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Abstract. In this paper, we give a characteristic of B-convexity structures
of finite dimensional B-spaces: if a finite dimensional B-space has the weak
selection property then its B-convexity structure satisfies H-condition. We
also get some relationships among B-convexity structures, selection property
and fixed point property. We show that in a compact convex subset of a finite
dimensional B-space satisfying H-condition the weak selection property implies
the fixed point property.

1. Introduction and preliminaries

The convexity of space plays a very important role in fixed point theory and
continuous selection theory. There were many works deal with various kinds of
generalized, topological, or axiomatically defined convexities[1, 2, 3, 4]. Most
of them were to establish various fixed point theorems and selection theorems in
topological space without linear structure such as some generalizations of Brouwer
fixed point theorem, Fan-Browder fixed point theorem and Michael selection
theorem[2, 5, 6, 7, 8]. Recently, Briec[2] introduced the B-convexity by alge-
bra borrows from topological ordered vector spaces and semilattice both. Briec
proved that all the basic results related to fixed point theorems available in B-
convexity[2].

The aim of this paper is to give some relationships among B-convexity struc-
ture, selection property and fixed point theorems. We prove that if X is a B-space
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with B-convexity and of weak selection property with respect to any standard
simplex ∆N then X satisfies H-condition, and we show that in a compact con-
vex subset of a B-space with B-convexity structure the weak selection property
implies the fixed point property.

A B-convex set can be seen as an abstract cone, in as much as we have a partial
order and a multiplication by positive reals compatible with that partial order,
we will remain in the finite dimensional setting of Rn with its natural partial
order. Let n1 and n2 be two positive integers whose sum is n and

Rn1
− = {(x1, · · · , xn1) ∈ Rn1 max{xi} ≤ 0},

Rn2
+ = {(x1, · · · , xn2) ∈ Rn2 max{xi} ≤ 0}.

We identify Rn1
− ×Rn2

+ with an octant of Rn . For t ∈ R+ and x ∈ Rn1
− ×Rn2

+ , tx
is usual multiplication by a scalar, for x and y in Rn1

− ×Rn2
+ , we let x ∨ y be the

element of Rn1
− ×Rn2

+ defined in the following way:

(x ∨ y)j =

{
min{xj, yj} if j ≤ n1

max{xj, yj} if j > n1.
(1.1)

Then one can easily see that:
(A) (x, y) → x ∨ y is associative, commutative, and idempotent , and also

continuous ,and x ∨ 0 = x for all Rn1
− ×Rn2

+ .

(B) For t ∈ R+, the map t → tx is continuous and order preserving, and
for all t1, t2 in R+ and for all x and y in Rn1

− × Rn2
+ , (t1t2)x = t1(t2x) and

t(x ∨ y) = (tx) ∨ (ty).

A finite dimensional B-space (of type(n1, n2))) is, by definition, a subset X of
Rn1
− ×Rn2

+ such that:

(BS) 0 ∈ X,∀t ≥ 0 and ∀x ∈ X, tx ∈ X and ∀x, y ∈ X, x ∨ y ∈ X.

For a subset B of X the following properties are equivalent[1]:

(B1)∀x, y ∈ B, tx ∨ y ∈ B ∀t ∈ [0, 1],
(B2)∀x1, · · · , xm ∈ B, and ∀t1, · · · , tm ∈ [0, 1] such that

max1≤i≤m{tj} = 1, t1x1 ∨ · · · ∨ tmxm = ∨tixi ∈ B.

Definition 1.1. A subset of X for which (B1) or (B2) holds is called B-convex[1].

For example (B1) holds for increasing set (S is increasing if x ≤ y and x ∈ S
implies y ∈ S). Sets of the form

∏m
i=1[ai, bi] are B-convex in Rn

+.
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Since an arbitrary intersection of B-convex sets is B-convex, and arbitrary set
S ⊂ X is always contained in a smallest B-convex subset of X, we call that set
the B-convex hull of S, it is denoted by [S]. From (B2) one has the following
characterization:

The B-convex hull of S it is the set of all elements of the form t1x1∨· · ·∨ tmxm

with xi ∈ S and max1≤i≤m{tj} = 1, ti ∈ [0, 1].

B-convex sets also are contractible[2]. We recall that a set A is contractible if
there exists a continuous map h : A× [0, 1] → A such that the map a → h(a, 0)
is constant and a → h(a, 1) is the identity map of A.

For finite dimensional B-space X we define a map as follows:

(K(x, y, t) =

{
x ∨ 2ty if 0 ≤ t ≤ 1/2

(2− 2t)x ∨ y if 1/2 < t ≤ 1.
(1.2)

To see that a B-convex set B is contractible one fixes x0 ∈ B and take h(x, t) =
K(x0, x, t).

Other properties of B-convex and foxed points theorem and related matters in
the framework of B-convexity see [2].

A topological space X with a convexity structure C (e.g. B-convexity) is said
to be of weak selection property with respect to S if every multivalued mapping
F : S → 2X admits a singlevalued continuous selection whenever F is lower
semicontinuous and nonempty closed convex valued. (X,C) is said to be of weak
selection property with respect to S if F : S → 2X admits a singlevalued continu-
ous selection whenever F is multivalued mapping with nonempty convex images
and preimages relatively open in X (i.e.,F (x) is convex for each x ∈ S and F−1

is open in S). X is said to be of fixed point property if every continuous selfmap
F on X has a fixed point in X.

