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P-COMPACTNESS IN L-TOPOLOGICAL SPACES

FU-GUI SHI

Communicated by S. Romaguera

ABSTRACT. The concepts of P-compactness, countable P-compactness, the P-Lindel6f prop-
erty are introduced in L-topological spaces by means of preopen L-sets and their inequalities
when L is a complete DeMorgan algebra. These definitions do not rely on the structure of
the basis lattice L and no distributivity in L is required. They can also be characterized by
means of preclosed L-sets and their inequalities. Their properties are researched. Further
when L is a completely distributive DeMorgan algebra, their many characterizations are
presented.

1. INTRODUCTION

The notions of strong compactness, countable P-compactness and strongly Lindel6f prop-
erty were introduced in general topology by means of preopen sets (see [5, 10] [16]). Nanda
[T1] generalized the notion of strong compactness in [5] to [0, 1]-topological spaces based on
Chang’s compactness [I] which is not a good extension. Kudri and Warner [6] introduced
strong compact L-fuzzy subsets based on their compactness which is equivalent to the notion
of strong fuzzy compactness in [7, 8, [17].

In [I3] 15], a new definition of fuzzy compactness is presented in L-topological spaces by
means of an inequality, which does not depend on the structure of L and no distributivity
is required in L. When L is a completely distributive DeMorgan algebra, it is equivalent to
the notion of fuzzy compactness in [7, &, [17].

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization
of the notion of compactness in general topology but different from the notion of strong
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compactness [5, [11]. In order to distinguish them, we call strong compactness in [5] as
P-compactness and call strongly Lindel6f property in [10] as the P-Lindel6f property.

In this paper, our aim is to extend the notion of P-compactness to L-topology by means
of preopen L-sets and their inequality. We also extend countable P-compactness [16] and
the P-Lindelof property to L-topology. These definitions do not rely on the structure of the
basis lattice L and no distributivity in L is required.

2. PRELIMINARIES

Throughout this paper (L, \/, A\,") is a complete DeMorgan algebra. X is a nonempty set.
L¥ is the set of all L-fuzzy sets (or L-sets for short) on X.

An element a in L is called prime element if @ > b A ¢ implies a > bor a > ¢. ain L is
called co-prime element if ' is a prime element [3]. The set of non-unit prime elements in L
is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M (L).

The binary relation < in L is defined as follows: for a,b € L, a < b if and only if for every
subset D C L, the relation b < sup D always implies the existence of d € D with a < d [2].
In a completely distributive DeMorgan algebra L, each element b is a sup of {a € L | a < b}.
{a € L | a < b} is called the greatest minimal family of b in the sense of [7, [17], and denoted
by B(b). Moreover, for b € L, we define 5*(b) = (b)) " M (L), a(b) ={a € L | a’ < b'}, and
a*(b) = a(b) N P(L).

For a € L and A € L, we use the following notations from [12].

A® = {z e X | Alx) £ a}, Aw = f{reX|acfAQ).

An L-topological space (or L-space for short) is a pair (X, 7), where 7 is a subfamily of L*
which contains 0, 1 and is closed for any suprema and finite infima. 7 is called an L-topology
on X. Each member of 7 is called an open L-set and its complement is called a closed L-set.

Definition 2.1 ([7, I7]). For a topological space (X, 7), let wy(7) denote the family of all
the lower semi-continuous maps from (X,7) to L, i.e., wr (1) = {A € LX | AW € 1,0 € L}.
Then wy(7) is an L-topology on X, in this case, (X,w (7)) is called topologically generated
by (X, 7).

Definition 2.2 ([7, [I7]). An L-space (X, 7T) is called weakly induced if Va € L, VA € T, it
follows that A ¢ [T], where [7] denotes the topology formed by all crisp sets in 7.

It is obvious that (X, wy (7)) is weakly induced.
For a subfamily ® C LY, 2(®) denotes the set of all finite subfamilies of ®. 2[*) denotes
the set of all countable subfamilies of ®.

