. So

inf{l ∈ R+; (b− a) max
(x,t)∈[a,b]×[−l,l]

g(x, t) ≥ ρ} > β3(ρ, w)− δρ.

Therefore,

inf{1

2
(b−a)

p−1
p || u ||∈ R+; (b−a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p ||u|| , 1

2
(b−a)

p−1
p ||u||]

g(x, t) ≥ ρ}

> β3(ρ, w)− δρ;

namely β3(ρ, w) < δ1. So, we have

inf{|| u ||
p

p
∈ R+; T (u) ≥ ρ} > β1(ρ, w),

namely

inf{Φ(u); u ∈ T−1([ρ, +∞[)} > ρ
Φ(w)

T (w)
,

and, taking in to account that (i) holds, one has

inf{Φ(u); u ∈ T−1([ρ, +∞[)}
ρ

>
Φ(w)− inf{Φ(u); u ∈ T−1([ρ, +∞[)}

T (w)− ρ
.

Now, let λ ∈ R. Taking into account the previous inequality, one has either

λ >
Φ(w)− inf{Φ(u); u ∈ T−1([ρ, +∞[)}

T (w)− ρ
or

λ <
inf{Φ(u); u ∈ T−1([ρ, +∞[)}

ρ
.

Namely
inf{Φ(u); u ∈ T−1([ρ, +∞[)} > Φ(w) + λ(ρ− T (w))

or
λρ < inf{Φ(u); u ∈ T−1([ρ, +∞[)}.

Therefore, thanks to the 0 < ρ < T (w), we obtain

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf{Φ(u); u ∈ T−1([ρ, +∞[)},
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and then, one has

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf{Φ(u); u ∈ T−1([ρ, +∞[)}.

Therefore, thanks to the

inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))) = inf{Φ(u); u ∈ T−1([ρ, +∞[)},

we have the

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))). ¤

Remark 2.2. supλ≥0 infu∈X(Φ(u) + λ(ρ − T (u))) is well define, because λ →
infu∈X(Φ(u)+λ(ρ−T (u))) is upper semicontinuous in [0, +∞[ and tends to −∞
as λ → +∞.

Remark 2.3. If in Theorem 2.1, β3(ρ, w) − δρ ≤ 0; the Theorem holds again.
Because, β3(ρ, w) ≤ δ1 − δ2 ≤ δ1. Arguing as before, proof Theorem 2.1, result
holds.

If instead of condition (ii) in Theorem 2.1, we put

(b− a) max
(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)]

g(x, t) < ρ,

then the result holds, because

(b−a) max
(x,t)∈[a,b]×[−β3(ρ,w)+δρ , β3(ρ,w)−δρ]

g(x, t) ≤ (b−a) max
(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)]

g(x, t) < ρ.

So, we have the following result:

Theorem 2.4. Assume that there exist ρ ∈ R, w ∈ X such that

(i) 0 < ρ < T (w),
(ii) (b− a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ.

where β3(ρ, w) is given by (8).
Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).

Now, we point out the following result:

Proposition 2.5. The following assertions are equivalent:

(a) there are ρ ∈ R, w ∈ X such that

(i) 0 < ρ < T (w),
(ii) (b− a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ;

where β3(ρ, w) is given by (8).
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(b) there are r ∈ R, w ∈ X such that

(j) 0 < r < Φ(w),
(jj) (b− a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]
g(x, t) < β2(r, w);

where β2(r, w) is given by (7).

Proof:
(a) ⇒ (b). First we note that 0 < Φ(w), because if 0 ≥ Φ(w), from (i) one has

ρΦ(w)
T (w)

≥ Φ(w), namely β3(ρ, w) ≥ 1
2
(b − a)

p−1
p ||w||. Hence, taking into account

(ii), one has

T (w) ≤ (b− a) max
(x,t)∈[a,b]×[− 1

2
(b−a)

p−1
p ||w|| , 1

2
(b−a)

p−1
p ||w|| ]

g(x, t)

≤ (b− a) max
(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)]

g(x, t)

< ρ,

and that is in contradiction to (i). We now put β1(ρ, w) = r. We obtain ρ =

β2(r, w) and β3(ρ, w) = 1
2
(b− a)

p−1
p p
√

pr. Therefore, from (i) and (ii), one has

0 < r < Φ(w)

and

(b− a) max
(x,t)∈[a,b]×[− 1

2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]

g(x, t) < β2(r, w).

(b) ⇒ (a). First we note that 0 < T (w), because if 0 ≥ T (w), from (j) one has

r T (w)
Φ(w)

≤ 0; namely, β2(r, w) ≤ 0. Hence, from (jj) one has

0 = T (0) ≤ (b− a) max
(x,t)∈[a,b]×[− 1

2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]

g(x, t) < 0,

and this is a contradiction. We now put β2(r, w) = ρ. We obtain r = β1(ρ, w) and
1
2
(b− a)

p−1
p p
√

pr = β3(ρ, w). Therefore, from (j) and (jj), we have the conclusion.
¤

The following Theorem is another consequence of Theorem 2.1.

Theorem 2.6. Assume that there exist r ∈ R, w ∈ X such that

(j) 0 < r < Φ(w),
(jj) (b− a) max

(x,t)∈[a,b]×[− 1
2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]
g(x, t) < β2(r, w)

where β2(r, w) is given by (7).
Then, there exists ρ ∈ R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− T (u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− T (u))).
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Proof: It follows from Theorem 2.4 and Proposition 2.5. ¤

Finally, we interested in ensuring the existence of at least three weak solutions
for the Dirichlet problem (2) where f : [a, b]×R → R is a continuous function.

