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P-COMPACTNESS IN L-TOPOLOGICAL SPACES

FU-GUI SHI

Communicated by S. Romaguera

Abstract. The concepts of P-compactness, countable P-compactness, the P-Lindelöf prop-
erty are introduced in L-topological spaces by means of preopen L-sets and their inequalities
when L is a complete DeMorgan algebra. These definitions do not rely on the structure of
the basis lattice L and no distributivity in L is required. They can also be characterized by
means of preclosed L-sets and their inequalities. Their properties are researched. Further
when L is a completely distributive DeMorgan algebra, their many characterizations are
presented.

1. Introduction

The notions of strong compactness, countable P-compactness and strongly Lindelöf prop-
erty were introduced in general topology by means of preopen sets (see [5, 10, 16]). Nanda
[11] generalized the notion of strong compactness in [5] to [0, 1]-topological spaces based on
Chang’s compactness [1] which is not a good extension. Kudri and Warner [6] introduced
strong compact L-fuzzy subsets based on their compactness which is equivalent to the notion
of strong fuzzy compactness in [7, 8, 17].

In [13, 15], a new definition of fuzzy compactness is presented in L-topological spaces by
means of an inequality, which does not depend on the structure of L and no distributivity
is required in L. When L is a completely distributive DeMorgan algebra, it is equivalent to
the notion of fuzzy compactness in [7, 8, 17].

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization
of the notion of compactness in general topology but different from the notion of strong
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compactness [5, 11]. In order to distinguish them, we call strong compactness in [5] as
P-compactness and call strongly Lindelöf property in [10] as the P-Lindelöf property.

In this paper, our aim is to extend the notion of P-compactness to L-topology by means
of preopen L-sets and their inequality. We also extend countable P-compactness [16] and
the P-Lindelöf property to L-topology. These definitions do not rely on the structure of the
basis lattice L and no distributivity in L is required.

2. Preliminaries

Throughout this paper (L,
∨

,
∧

,′ ) is a complete DeMorgan algebra. X is a nonempty set.
LX is the set of all L-fuzzy sets (or L-sets for short) on X.

An element a in L is called prime element if a ≥ b ∧ c implies a ≥ b or a ≥ c. a in L is
called co-prime element if a′ is a prime element [3]. The set of non-unit prime elements in L
is denoted by P (L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if for every
subset D ⊆ L, the relation b ≤ sup D always implies the existence of d ∈ D with a ≤ d [2].
In a completely distributive DeMorgan algebra L, each element b is a sup of {a ∈ L | a ≺ b}.
{a ∈ L | a ≺ b} is called the greatest minimal family of b in the sense of [7, 17], and denoted
by β(b). Moreover, for b ∈ L, we define β∗(b) = β(b) ∩M(L), α(b) = {a ∈ L | a′ ≺ b′}, and
α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX , we use the following notations from [12].

A(a) = {x ∈ X | A(x) 6≤ a}, A(a) = {x ∈ X | a ∈ β(A(x))}.

An L-topological space (or L-space for short) is a pair (X, T ), where T is a subfamily of LX

which contains 0, 1 and is closed for any suprema and finite infima. T is called an L-topology
on X. Each member of T is called an open L-set and its complement is called a closed L-set.

Definition 2.1 ([7, 17]). For a topological space (X, τ), let ωL(τ) denote the family of all
the lower semi-continuous maps from (X, τ) to L, i.e., ωL(τ) = {A ∈ LX | A(a) ∈ τ, a ∈ L}.
Then ωL(τ) is an L-topology on X, in this case, (X, ωL(τ)) is called topologically generated
by (X, τ).

Definition 2.2 ([7, 17]). An L-space (X, T ) is called weakly induced if ∀a ∈ L, ∀A ∈ T , it
follows that A(a) ∈ [T ], where [T ] denotes the topology formed by all crisp sets in T .

It is obvious that (X,ωL(τ)) is weakly induced.
For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ. 2[Φ] denotes

the set of all countable subfamilies of Φ.

Definition 2.3 ([13, 15]). Let (X, T ) be an L-space. G ∈ LX is called (countably) fuzzy
compact if for every (countable) family U ⊆ T , it follows that

∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.
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Definition 2.4 ([13, 15]). Let (X, T ) be an L-space. G ∈ LX is said to have the Lindelöf
property if for every family U ⊆ T , it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤
∨
V∈2[U]

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Lemma 2.5 ([13, 15]). Let L be a complete Heyting algebra, f : X → Y a map, and let
f→L : LX → LY be the extension of f . Then for any family P ⊆ LY , we have∨

y∈Y

(
f→L (G)(y) ∧

∧
B∈P

B(y)

)
=
∨
x∈X

(
G(x) ∧

∧
B∈P

f←L (B)(x)

)
.