Definition 2.3 ([I3, 15]). Let (X,7) be an L-space. G € L¥ is called (countably) fuzzy
compact if for every (countable) family & C 7, it follows that

A (G’(x)\/ \ A(@) VA (G’ v/ A@;)).

zeX AeU vea) xzeX Aey
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Definition 2.4 ([13] [15]). Let (X,7) be an L-space. G € L¥ is said to have the Lindel6f
property if for every family & C 7, it follows that

A (G'@) v/ A@)) <V A (G’(:U) v/ A(@).

reX AeU yeolul zeX AeV

Lemma 2.5 ([13, [15]). Let L be a complete Heyting algebra, f : X — Y a map, and let
[ LY — LY be the extension of f. Then for any family P C LY, we have

V <fE(G)(y) WA B(y)> =\ (G(ﬂf) WA ff(B)(ﬂf)> :

yey BeP zeX BeP

Definition 2.6 ([13, [15]). Let (X,7) be an L-space, a € L\{1} and G € L*. A family
A C L¥ is said to be

(1) An a-shading of G if for any x € X, it follows that (G’(x) v A\/u A(m)) £ a.
S

(2) A strong a-shading of G if A <G’(x) vV A(m)) £ a.

rzeX Aeld

(3) An a-remote family of G if for any = € X, it follows that <G(ac) AN B(x)> 7 a.
BeP

(4) A strong a-remote family of G if \/ (G(:c) AN A B(:U)) 7 a.

rzeX BeP

Definition 2.7 ([I3, 15]). Let (X,7) be an L-space, a € L\{0} and G € L¥. A family

U C L is called a §3,-cover of G if for any z € X it follows that a € 3 (G/([L‘) vV A(:B))
Acu

U is called a strong f,-cover of G if a € 8 ( A (G’(x) vV A(x)))

zeX Aeld

Definition 2.8 ([13, [15]). Let (X,7) be an L-space, a € L\{0} and G € L*. A family

U C L is called a Q,-cover of G if for any z € X, it follows that G'(z) vV \/ A(x) > a.
AeU

Definition 2.9 ([11]). An L-set G in an L-space (X, 7T) is called preopen if G < int(cl(A)).
G is called preclosed if G’ is preopen.

Definition 2.10 ([11]). Let (X, 77) and (Y, 73) be two L-spaces. Amap [ : (X,7;) — (Y, T3)
is called
(1) Precontinuous if f; (G) is preopen in (X, 7;) for every open L-set G in (Y, 73).
(2) M-pre-continuous (we shall call it P-irresolute) if f; (G) is preopen in (X,7;) for
every preopen L-set G in (Y, 7).

3. P-COMPACTNESS

Lowen [9] introduced the notion of strong fuzzy compactness which is a generalization
of the notion of compactness in general topology but different from the notion of strong
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compactness [5, [I1]. In order to distinguish them, we call strong compactness in [5] as P-
compactness and we extend it to L-topology. We also extend countable P-compactness [16]
and strong Lindelof property [10] (we call it the P-Lindel6f property) to L-topology.

Definition 3.1. Let (X,7) be an L-space. G € L¥ is called (countably) P-compact if for
every (countable) family U of preopen L-sets, it follows that

A\ (G’(m) vV A(I)) <\ A <G’(x) vV A(x)) .

zeX Aeld ve2t) zeX Aey

Definition 3.2. Let (X,7) be an L-space. G € L¥ is said to have the P-Lindelof property
(or be a P-Lindeldf L-set) if for every family U of preopen L-sets, it follows that

A <G’(:p)\/ \/ A(@) V A (G’ v/ A(x)).

zeX Aeld vealu] xeX Aey
Obviously we have the following theorem.
Theorem 3.3. P-compactness implies countably P-compactness and the P-Lindelof property.

Moreover an L-set having the P-Lindelof property is P-compact if and only if it is countably
P-compact.

Since an open L-set is preopen, we have the following theorem.

Theorem 3.4. For an L-set in an L-space, the following conditions are true.

(1) P-compactness = fuzzy compactness;
(2) Countably P-compactness = countably fuzzy compactness;
(3) The P-Lindeldf property = the Lindelof property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems by using
complement.

Theorem 3.5. Let (X,T) be an L-space. G € LX is (countably) P-compact if and only if
for every (countable) family B of preclosed L-sets, it follows that

\/ (G(:v)/\ N B@)) > AV <G(m)/\ A B(x)).

zeX BeB FeaB) zeX BeF

Theorem 3.6. Let (X,7) be an L-space. G € L has the P-Lindelof property if and only
if for every family B of preclosed L-sets, it follows that

\/(G(J;)/\/\ ) /\\/( /\3@)).

zeX BeB Fe2lBl zeX BeF
Definition 3.7. Let a € L\{0} and G € LX. A subfamily A of L¥ is said to have a weak

a-nonempty intersection in G if \/ [ G(z) A A A(:c)) > a. A is said to have the finite
zeX AcA
(countable) weak a-intersection property in G if every finite (countable) subfamily F of A

has a weak a-nonempty intersection in G.
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From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately obtain
the next two theorems.

