Tue Journar or Nonuinear Sciences anp A ppricaTions
http://www.tjnsa.com

CONVERGENCE THEOREMS FOR THE ZEROS OF A FINITE FAMILY
OF GENERALIZED ¢-ACCRETIVE OPERATORS

N. GURUDWAN!, B. K. SHARMA?

ABSTRACT. A strong convergence theorem for the common zero for a finite family of Gen-
eralized Lipschitz operators in a uniformly smooth Banach space is proved when atleast one
of the operator is Generalized ®- accretive, using a new iteration formula. Similar result
for Generalized Lipschitz and Generalized ®- pseudocontractive map is also proved. Our
result extends the convergence results of Chidume [4] to a finite family improving many
other results.

1. INTRODUCTION AND PRELIMINARIES

Hirano [5] studied the Mann iteration process introduced by Xu [I1],
Tpt1 = AnTp + bnvn + Cpn, v Up, € ana n >0,

to prove the strong convergence of a multi-valued ¢-strongly accretive operator with a
bounded range in a uniformly smooth Banach space setting. This result itself is a gen-
eralization of many of the previous results (see [5] and the references therein).

Recently, Chidume and Chidume [4] extended the work to a more general class of General-
ized Lipschitz and Generalized ®-quasi-accretive operator in the same space setting.
Within the past 10 years or so, considerable research efforts have been devoted to developing
iterative methods for approximating common fixed points (assuming existence) for families
of several classes of nonlinear mappings et al. [3 [6 10, [13]. Markov [8] showed that if a
commutating family of bounded linear transformations T,,a € A, (A an arbitrary index
set) of a normed linear space E into itself leaves some nonempty compact convex subset K of
E invariant, then the family has at least one common fixed point. Motivated by this result,
De Marr [7] studied the problem of the existence of a common fixed point for a family of

2000 Mathematics Subject Classification. 47TH06, 47H09.
Key words and phrases. Generalized ®-accretive; generalized Lipschitz; uniformly smooth Banach space;
mann iteration.
260



CONVERGENCE THEOREMS 261

nonlinear maps.

In this paper, we introduce a new iteration process and prove that it converges strongly to
a common zero for a finite family of generalized Lipschitz nonlinear mappings in a uniformly
smooth Banach space if at least one member of the family is Generalized ®-accretive. We also
prove that a slight modification of the process converges to a common fixed point for a finite
family of generalized Lipschitz pseudocontractive operators defined on E. Thus our result
extends [4] to a finite family of generalized Lipschitz and generalized ®-accretive operator,
which itself is a generalization of many of the previous results.

Let E be a real Banach space with dual E*. The normalized duality mapping from E to
28" is defined by

J(z) = {a" € B : (w,2") = ||z|I*, ||| = [l"|]}.

where (.,.) denotes the duality pairing between the elements of £ and E*.

Definition 1.1. ([I]) A mapping A: D(A) = E — E is said to be accretive if for all
x,y € F, there exists j(x —y) € J(z — y) such that

(Az — Ay, j(z —y)) 2 0.
The mapping A is said to be ¢- strongly accretive if there is a strictly increasing function
¢ :[0,00) — [0,00) with ¢(0) = 0 such that for any x,y € E, there exists j(z—y) € J(z —y)
such that
(Az — Ay, j(x —y)) = ¢([lz = yll) lz — yll
and is said to be Generalized ®-accretive [4] if there is a strictly increasing function & :
[0,00) — [0,00) with ®(0) = 0 such that for any =,y € E, there exists j(z —y) € J(z — y)
such that
(Az — Ay, j(z — y)) = ([|z — yl]).

It is well known [4] that the class of generalized ®-accretive mappings includes the class of
¢-accretive strongly accretive operators as a special case (put ®(s) = s¢(s) for all s € [0, 00)).

Definition 1.2. ([2]) The mapping T': E — FE is called pseudocontractive if for all z,y € F,
there exists j(z —y) € J(x — y) such that

(Te =Ty, j(z —y) < |z —y|*.

