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STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL
EQUATION OF TWO VARIABLES IN F-SPACES

M. ESHAGHI GORDJI

ABSTRACT. In this paper, we achieve the Hyers-Ulam-Rassias stability of the
following system of functional equations

f(xl + x27y) = f(xhy) + f(x27y)7

J@,y1 +y2) + f(@, 91 —y2) = 2f (2, 51) + 2f (2, 92)
in F-spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam
[26] in 1940, concerning the stability of group homomorphisms. Let (G1,.) be a
group and let (G'g,*) be a metric group with the metric d(.,.). Given ¢ > 0, dose
there exist a & > 0, such that if a mapping h : G; — G5 satisfies the inequality
d(h(z.y), h(zx) * h(y)) < ¢ for all x,y € G4, then there exists a homomorphism
H : Gy — Go with d(h(x),H(x)) < € for all x € G17 In the other words,
under what condition does there exist a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we
replace the functional equation by an inequality which acts as a perturbation of
the equation. In 1941, D. H. Hyers [10] gave a first affirmative answer to the
question of Ulam for Banach spaces. Let [ : F — E’ be a mapping between
Banach spaces such that

If(x+y) = flx) = fWl <6
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for all z,y € F, and for some 6 > 0. Then there exists a unique additive mapping
T : E — E’ such that
I/ (x) = T(x)|| <6

for all x € E. Moreover if f(tx) is continuous in t for each fixed x € F, then T is
linear. In 1978, Th. M. Rassias [19]provided a generalization of Hyers’ Theorem
which allows the Cauchy difference to be unbounded (see also [20]).
In 1990, Th.M. Rassias [20] during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved
for p > 1. In 1991, Gajda [8] gave an affirmative solution to this question for p > 1
by following the same approach as in Rassias’ paper [19]. It was proved by Gajda
8], as well as by Th.M. Rassias and Semrl [22] that one cannot prove a Rassias
type theorem when p = 1. In 1994, P. Gavruta [9] provided a generalization of
Rassias’ theorem in which he replaced the bound e(||z||” + |ly||?) in ([19]) by a
general control function ¢(x,y). The paper of Th.M. Rassias [19] has provided a
lot of influence in the development of what we now call Hyers—Ulam—Rassias sta-
bility of functional equations. During the last decades several stability problems
for various functional equations have been investigated by many mathematicians;
we refer the reader to the monographs [3, 5, 6, 7, 11, 12, 13, 16, 21, 24].

The functional equation

fla+y)+ fle—y) =2f(x) +2/(y), (1.1)

is called the quadratic functional equation and every solution of the quadratic
equation (1.1) is said to be a quadratic function. It is well known that a function
f between two real vector spaces is quadratic if and only if there exists a unique
symmetric bi-additive function B such that f(z) = B(x,x) for all x, where

Bla,y) = 1/ +y) — [z~ ), (12)

(see [17]).

The Hyers-Ulam stability problem for the quadratic functional equation was
solved by Skof [25] and, independently, by Cholewa [4]. An analogous result
for quadratic stochastic processes was obtained by Nikodem [18]. In [2], Czerwik
proved the generalized Hyers—Ulam stability of the quadratic functional equation.
Jung [15] dealt with stability problems for the quadratic functional equation of
Pexider type.

Jun and Kim [14] introduced the following functional equation

JQRr+y)+ e —y) =2f(x+y) +2f(x —y) + 12/ (2), (1.3)

and established the general solution and the generalized Hyers—Ulam—Rassias sta-
bility for functional equation (1.3). Obviously, the f(x) = x? satisfies functional
equation (1.3), so it is natural to call (1.3) the cubic functional equation. Every
solution of the cubic functional equation is said to be a cubic function. Jun and
Kim proved also that a function f between two real vector spaces X and Y is a so-
lution of (1.3) if and only if there exists a unique function C': X x X x X — Y
such that f(x) = C(x,z,x) for all x € X, moreover, C is symmetric for each
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fixed one variable and is additive for fixed two variables. Later a number of
mathematicians worked on the stability of some types of the cubic equation [23].