Definition 2.6 ([13, 15]). Let (X, T ) be an L-space, a ∈ L\{1} and G ∈ LX . A family
A ⊆ LX is said to be

(1) An a-shading of G if for any x ∈ X, it follows that

(
G′(x) ∨

∨
A∈U

A(x)

)
6≤ a.

(2) A strong a-shading of G if
∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
6≤ a.

(3) An a-remote family of G if for any x ∈ X, it follows that

(
G(x) ∧

∧
B∈P

B(x)

)
6≥ a.

(4) A strong a-remote family of G if
∨

x∈X

(
G(x) ∧

∧
B∈P

B(x)

)
6≥ a.

Definition 2.7 ([13, 15]). Let (X, T ) be an L-space, a ∈ L\{0} and G ∈ LX . A family

U ⊆ LX is called a βa-cover of G if for any x ∈ X, it follows that a ∈ β

(
G′(x) ∨

∨
A∈U

A(x)

)
.

U is called a strong βa-cover of G if a ∈ β

( ∧
x∈X

(
G′(x) ∨

∨
A∈U

A(x)

))
.

Definition 2.8 ([13, 15]). Let (X, T ) be an L-space, a ∈ L\{0} and G ∈ LX . A family
U ⊆ LX is called a Qa-cover of G if for any x ∈ X, it follows that G′(x) ∨

∨
A∈U

A(x) ≥ a.

Definition 2.9 ([11]). An L-set G in an L-space (X, T ) is called preopen if G ≤ int(cl(A)).
G is called preclosed if G′ is preopen.

Definition 2.10 ([11]). Let (X, T1) and (Y, T2) be two L-spaces. A map f : (X, T1) → (Y, T2)
is called

(1) Precontinuous if f←L (G) is preopen in (X, T1) for every open L-set G in (Y, T2).
(2) M-pre-continuous (we shall call it P-irresolute) if f←L (G) is preopen in (X, T1) for

every preopen L-set G in (Y, T2).

3. P-compactness

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization
of the notion of compactness in general topology but different from the notion of strong
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compactness [5, 11]. In order to distinguish them, we call strong compactness in [5] as P-
compactness and we extend it to L-topology. We also extend countable P-compactness [16]
and strong Lindelöf property [10] (we call it the P-Lindelöf property) to L-topology.

Definition 3.1. Let (X, T ) be an L-space. G ∈ LX is called (countably) P-compact if for
every (countable) family U of preopen L-sets, it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Definition 3.2. Let (X, T ) be an L-space. G ∈ LX is said to have the P-Lindelöf property
(or be a P-Lindelöf L-set) if for every family U of preopen L-sets, it follows that∧

x∈X

(
G′(x) ∨

∨
A∈U

A(x)

)
≤
∨
V∈2[U]

∧
x∈X

(
G′(x) ∨

∨
A∈V

A(x)

)
.

Obviously we have the following theorem.

Theorem 3.3. P-compactness implies countably P-compactness and the P-Lindelöf property.
Moreover an L-set having the P-Lindelöf property is P-compact if and only if it is countably
P-compact.

Since an open L-set is preopen, we have the following theorem.

Theorem 3.4. For an L-set in an L-space, the following conditions are true.

(1) P-compactness ⇒ fuzzy compactness;
(2) Countably P-compactness ⇒ countably fuzzy compactness;
(3) The P-Lindelöf property ⇒ the Lindelöf property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems by using
complement.

Theorem 3.5. Let (X, T ) be an L-space. G ∈ LX is (countably) P-compact if and only if
for every (countable) family B of preclosed L-sets, it follows that∨

x∈X

(
G(x) ∧

∧
B∈B

B(x)

)
≥

∧
F∈2(B)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
.

Theorem 3.6. Let (X, T ) be an L-space. G ∈ LX has the P-Lindelöf property if and only
if for every family B of preclosed L-sets, it follows that∨

x∈X

(
G(x) ∧

∧
B∈B

B(x)

)
≥

∧
F∈2[B]

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
.

Definition 3.7. Let a ∈ L\{0} and G ∈ LX . A subfamily A of LX is said to have a weak

a-nonempty intersection in G if
∨

x∈X

(
G(x) ∧

∧
A∈A

A(x)

)
≥ a. A is said to have the finite

(countable) weak a-intersection property in G if every finite (countable) subfamily F of A
has a weak a-nonempty intersection in G.
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From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately obtain
the next two theorems.

Theorem 3.8. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions are
equivalent:

(1) G is (countably) P-compact.
(2) For any a ∈ L\{1}, each (countable) preopen strong a-shading U of G has a finite

subfamily which is a strong a-shading of G.
(3) For any a ∈ L\{0}, each (countable) preclosed strong a-remote family P of G has a

finite subfamily which is a strong a-remote family of G.
(4) For any a ∈ L\{0}, each (countable) family of preclosed L-sets which has the finite

weak a-intersection property in G has a weak a-nonempty intersection in G.