Now, we have the following result:

Theorem 2.7. Assume that there exist ρ ∈ R, a1 ∈ L1([a, b]), w ∈ X and
a positive constant γ with γ < p such that

(i) 0 < ρ <
∫ b

a
g(x,w(x))dx,

(ii) (b− a) max(x,t)∈[a,b]×[−β3(ρ,w) , β3(ρ,w)] g(x, t) < ρ.
(iii) g(x, t) ≤ a1(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R.

where β3(ρ, w) is given by (8).
Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (2) admits at least three solutions in X whose
norms are less than q.

Proof: For each u ∈X, we put

Φ(u) =
||u||p

p
,

Ψ(u) = −
∫ b

a

g(x, u(x))dx

and

J(u) = Φ(u) + λΨ(u).

In particular, for each u, v ∈ X one has

Φ′(u)(v) =

∫ b

a

|u′(x)|p−2u′(x)v′(x)dx

and

Ψ′(u)(v) = −
∫ b

a

f(x, u(x))v(x)dx.

It is well known that the critical points of J are the weak solutions of (2), our
goal is to prove that Φ and Ψ satisfy the assumptions of Theorem A. Clearly,
Φ is a continuously Gâteaux differentiable and sequentially weakly lower semi
continuous functional whose Gâteaux derivative admits a continuous inverse on
X∗ and Ψ is a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact.
Thanks to (iii), for each λ > 0 one has that

lim
||u||→+∞

(Φ(u) + λΨ(u)) = +∞
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for all λ ∈ [0, +∞[.
Furthermore, thanks to Theorem 2.4, from (i) and (ii) we have

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + λρ) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + λρ).

Therefore, we can apply Theorem A. It follows that there exists an open interval
Λ ⊆ [0, +∞[ and a positive real number q such that, for each λ ∈ Λ, problem (2)
admits at least three solutions in X whose norms are less than q. ¤

We also have the following existence result:

Theorem 2.8. Assume that there exist r ∈ R, a2 ∈ L1([a, b]), w ∈ X and
a positive constant γ with γ < p such that

(j) 0 < r < ||w||p
p

,

(jj) (b− a) max
(x,t)∈[a,b]×[− 1

2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]
g(x, t) < β2(r, w);

(jjj) g(x, t) ≤ a2(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R.

where β2(r, w) is given by (7).
Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (2) admits at least three solutions in X whose
norms are less than q.

Proof: It follows from Theorem 2.6 and Theorem 2.7. ¤

Let h1 ∈ C([a, b]) be a function and h2 ∈ C(R) be a positive function. Put

f(x, t) = h1(x)h2(t)

for each (x, t) ∈ [a, b]×R,

α(t) =

∫ t

0

h2(ξ)dξ

for all t ∈ R, and

a3(x) =
a1(x)

h1(x)

for almost every x ∈ [a, b]. Then, with use the Theorem 2.7, we have the following
result:

Theorem 2.9. Assume that there exist ρ ∈ R, a3 ∈ L1([a, b]), w ∈ X and
a positive constant γ with γ < p such that

(i′) 0 < ρ <
∫ b

a
(h1(x)α(w(x)))dx,

(ii′) (b− a) maxx∈[a,b] h1(x) < ρ
α(β3(ρ,w))

.

(iii′) α(t) ≤ a3(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R.

where β3(ρ, w) is given by (8).
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Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (3) admits at least three solutions in X whose
norms are less than q.

Put

a4(x) =
a2(x)

h1(x)

for almost every x ∈ [a, b]. Then, with use the Theorem 2.8, we have the following
existence result:

Theorem 2.10. Assume that there exist r ∈ R, a4 ∈ L1([a, b]), w ∈ X and
a positive constant γ with γ < p such that

(j′) 0 < r < ||w||p
p

,

(jj′) (b− a) maxx∈[a,b] h1(x) < β2(r,w)
α(θ)

;

(jjj′) α(t) ≤ a4(x)(1 + |t|γ) almost everywhere in [a, b] and for each t ∈ R.

where θ = 1
2
(b− a)

p−1
p p
√

pr and β2(r, w) is given by (7).
Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (3) admits at least three solutions in X whose
norms are less than q.

We now want to point out two simple consequences of Theorem 2.7 and The-
orem 2.8, respectively. Let f : R → R be a continuous function. Put g(t) =∫ t

0
f(ξ)dξ for each t ∈ R.
So we have the following results:

Theorem 2.11. Assume that there exist ρ ∈ R, w ∈ X and two positive
constants γ and η with γ < p such that

(i′′) 0 < ρ <
∫ b

a
g(w(x))dx,

(ii′′) (b− a) maxt∈[−β3(ρ,w) , β3(ρ,w)] g(t) < ρ.
(iii′′) g(t) ≤ η(1 + |t|γ) for each t ∈ R.

where β3(ρ, w) is given by (8).
Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (4) admits at least three solutions in X whose
norms are less than q.

Theorem 2.12. Assume that there exist r ∈ R, w ∈ X and two positive
constants γ and µ with γ < p such that

(j′′) 0 < r < ||w||p
p

,

(jj′′) (b− a) max
t∈[− 1

2
(b−a)

p−1
p p
√

pr , 1
2
(b−a)

p−1
p p
√

pr]
g(t) < β2(r, w);



MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS 11

(jjj′′) g(t) ≤ µ(1 + |t|γ) for each t ∈ R.

where β2(r, w) is given by (7).
Then, there exists an open interval Λ ⊆ [0, +∞[ and a positive real number q
such that, for each λ ∈ Λ, problem (4) admits at least three solutions in X whose
norms are less than q.
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