The mapping T is pseudocontractive if and only if (I — T') is accretive and is generalized
d-pseudocontractive if and only if (I — T') is generalized ®-accretive.

Definition 1.3. A mapping A : £ — FE is said to be Lipschitz if there exists a constant
L > 0 such that

Az — Ay[| < Lflz —yll, Va,y € E.

A natural generalization of the class of Lipschitz mappings is that of a generalized Lipschitz
map.
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A mapping A : E — F is called a generalized Lipschitz map if there exits a constant L > 0
such that
Az — Ay[| < LA + |lz —yl)) V 2,y € E.

Clearly every Lipschitz map is a generalized Lipschitz map (see e.g. [4]).

Definition 1.4. Let E be a normed space with dim £ > 2. The modulus of smoothness of
E is the function pg : [0,00) — [0, 00) defined by

2+ yll + [l — vl
sup { I A= o — 1y = 7}

The space F is called uniformly smooth if and only if

t
lim pe(t)
t—0 t

pe(T) =

=0.

We shall need the following result.
Lemma 1.5. ([9]) Let E be a real Banach space, then for all x,y € E, there exists j(z+y) €
J(z +y) such that

lz +ylI” < llll” +2(y. j (@ + y))

2. MAIN RESULTS
Theorem 2.1. Let E be a uniformly smooth real Banach space and let {A;}7", : E — E
be m-generalized Lipschitz mappings with N := (", N(4;) = i {z € E: Aix = 0} # ¢.
Let {a,}5°1,{b,}°2, and {c,}5°, be real sequences in [0,1] satisfying (i)a, + b, + ¢, =
L, (i) Y02 (b + cn) = 00, (ii1) Y7 ¢n < 00, () limy, oo (by + ¢,) = 0, (v) lim, 0o ¢, =
0 and a, L < 1. Let Ay be generalized ®-accretive operator and {x,}>2, be the sequence
generated for xo € E by

Tpi1l = ApTy + bnslyln + Cplin,

Yin = @pTy + bnSZan

Y(m—2)n = AnTp + bnsm—ly(mfl)n

y(m—l)n = ApTy + bnSmxm m 2 27 n Z 17 (21)
where S; : E — E, i = 1,--- ,m is defined by S;x := v — Ajx,Vor € E and {u,} is an
arbitrary bounded sequence in E. Then, there exists y9 € R such that if b, +c, < Y9, Vn >0,
the sequence {x,} converges strongly to a common zero of the finite family {A;}7™,.

Proof. Let z* € N:= ("} N(A;). The uniqueness follows from the definition [L.1]
We observe here that A;z* = 0 if and only if S;z* = 2* (i = 1,2---m).
Since A; is a generalized Lipschitz, generalized ®-accretive mapping, so there exists a strictly
increasing function @ : [0,00) — [0,00), ®(0) = 0 and j(x — z*) € J(x — z*) such that
15120 = S1a™|| < L1+ [l — 27]))

and
(S12, — S127, j(2n — 7)) < |20 — 27)|* = (|| — 27))) (2.2)
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Let o, := b, + ¢y, so that ( reduces to,

Tpt+1 = (1 - an)xn + anslyln + Cn(un - Slylna
Yin = (1 - Oén)-rn + an52y2n

Yim—2)n = (1 - an)xn + anSm—ly(mfl)n
Ym—1yn = (I — an)@n + 0 Sm@n, m >2,n > 1. (2.3)

We first show that {x,}52, is bounded.