Theorem 3.8. Let (X,T) be an L-space and G € LX. Then the following conditions are
equivalent:
(1) G is (countably) P-compact.
(2) For any a € L\{1}, each (countable) preopen strong a-shading U of G has a finite
subfamily which is a strong a-shading of G.
(3) For any a € L\{0}, each (countable) preclosed strong a-remote family P of G has a
finite subfamily which is a strong a-remote family of G.
(4) For any a € L\{0}, each (countable) family of preclosed L-sets which has the finite
weak a-intersection property in G has a weak a-nonempty intersection in G.

Theorem 3.9. Let (X,T) be an L-space and G € L*. Then the following conditions are
equivalent:

(1) G has the P-Lindeldf property.

(2) For any a € L\{1}, each preopen strong a-shading U of G has a countable subfamily
which is a strong a-shading of G.

(3) For any a € L\{0}, each preclosed strong a-remote family P of G has a countable
subfamily which is a strong a-remote family of G.

(4) For any a € L\{0}, each family of preclosed L-sets which has the countable weak
a-intersection property in G has a weak a-nonempty intersection in G.

4. PROPERTIES OF P-COMPACTNESS

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably)
P-compact, then so is GV H.

Proof. For any (countable) family P of preclosed L-sets, by Theorem 3.5 we have that

v (v p Bw)

zeX

- [y (own g s o v, (e p )
B

- {fe/Q\(P) xyX ( )1 B/e\}‘ ) ! {fez<7’> zeX (H<x) ' B/E\fB(x)) }
- AV ((va( )N B<x

Fea(P) zeX BeF
This shows that G V H is (countably) P-compact. O
Analogously we have the following result.

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have the P-Lindelof
property, then GV H has the P-Lindelof property.
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Theorem 4.3. If G is (countably) P-compact and H is preclosed, then G\ H is (countably)
P-compact.

Proof. For any (countable) family P of preclosed L-sets, by Theorem 3.5 we have that

v ((©@rm@n p B)

zeX BeP
= V |G@)An A B()
zeX BeP | J{H}

> AV (6@ A B)

Fea(PUiH}) zeX

- A \/(G@W\Alﬂﬂ)}A{ A \/(G@%AHWW\A1%@>}

FeoP) zeX BeF Feo(P) zeX BeF

~ LA v(mwAHmw\ABuQ}

Fe2(P) xzeX BeF
= AV (©@am@a A Bw).
FeaP) zeX BeF
This shows that G A H is (countably) P-compact. O

Analogously we have the following result.
Theorem 4.4. If G has the P-Lindelof property and H is preclosed, then G N H has the
P-Lindelof property.

Theorem 4.5. Let L be a complete Heyting algebra and let f : (X,7;) — (Y, 73) be a P-
irresolute map. If G is a P-compact (countably P-compact or P-Lindeldf) L-set in (X,77),
then so is fi7(G) in (Y, 73).

Proof. We need only prove that this result is true for P-compactness. Suppose that P is a
family of preclosed L-sets, by Lemma 2.5 and P-compactness of G we have that

v (1r@wn A B0))

yey BeP

_ v@mAAﬁwmQ
rxeX BeP

> A v@mAAﬁwmQ
Fea(P) zeX BeF

_ Av(ﬁ@@AAmm.
Fe2(P) yeY BeF

Therefore f;7(G) is P-compact. O

Analogously we have the following result.

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X, 77) — (Y, 1) be an
precontinuous map. If G is a P-compact (countably P-compact or P-Lindeldf) L-set in
(X, Th), then fi7(G) is fuzzy compact (countably fuzzy compact or Lindeldf) in (Y, 7).
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5. FURTHER CHARACTERIZATIONS OF P-COMPACTNESS AND GOODNESS THEOREM

In this section, we assume that L is a completely distributive de Morgan algebra.
Analogous to the proof of Theorem 2.9 in [13] we can obtain the next theorem.

Theorem 5.1. Let (X,7T) be an L-space and G € L*. Then the following conditions are
equivalent.

(1) G is (countably) P-compact.

(2) For any a € L\{0} (ora € M(L)), each (countable) preclosed strong a-remote family
P of G has a finite subfamily which is an (a strong) a-remote family of G.