Let X, Y and Z be vector spaces on R or C. We say that a mapping [ :
X xY — 7 is additive-quadratic if f satisfies the following system of functional
equations:

fri+x2,y) = f21,y) + fl22,y),
(1.4)

.f($7y1 +U2) + f(%?/l - 7/2) = 2f($71/1) + 2f($71/2)

for all z, 1,25 € X and y,y;,y2 € Y. See the following examples.

.Let X =Y =7 =R. We define f by f(z,y) = 2y*. It is easy to see that f
is an additive-quadratic map.

. Let X be a normed space, and let Y = Z = X. Suppose f(z,y) = x|y
Then f is an additive—quadratic map.

. Let A be an algebra, and let X be a right A—module. Set Z = X and Y = A.
Suppose f(x,a) = za®. Then f is an additive-quadratic map.

We recall some basic facts concerning F'—spaces. In functional analysis, an
F'—space is a vector space V over the real or complex numbers together with
a metric d : V x V — R so that scalar multiplication in V' is continuous with
respect to d and the standard metric on R or C. Addition in V is continuous with
respect to d. The metric is translation-invariant, i.e. d(x+ a,y +a) = d(x,y) for
all x,y and a in V. The metric space (V,d) is complete.

Some authors call these spaces ”Frchet spaces”, but usually the term Frchet
space is reserved for locally convex [’'—spaces. The metric may or may not nec-
essarily be part of the structure on an I'—space; many authors only require that
such a space be metrizable in a manner that satisfies the above properties. Triv-
ially, every Banach space is a F'—space as the norm induces a translation invariant
metric and the space is complete with respect to this metric. The L, spaces are
F'—spaces for all p > 0 and for p = 1 they are locally convex and thus Frchet
spaces and even Banach spaces. So for example, L 1 ([0,1]) is a F—space, which
is not a Banach space.

2. MAIN RESULTS

We start our work with the following result, which explain the relation between
additive-quadratic maps and cubic maps.

Theorem 2.1. Let X, 7 be vector spaces. A mapping g : X — Z is cubic if
and only if there exists an additive—quadratic mapping f : X x X — Z such that
g(z)=f(x,z) and that

.20 +y) = f(y. 20 —y) =2(f(y,x +y) — [(y.x —y))
forall z,y € X.

Proof. Let g : X — Z be a cubic mapping. Then there exists a mapping C': X x
X x X — Z such that C'is symmetric for each fixed one variable and is additive
for fixed two variables. Define [ : X x X — Z by f(x,y) = C(x,y,y). One can
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show that f is additive—quadratic mapping satisfies f(y,2x +vy) — f(y,2x —y) =
2(f(y,x+y)— f(y,x—y)) for all z,y € X. For the converse, let f: X x X — Z be
an additive-quadratic mapping such that f(y,2x+y)— f(y,2x—y) = 2(f(y,x +
y)— f(y,x—y)) for all x,y € X. Then it is easy to see that the mapping g : X — 7,
defined by g(z) = f(x,x) for all x € X, is cubic. [

We now investigate the generalized Hyers-Ulam-Rassias stability problem for
system of functional equations (1.4). From now on, let X be a real vector space
and Y be a real F'—space by metric d. Let f: X x X — Y be a function then
we define Ay, Dy : X x X x X — R by

Df(l’l,l’g,y) = d(f(:UI +x2yy)7f($lyy) + f($27y))7

Ap(r,yn,y2) = d(f(v 0 +y2) + [, 01 — y2), 2f (2, 91) + 2f (2, 42))
for all x, x1,22,y, y1, 42 € X.