For this, if z,, = Siz,,, ¥V n > 1, then it clearly holds. So, let if possible, there exists a
positive integer ng such that z,, # S12,,, thus set z,, = ¢ and ag := ||zg — S120]| [|[x0 — =*|| -
Thus by ([2.2)),

(Srwo — Sia”, j(wo — 27)) < wo — a"||* = (|| — a*]])

so that, on simplifying
|z — 2*|| < @ (ay). (2.4)

Since j is uniformly continuous on bounded subsets of F, given

= 3
0= IR+ DD a0) + LA L]~ 707

such that ||z —y|| < d = ||j(x) —j(v)| < €,V x,y € Bgr(0),for some R > 0. LetN* :=
sup,, ||u, — x*|| and define

R | RG] G é
70 -= I3 {17 SEATRDE a0 T2L  3NT 35T (ag) GFS LD ML (T AN TN }

Now, we claim that ||z, — z*|| < 2®7(ag), V n > 0.
Clearly in view of ([2.4)), the claim holds for n = 0.
We next assume that ||z, — z*|| < 2®71(ay), for some n and we shall prove that ||z, 1 — 2*|| <
2(1)_1(0,0).
Let if possible, this is not true, i.e. ||z, — 2*|| > 207 (ap).
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Thus we have,

[y1n — 2" = [[(1 = an) (20 = 27) + an(Sayan — 27|
< (1= an) flzn = 27| + anL(1 + [[yan — 27])

(1 =) |z — ™| + anl + an L{(1 — o) [|2n — 27| + o || S3ysn — 27|]

<
< (1= an)flzn = 27| + anl + an L[(1 = an) [[2n — 2" + n L(1 + [|ysn — 27)]
<

H - H +anl + oy, L [Hxn -z H + an L(1 + HySn _$*||)]
|

<(A+a,L+a2l?+ -+ ' L™ Y ||a, — 2|
+ (L +2L* + -+ a™ L
<(I+apL+a2l?+- +a 'L |z, — ¥
+(1+anL+a2L? 4 - +am
(1 —ay'L™) . (L= ai'L™)
<A Tm ) _ RSl e
- 1—-a,L ln =27l + 1—oa,L

< M|z, —z*||+ M

Thus since, ||z, — x*|] < 207 (ay), so

1 — @[] < M (1 4207 (ag))

Also we have the following relations,
(i)

|20 = S1yinll < llzn — 2| + [[S191, — 27|
< lww = 27| + L1 + [[y1n — 27[])
< ||z, — |+ LA+ M ||z, — x2*|| + M)
< L1+ M) +2(1+ LM)® Y (ay),

(i) flyn — 27| > 327 (ao)
(1) [|znsr — 27 < 307 (ao)

(iv) flzn — 2*[ = @7 (ao)

|z, — 2| + an L ||z, — z* ||+oz L2||y3n—x ||+0an+oz L?



CONVERGENCE THEOREMS 265

(v)
1Un[Hy1n = 2|l = llen(un = Siyin)[ 1yin — 27|
< en l[yan — 27| [lun — 2" + | S11n — 27
< n [[yan — 27| [N + L(L + [[y1n — 27[})]
< e, M(1 420 (ag))[N* + L(1 + M(1 + 20" (ay)))]
< ¢, M
Thus from the recursion formula ([2.3) and using the above relations, we have
|1 = @*|° = ||z — 2" — [an(2n — Siy1a) = Uall’
< Jwn — 2" [|* = 200 (20 = S1y1ns (@041 — 7)) + 2(Un, j(2np1 — 7))
< lln = 2*” = 200 @ = Styin, (T = 3°) = j(yan — 7))
= 200 (xn = 51410, (Y1 = 7)) + 2| Un][ 7 (@041 = 27) = § (Y10 — 27)|
+ 2 [|Un [ [y1n — 27|
< ln = @I + 200 [l2n = Siyaall 17 (@1 — &%) = j(y1n — )|
+2ap |20 = Yunll [[y1n = 27| = 2002 ([ly1n — 7))
+ 2|UnlHl7 (@01 — %) = G(yin — &) + 2| Unll ly10 — 27