(3) For any a € L\{0} (or a € M(L)) and any (countable) preclosed strong a-remote
family P of G, there exist a finite subfamily F of P and b € f(a) (orb € *(a)) such
that F is a (strong) b-remote family of G.

(4) For any a € L\{1} (or a € P(L)), each (countable) preopen strong a-shadingU of G
has a finite subfamily which is an (a strong) a-shading of G.

(5) For any a € L\{1} (or a € P(L)) and any (countable) preopen strong a-shading U
of G, there exist a finite subfamily V of U and b € a(a) (or b € a*(a)) such that V is
a (strong) b-shading of G.

(6) For any a € L\{0} (or a € M(L)), each (countable) preopen strong [3,-cover U of G
has a finite subfamily which is a (strong) [B,-cover of G.

(7) For any a € L\{0} (ora € M(L)) and any (countable) preopen strong [B,-cover U of
G, there exist a finite subfamily V of U and b € L (orb € M(L)) with a € 3(b) such
that V is a (strong) (y-cover of G.

(8) For any a € L\{0} (or a € M(L)) and any b € $(a)\{0}, each (countable) preopen
Q.-cover of G has a finite subfamily which is a Qp-cover of G.

(9) For any a € L\{0} (or a € M(L)) and any b € ((a)\{0} (or b € [(*(a)), each
(countable) preopen Q.-cover of G has a finite subfamily which is a By-cover of G.

Remark 5.2. Analogous to Theorem 5.1, we can obtain characterizations of the P-lindelof
property.

Lemma 5.3. Let (X,w(7)) be generated topologically by (X, 7). If A is a preopen L-set in
(X, 7), then x4 is a preopen set in (X,w(7)). If B is a preopen L-set in (X,w(7)), then B
is a preopen set in (X, T) for every a € L. In particular, if x4 s a preopen set in (X,w(T)),
then A is a preopen L-set in (X, 7).

Proof. 1f A is a preopen set in (X, 7), then A C int(cl(A). Thus we have

XA < Xint(e(ay) = int(cl(xa))-
This shows that x4 is preopen.
If B is a preopen L-set in (X,w(7)), then B < int(cl(B)). This implies that By C
(int(cl(B)))(a)- From [I5] we obtain

(int(cl(B))) (@ € int((cl(B))(@) € int(cl(B(a))).
Hence By, is a preopen set in (X, 7). O

The following two theorems show that P-compactness, countable P-compactness and the
P-Lindelof property are good extensions.
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Theorem 5.4. Let (X, 7) be a topological space and let (X,w(T)) be generated topologically
by (X,7). Then (X,w(1)) is (countably) P-compact if and only if (X,7) is (countably)
P-compact.

Proof. Necessity. Let A be a (countable) preopen cover of (X, 7). Then {xa | A € A}

is a family of preopen L-sets in (X,w(7)) with A ( \V xa(z) ] = 1. From (countable)
zeX \AelU
P-compactness of (X,w(7)) we know

v /\(\/w): v A(\/Xm):l.

Veo) zeX \A€V Veo) z€X \A€V

This implies that there exists V € 2@ such that A ( V XA(SE)) = 1. Hence V is a cover
z€X \A€eV
of (X, 7). Therefore (X, 7) is (countably) P-compact.

Sufficiency. Let U be a (countable) family of preopen L-sets in (X, w(7)) and A < \V B (:L’)) =

zeX \BeU
a. If a = 0, then we obviously have

AV )< v A (Vew)
zeX \BeU vea) zeX \AeV
Now we suppose that a # 0. In this case, for any b € 5(a)\{0} we have that

beﬁ(/\ (\/ B(x))) C ﬂﬁ(\/ B(x)) = U BBx).

zeX \BeUu zeX Beu zeX BeUd

By Lemma 5.1, this implies that {B() | B € U} is a preopen cover of (X, 7). From (count-
able) P-compactness of (X, ) we know that there exists V € 2 such that {By, | B € V}

is a cover of (X, 7). Hence b < A ( V B(x)) . Further we have that

bg/\(\/B(@)g \/ (\/B(a:)).
zeX \BeV vea) zeX \BeV

This implies that

A (B&Bm) CamVblbes@is A (\/Bm).

vea) zeX \BeV

Therefore (X, w(7)) is (countably) P-compact. O
Analogously we have the following result.

Theorem 5.5. Let (X, 7) be a topological space and (X,w(T)) be generated topologically by
(X, 7). Then (X,w(7)) has the P-Lindeldf property if and only if (X, 7) has the P-Lindelof
property.
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