Theorem 3.9. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions are
equivalent:

(1) G has the P-Lindelöf property.
(2) For any a ∈ L\{1}, each preopen strong a-shading U of G has a countable subfamily

which is a strong a-shading of G.
(3) For any a ∈ L\{0}, each preclosed strong a-remote family P of G has a countable

subfamily which is a strong a-remote family of G.
(4) For any a ∈ L\{0}, each family of preclosed L-sets which has the countable weak

a-intersection property in G has a weak a-nonempty intersection in G.

4. Properties of P-compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably)
P-compact, then so is G ∨H.

Proof. For any (countable) family P of preclosed L-sets, by Theorem 3.5 we have that∨
x∈X

(
(G ∨H)(x) ∧

∧
B∈P

B(x)

)
=

{ ∨
x∈X

(
G(x) ∧

∧
B∈P

B(x)

)}
∨
{ ∨

x∈X

(
H(x) ∧

∧
B∈P

B(x)

)}
≥

{ ∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)}
∨

{ ∧
F∈2(P)

∨
x∈X

(
H(x) ∧

∧
B∈F

B(x)

)}
=

∧
F∈2(P)

∨
x∈X

(
(G ∨H)(x) ∧

∧
B∈F

B(x)

)
.

This shows that G ∨H is (countably) P-compact. �

Analogously we have the following result.

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have the P-Lindelöf
property, then G ∨H has the P-Lindelöf property.
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Theorem 4.3. If G is (countably) P-compact and H is preclosed, then G∧H is (countably)
P-compact.

Proof. For any (countable) family P of preclosed L-sets, by Theorem 3.5 we have that∨
x∈X

(
(G ∧H)(x) ∧

∧
B∈P

B(x)

)
=

∨
x∈X

(
G(x) ∧

∧
B∈P

⋃
{H}

B(x)

)
≥

∧
F∈2(P∪{H})

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)
=

{ ∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)

)}
∧

{ ∧
F∈2(P)

∨
x∈X

(
G(x) ∧H(x) ∧

∧
B∈F

B(x)

)}

=

{ ∧
F∈2(P)

∨
x∈X

(
G(x) ∧H(x) ∧

∧
B∈F

B(x)

)}
=

∧
F∈2(P)

∨
x∈X

(
(G ∧H)(x) ∧

∧
B∈F

B(x)

)
.

This shows that G ∧H is (countably) P-compact. �

Analogously we have the following result.

Theorem 4.4. If G has the P-Lindelöf property and H is preclosed, then G ∧ H has the
P-Lindelöf property.

Theorem 4.5. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2) be a P-
irresolute map. If G is a P-compact (countably P-compact or P-Lindelöf) L-set in (X, T1),
then so is f→L (G) in (Y, T2).

Proof. We need only prove that this result is true for P-compactness. Suppose that P is a
family of preclosed L-sets, by Lemma 2.5 and P-compactness of G we have that∨

y∈Y

(
f→L (G)(y) ∧

∧
B∈P

B(y)

)
=

∨
x∈X

(
G(x) ∧

∧
B∈P

f←L (B)(x)

)
≥

∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

f←L (B)(x)

)
=

∧
F∈2(P)

∨
y∈Y

(
f→L (G)(y) ∧

∧
B∈F

B(y)

)
.

Therefore f→L (G) is P-compact. �

Analogously we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2) be an
precontinuous map. If G is a P-compact (countably P-compact or P-Lindelöf) L-set in
(X, T1), then f→L (G) is fuzzy compact (countably fuzzy compact or Lindelöf) in (Y, T2).
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5. Further characterizations of P-compactness and goodness theorem

In this section, we assume that L is a completely distributive de Morgan algebra.
Analogous to the proof of Theorem 2.9 in [13] we can obtain the next theorem.

Theorem 5.1. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions are
equivalent.

(1) G is (countably) P-compact.
(2) For any a ∈ L\{0} (or a ∈ M(L)), each (countable) preclosed strong a-remote family

P of G has a finite subfamily which is an (a strong) a-remote family of G.
(3) For any a ∈ L\{0} (or a ∈ M(L)) and any (countable) preclosed strong a-remote

family P of G, there exist a finite subfamily F of P and b ∈ β(a) (or b ∈ β∗(a)) such
that F is a (strong) b-remote family of G.

(4) For any a ∈ L\{1} (or a ∈ P (L)), each (countable) preopen strong a-shading U of G
has a finite subfamily which is an (a strong) a-shading of G.

(5) For any a ∈ L\{1} (or a ∈ P (L)) and any (countable) preopen strong a-shading U
of G, there exist a finite subfamily V of U and b ∈ α(a) (or b ∈ α∗(a)) such that V is
a (strong) b-shading of G.