1
< lzn — =*|)* - Zanq)(iq)’l(ao)) +2Mc,

+ 20, [L(1+ M)+ 2(1 + LM)®™ (ap)] [l (201 — ) = j(y1n — 27)]|
+26,[N" + L(1+ M(1+ 207 (a0))] [l5(zns1 — &%) = j(y1n — 27)
+ 20, M (1 4 207 (ap))[20 7 (ag) + M (1 4 207 (ag))] (2.7)
Set My :=2M; + 2[N* + L(1 + M(1 4 29 *(ag))]eo and
M3 :=2M (1 + 20 (ag))[20 " (ag) + M (1 + 2@ !(ayg))] such that
My + Mz < 30(307(ay)).
Here we observe that, since (z,41 — %), (Y1, — 2*) € Bg(0), for R := 3®"!(ag) > 0 and also
1201 = yunll < llen = yinll + o [0 = Siyunll + en llun = 27| + cn [|S1910 — 27|
< ap |lzn = Sayonll + o |20 — S1yanll + cn llun — 27| + caL(1 + [ly1n — 27|)
< ||y — 2| + [|S2yon — 27| + |20 — S1yinl| + cn [Jun — 27|
+enL(1+ [lyan — 27])
< @n[20 (ag) + M (1 +2Ld ' ay)]
+an[L(1+ M) +2(1 + LM)®™ (ag)] + cuN* + ¢, L(1 + M (1 + 207 (ag)))
< 7[29 ' (ag)(2 + 3LM) + M + 2L(1 + M) + N*|
< 0,
so that,
17 (@n1 — 2%) — J(y1n — 27)[| < €0
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Hence from ( [2.7)),

1
|Tnsr — x*||2 <||zn, — :zc*||2 — 2an¢(§<b—1(a0)) + Mse,, + o, M3
+ 200, [L(1 + M) +2(1 + LM)® (ag)]eo

ot 1 ot
< lan — 2% — 20[,@(%) + 0y, (M3 + M) + 5&,@( 2(%))
ot ¢!
<l — 27> — 200, 2(“0)) + a0y ®( ;“°)>
(I)_l
e

which is a contradiction.
Hence {x,}>2, and thus {v;,}5%, is bounded. Since S; is a bounded operator, so {Siz,}
and {S1yin} is also bounded.
Let M := sup{2|[zn — Yin| [lyin — 27[I}, p = sup [lzn = S1yinll, B := sup [[un — S1yin|| and
o = sup{2 lup = S1za| [|7(zns1 — 2) = J(y1n — ") + 2[Jun = Sran| ly1n — 27|},
so that from ( [2.3),
* (|2 *]2 * *
[2n41 = 217 < [lan — 277 = 200 @([ly1n — 27[]) + 200 20 — yanll [[y1n — 2]
+ 200, |z — Swyinll 17 (@01 — 27) = (Y1 — 27)||
+ 2[[Unl[ 17 (@ngr — 2%) = J(yrn — =) + 2| Unl] ly1n — 2|
< Nn — 2*)* = 200 ® (|l y1n — ) + a0 + M

+2anp |7 (2041 — 27) = J(yin — 27)|

Next here we claim that inf{||y;, — 2*||,n > 0} = 0.

For this, let if possible, liminf, . ||y1, — 2*|| = 20 > 0.
Then there exists a positive integer /N; such that

Y10 — 2*|| = 6,¥ n > Ny ie. ®(||yin — 2*||) > ®(6),Vn > Ny.
Again since,
||xn+l - ylnH - ||(]- - an)xn — Yin + anSIyln + Cn(un - Slyln)H
S Hxn - ylnH + a, Hxn - SlylnH + ¢y ”un - SlylnH
S (079 |Ixn - SzanH + Qnp + Cnﬁ
< 2ap,p + ¢

— 0 asn — oo,

and j is uniformly continuous on bounded subsets, so
17(n1 — %) = j(yrn — %) < %?,Vn > Nj.
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Hence for all n > Ny, we have,

(4§
i1 — 2¥))* < ||2n — 2¥]]* = 20,,D(8) + 2anp¥ + o + a, M
p

= ||z — 2*]|* — 0 ®(0) 4 ro 4+ anM

thus,
n n n

(@(3) = M) Y05 € 3 (law =" = 2w =2 [) + 0> e,

j=1 7j=1

But since » 77 ¢; < oo, this implies that » 72| a; < oo, a contradiction.