Theorem 2.2. Let ¢,1): X x X x X — [0,00) be mappings satisfying

Zw( xr, sy, y)8j_¢( x,s'r, y)<OO

i=0
for all xz,y € X, and
Y2, 2"y, 2"z) + $(2"x, 2"y, 2"2)

lim gn =0

forallz,y,z€ X. If f: X x X — Y 1is a mapping such that
Dz, 22,y) < (a1, 22,9), (2.1)
Ar(@,y1,12) < (@, u1,92) (2:2)

for all x,y,x1,22,y2,y2 € X, then there exists a unique additive—quadratic map-
ping T : X x X — Y satisfying (1.4) and

o i+1 % % o % % %

forall z,y € X.
Proof. Putting x; = x5 = x in (2.1), we get

d(f(2z,y),2f(z,y)) < ¢(z, z,y). (2.4)
Replacing 41, y2 by y in (2.2) to obtain
d(f(x,2y),4f (x,y)) < d(x,y,9). (2.5)
Replacing x by 2x in (2.5), yields
d(f(2z,2y),4f(22,y)) < ¢(22,y,y). (2.6)
Combining (2.4) and (2.6), we lead to

A 2,2), f(2,9) < 500w, 7,) + 5020, 9,9). (2.7



STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION 255

From the inequality (2.7) we use iterative methods and induction on n to prove
our next relation:

?
—_
?
—_

i=0 i=0
(2.8)
We divide (2.8) by 8™ and replace x by 2™z to obtain that
1 1 14
d( {m+n f(2m+nl,’ 2m+ny)’ 8—mf(2ml’, me)) S 5 ¢(2m+n$7 2m+nx) 2m+ny)
i=0
12 1
+ 2 (2 g 2y 2mEy), (2.9)
8 — 8n+m

This shows that {8%f(2"x, 2"y)} is a Cauchy sequence in Y by taking the limit
m — 00. Since Y is a Banach space, it follows that the sequence {8%f(2"x, 2"y) }
converges. We define T': X x X — Y by T'(x,y) = lim,_« 8%]‘(2"3:, 2"y) for all
x,y € X. It follows from (2.1) that

1 1
Dr(x1,22,y) = im — Dy(2"x1,2"22,2"y) < lim 8—n¢(2"x1,2"x2,2"y) =0

n—oo QM n—o00

for all xq,x2,y € X. Also it follows from (2.2) that
: 1 n n n : 1 n n n
Ar(,yy,ye) = im oo As(2", 21, 2%) < lim 2(2", 271, 2%) = 0

for all x, 1, . € X. This means that T is additive-quadratic. It remains to show
that 7" is unique. Suppose that there exists another additive-quadratic mapping
T': X x X — Y which satisfies (1.4) and (2.3). Since 5=T'(2"z,2"y) = T(z,y),
and 5 1"(2"x,2"y) = T'(x,y) for all z,y € X, we conclude that

AT (), T (,y) = o d(1(2'0,2'), 12", 2')

LT @, 2y, [, 2y) + d(f (20, 2), T (20, 27))

1 o 77&(27%&—1’—&—11,) 2n+z’y) 2n+zy) 1 o ¢(2n+i$’ 2n+z’x’ 2n+zy)
< 2[§ Z ]n-+i - 92 Z {nti ]
=0 =0

for all x,y € X. By letting n — oo in this inequality, it follows that T'(z,y) =
T'(x,y) for all x,y € X, which gives the conclusion. U]

Let X, Y and Z be vector spaces on R or C. We say that a mapping [ :
X xY — Z is quadratic-additive if [ satisfies

flrr+x2,y) + flrr — 22,y) = 2f (21, y) + 2f (22, ),

.f($7y1 + 1/2) = f(:vyyl) + f(:C)UQ)
for all x, 21,20 € X and y,y1,10 € Y.
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Theorem 2.3. Let ¢,1): X x X x X — [0,00) be mappings satisfying