(6) For any a ∈ L\{0} (or a ∈ M(L)), each (countable) preopen strong βa-cover U of G
has a finite subfamily which is a (strong) βa-cover of G.

(7) For any a ∈ L\{0} (or a ∈ M(L)) and any (countable) preopen strong βa-cover U of
G, there exist a finite subfamily V of U and b ∈ L (or b ∈ M(L)) with a ∈ β(b) such
that V is a (strong) βb-cover of G.

(8) For any a ∈ L\{0} (or a ∈ M(L)) and any b ∈ β(a)\{0}, each (countable) preopen
Qa-cover of G has a finite subfamily which is a Qb-cover of G.

(9) For any a ∈ L\{0} (or a ∈ M(L)) and any b ∈ β(a)\{0} (or b ∈ β∗(a)), each
(countable) preopen Qa-cover of G has a finite subfamily which is a βb-cover of G.

Remark 5.2. Analogous to Theorem 5.1, we can obtain characterizations of the P-lindelöf
property.

Lemma 5.3. Let (X, ω(τ)) be generated topologically by (X, τ). If A is a preopen L-set in
(X, τ), then χA is a preopen set in (X, ω(τ)). If B is a preopen L-set in (X, ω(τ)), then B(a)

is a preopen set in (X, τ) for every a ∈ L. In particular, if χA is a preopen set in (X, ω(τ)),
then A is a preopen L-set in (X, τ).

Proof. If A is a preopen set in (X, τ), then A ⊆ int(cl(A). Thus we have

χA ≤ χint(cl(A)) = int(cl(χA)).

This shows that χA is preopen.
If B is a preopen L-set in (X, ω(τ)), then B ≤ int(cl(B)). This implies that B(a) ⊆

(int(cl(B)))(a). From [15] we obtain

(int(cl(B)))(a) ⊆ int((cl(B))(a)) ⊆ int(cl(B(a))).

Hence B(a) is a preopen set in (X, τ). �

The following two theorems show that P-compactness, countable P-compactness and the
P-Lindelöf property are good extensions.
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Theorem 5.4. Let (X, τ) be a topological space and let (X, ω(τ)) be generated topologically
by (X, τ). Then (X, ω(τ)) is (countably) P-compact if and only if (X, τ) is (countably)
P-compact.

Proof. Necessity. Let A be a (countable) preopen cover of (X, τ). Then {χA | A ∈ A}

is a family of preopen L-sets in (X, ω(τ)) with
∧

x∈X

( ∨
A∈U

χA(x)

)
= 1. From (countable)

P-compactness of (X, ω(τ)) we know∨
V∈2(U)

∧
x∈X

(∨
A∈V

χA(x)

)
=

∨
V∈2(U)

∧
x∈X

(∨
A∈V

χA(x)

)
= 1.

This implies that there exists V ∈ 2(U) such that
∧

x∈X

( ∨
A∈V

χA(x)

)
= 1. Hence V is a cover

of (X, τ). Therefore (X, τ) is (countably) P-compact.

Sufficiency. Let U be a (countable) family of preopen L-sets in (X, ω(τ)) and
∧

x∈X

( ∨
B∈U

B(x)

)
=

a. If a = 0, then we obviously have∧
x∈X

(∨
B∈U

B(x)

)
≤

∨
V∈2(U)

∧
x∈X

(∨
A∈V

B(x)

)
.

Now we suppose that a 6= 0. In this case, for any b ∈ β(a)\{0} we have that

b ∈ β

(∧
x∈X

(∨
B∈U

B(x)

))
⊆
⋂
x∈X

β

(∨
B∈U

B(x)

)
=
⋂
x∈X

⋃
B∈U

β (B(x)) .

By Lemma 5.1, this implies that {B(b) | B ∈ U} is a preopen cover of (X, τ). From (count-

able) P-compactness of (X, τ) we know that there exists V ∈ 2(U) such that {B(b) | B ∈ V}

is a cover of (X, τ). Hence b ≤
∧

x∈X

( ∨
B∈V

B(x)

)
. Further we have that

b ≤
∧
x∈X

(∨
B∈V

B(x)

)
≤

∨
V∈2(U)

∧
x∈X

(∨
B∈V

B(x)

)
.

This implies that∧
x∈X

(∨
B∈U

B(x)

)
= a =

∨
{b | b ∈ β(a)} ≤

∨
V∈2(U)

∧
x∈X

(∨
B∈V

B(x)

)
.

Therefore (X, ω(τ)) is (countably) P-compact. �

Analogously we have the following result.

Theorem 5.5. Let (X, τ) be a topological space and (X, ω(τ)) be generated topologically by
(X, τ). Then (X, ω(τ)) has the P-Lindelöf property if and only if (X, τ) has the P-Lindelöf
property.
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