Thus our claim is true.

So there exists a subsequence {y1,; — 2"} of {y1, — 2"} such that lim;_ . Hymj — x*H =0
and thus from ( , lim; o Hxn] — 2*|| = 0. Hence for given ¢y > 0, there exists a positive

. ‘ ok an, (172anjL)W+anjL €
integer nj, > N; such that Hxna x o, T

W := sup{||z, — 2*||}. Again choose a positive integer ng > nj, such that pa, <
min{ﬁa ?f—ZCI)@)}a M < % (%) and Hj(xnj—&-l - .Z‘*) _j(xnj - I*)
that

< €,

vV n; > nj,, where
§7 Cn =
< 2—1p<I>(§) We next claim

Hxnﬁm — x*H < €,n; > nj,Vm > 1.

We prove it by induction. For this, we first prove that ||xn].+1 — x*H < €.
If not, then 3 n; > nj, such that ‘

*
Tp;41 — T || > €.

Thus,
Hx"j = ”xnﬁl - x*H — Qu; |’$nj - Slylnj” — Cny Hun - SlylnjH
Z € — &njp - anﬁ
%
4
Also,
N 1—2a,L . oL
91n, — ¥ = (1 — ) (m) |2, — 2*|| - (m)
N (1 —2a,L) . oy L
- Hx”a - ” - @nm Hx”a - ” - m
3¢ (1 =20, L)W + ay, L
4 I —apL
> £
2
which implies,

€

(o, —2*]) 2 0

),\V/TL]‘ > N -
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Thus using the recursion formula ([2.3)), we have

*

|z, 41 — :E*H2 < |lzn, — = ’_ 200, (|| y1n; — 2*||) + €0 + o, M

+ 2panj Hj(xnj+1 - JJ*) - j(z/lnj - x*)H

H(E
< Hxn — 2P = 2ozn.<1>(f) +cp.0+ a, M+ 2pa,. (5)
J J 2 J J J 2p
o, P(E
<€ — 20(njq)< ) + JT(Z) +Oénjq)(§)

€
2
LD(e
_ 2% (3)

which is a contradiction.

Hence the claim is true for m = 1. Let us assume that it holds for some m = k. Then
following the above steps, we can easily show that it holds for m = k + 1. Hence the claim
holds for all m > 1. This implies that the sequence {z,} converges strongly to the common
zero ¥ as n — oo. 0

Remark 2.2. If the family {A;}™, of generalized Lipschitz map be such that 4; = Ay =
-+» = A, = A, where A is generalized ®-accretive, then the result of [4] holds as a special
case of our theorem.

Theorem 2.3. Let E be a uniformly smooth real Banach space and let {T;}7", : E — E
be m-generalized Lipschitz mappings with F = (-, F(T;) = i~ {x € E : T,x = z} # ¢.
Let {a,}5°1,{b,}>2; and {c,}5°, be real sequences in [0,1] satisfying (i)a, + b, + ¢, =
L, (i0) Y00 (b + ¢n) = 00, (ii1) Y0 cn < 00, (1) limy, oo (by + ¢,) = 0, (v) limy, 0o ¢, =

n=1
0 and o, L < 1. Let T\ be generalized ®-accretive operator and {x,}>2, be the sequence

generated for xo € E, by

Tp+1 = Andp + bnTIyln + Cpy,

Yin = Ty + bnT2y2n

Yim—2)n = AnTn + bnTmfly(m—l)n
Yim—1)n = AnTn + bnTm$n> m > 27” > 1, (28)

where {u,} is an arbitrary bounded sequence in E. Then, the sequence {x,} converges
strongly to a common fized point of the finite family {T;}" .

Proof. Since we know that a mapping T is generalized ®-pseudocontractive if and only
if (I —T) is ®-accretive. Thus the proof follows from Theorem , replacing S; by T;. [
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