Zw( X, T, y)8j—¢( X, sy, y)<OO

for all xz,y € X, and
(2", 2"y, 2"%) + $(2"x, 2"y, 2"2)
8n
forall x,y,z€ X. If f: X x X =Y is a mapping such that
d(f(ZUI + $2,y) + f($1 - $2,y),2f($1,y) + 2f($27y)) S ¢($1;x2;y);

d(f(l’,?jl + y2)7 f(l"ﬂ/l) + f(x;%)) < ¢($,y1,y2)
for all x,y,x1,x9,y2,y2 € X, then there exists a unique additive—quadratic map-
ping T : X x X — Y satisfying (1.4) and

lim =0

d(f(x U) T(x 7/ < 2Z¢ iy 2’y)21 +éz¢ a: 2%’ 22+1y) (2.10)
=0

forall z,y € X.
P’f’OOf. Put fO(*x;U) = ,f(y,$),¢0($,y,2) = QZS(Z,T/,ZU) and ¢0($7yaz) = w(%%x)a

for all z,y,2 € X. Then by above theorem, there exists a unique additive—
quadratic mapping Ty : X x X — Y satisfies

2+1x 22 2) 1= (2, 20, 2
d(folx, ), To(z, 1)) Z% Y +52¢0( i y)

for all z,y € X. Now, we put T(x,y) = To(y,x) for all x,y € X. Hence, T is a
unique quadratic-additive map satisfies (2.10). Ol

Corollary 2.4. Let X be a vector space and Y be a Banach space. Suppose the
mappings ¢,1p : X x X x X — [0,00) satisfying
(2, 2y, 2'y) + ¢(2'x, 2, 2'y)
Qi

< 00
i=0
forall xz,y € X, and
P2, 2"y, 2"2) + $(2"x, 2"y, 2"2)
8n
forall x,y,z€ X. If f: X x X =Y is a mapping such that
1f(z1 + 220,y) = f(21,y) + [, 9) | < @1, 22, y),

1@,y +y2) + flxoyr —y2) = 2f (,51) — 2 (2, )| < (2, 91, 2)
for all x,y, xq1, 29,9y, y2 € X, then there exists a unique additive-quadratic map-
ping T : X x X — Y satisfying (1.4) and

lim =0

1f (2, y) =Tz, y)ll < 2

2’+1x2’,2’
3 e

1 <= (2, 2’3: ,2)
32
=0
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forall z,y € X.

Proof. 1t follows from theorem 2.2. by Putting d(a,b) = |ja — b|| for all a,b €
Y. L]

We are going to investigate the Hyers-Ulam -Rassias stability problem for sys-
tem of functional equations (1.4).

Corollary 2.5. Let ¢ > 0,p < 3, and let X,Y be a normed space a Banach space,
respectively. If f: X x X — Y is a mapping such that

Mazx{[| f(x, 31 +y2) + f(w,00 —y2) — 2f (2, 91) — 2f (7, 12) ||
) Hf($1 +$27y) - f($17y) + f($27y)|‘}
< e(Man{|lzo||” + 2 l|” + [[yl1”, 27 + v ll” + llyl"})

for all x,y, x1,x2,y2,y2 € X, then there exists a unique additive—quadratic map-
ping T : X x X — Y satisfying (1.4) and

1/ (2, y) = T, y)ll < (27 4+ 9)[|[[” + 5[lyl”)

—8—2r
forall z,y € X.

Proof. Tt follows from corollary 2.4. by Putting ¢(a,b,c) = ¥(a,b,c) = ||a|P +
1]P + ||c||P for all a,b,c € X. O

By Corollary 2.5, we solve the following Hyers-Ulam stability problem for sys-
tem of functional equations (1.4).

Corollary 2.6. Let ¢ > 0, and let X,Y be a normed space a Banach space,
respectively. If f: X x X — Y is a mapping such that

MGZC{H]C(I’,TA +U2) + f(l";?ll - 7/2) - 2]((:571/1) - 2f($71/2)|‘

7”f($1 +$27y) - f($17y) + f($27y)|‘}
<e

for all x,y, x1,x2,y2,y2 € X, then there exists a unique additive-quadratic map-
ping T : X x X — Y satisfying (1.4) and

1) — Tyl < 2

7
forall z,y € X.

Similarly we can prove the Hyers-Ulam-Rassias stability and the Hyers-Ulam
stability problems for quadratic-additive maps.
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