Let N = {0, 1, 2, · · · , n}, 4N = e0e1 · · · en be the standard simplex of dimen-
sion n, where {e0e1 · · · en} is the canonical basis of Rn+1, and for J ⊂ N , and
4N = co{ej : j ∈ J} be a face of 4N . For each x ∈ e0e1 · · · en, there is a unique
set of numbers t0, · · · , tn with,

∑n
t=0 ti = 1, ti ≥ 0, i ∈ N such that x =

∑n
i=0 tie

i.
The coefficients t0, · · · , tn are called the barycentric coordinates of x. Let

χ(υ) = {i : υ =
n∑

i=0

tie
i, ti ≥ 0}.

Definition 1.2. Let {Ti : i ∈ I} be some simplicial subdivision of standard
simplex4N = e0e1 · · · en, ν denote the collection of all vertices of all subsimplexes
in in the subdivision. A function λ : ν → {0, 1, · · · , n} satisfying

λ(υ) ∈ χ(υ),∀υ ∈ ν,
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is called a normal labeling of this subdivision. Moreover, Ti is called a completely
labeled subsimplex or completely labeled lattice if Ti must have vertices with the
completes set of labels: 0, 1, · · ·n.

Theorem 1.3. Let {Ti : i ∈ I} be any simplicial subdivision of 4N and nor-
mally labeled by a function λ. Then there exist odd numbers of completely labeled
subsimplexes of lattices in the subdivision with respect to the labeling function λ.

Last theorem is famous Sperner’s lemma[3].

Theorem 1.4. Let Y be a topological space. For each J ⊂ N, let ΓJ be a
nonempty contractible subset of Y . If ∅ 6= J ⊂ J

′ ⊂ N implies ΓJ ⊂ ΓJ ′ , then
there exists a continuous mapping f such that F (4J) ⊂ ΓJ for each nonempty
subset J ⊂ N .

This is Horvath’ lemma[6, 7].

2. Main results

According to Horvath’s lemma, we call that a finite dimensional B-space sat-
isfies H-condition if the B-convexity has the following property:

(H) For each finite subset {y0, y1, · · · , yn} ⊂ Y , there exists a continuous map-
ping f : 4N → [{y0, y1, · · · , yn}] such that f(4J) ⊂ [yj : j ∈ J ] for each
nonempty subset J ⊂ N .

Now, we first prove the crucial result of this section as below.

Theorem 2.1. If a finite dimensional B-space Y with B-convexity is of weak
selection property with respect to any standard simplex, then a finite dimensional
B-space Y satisfies H-condition.

Proof. . Let A = {y0, y1, · · · , yn} be any finite subset of Y , 4N = e0e1 · · · en the
standard simplex of dimension n. For each J ⊂ N and each face 4J of 4N ,
denote the interior of 4J by

40
J = {υ ∈ 4J : χ(υ) = J}.

Define T : 4N → 2Y as follows:

T (x) = [{yj : j ∈ χ(x)}], x ∈ 4N .

It is routinely to check that T is with nonempty convex images and preimages
relatively open in 4N . In fact, for each y ∈ Y and each x ∈ T−1(y), there is
only one face 4J , J = χ(x) such that x ∈ 40

J . So x /∈ 4J ′ for any face 4J ′

not containing 4J . For any 4J
′ ⊃ 4J , there exists a neighborhood O(x) ⊂ 4N

of x such that O(x)
⋂
4J

′ = ∅ as every face 4J
′ is closed and the number of

faces 4N of is finite. Therefore, for any z ∈ O(x), any face 4J
′ contains z only

if 4J ⊂ 4J
′ . Then for each z ∈ O(x), z ∈ 4χ(z) implies 4χ(z) ⊃ 4J , So

that χ(z) ⊃ J = χ(x). It follow that T (z) ⊃ T (x) for all z ∈ O(x), and so
y ∈ T (x) ⊂ T (z), i.e., z ∈ T−1(y) for all z ∈ O(x). . Hence T−1(y) is relatively
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open in 4N .

In addition, it is obvious that T is nonempty closed and convex. Since Y is
of selection property with respect to any standard simplex, there exists a single-
valued continuous mapping f : 4N → Y such that f(x) ∈ T (x) for all x ∈ 4N .
The definition of T implies that f(4J) ⊂ [{yj : j ∈ J}] for each nonempty subset
J ⊂ N , which complete the proof. �

Corollary 2.2. . If a finite dimensional B-space Y with B-convexity is of weak
selection property with respect to any compact Hausdorff space, then a finite di-
mensional B-space Y satisfies H-condition.

Proof. . It is immediate from Theorem 2.1. �

Let X be a subset of a finite dimensional B-space Y. A multivalued mapping
F : X → 2Y is called a KKM -mapping if [A] ⊂

⋃
x∈A F (x) for each finite subset

A ⊂ X.

Theorem 2.3. Let X is subset of a finite dimensional Y B-space satisfying H-
condition and F : Y → 2X is a KKM-mapping. If F is closed-valued, then
family {F (y) : y ∈ Y } has the finite intersection property.

Proof. . Let {y0, y1, · · · , yn} be arbitrary finite subset of X. Since Y satis-
fies H-condition, there exists a singlevalued continuous mapping f : 4N →
[{y0, · · · , yn}] such that f(4J) ⊂ [{yj : j ∈ J}] for each nonempty subset j ⊂ N .

For each k ∈ {1, 2, · · · } and each εk = 1/k ≥ 0, let {T k
i : i ∈ Ik} be some

simplicial subdivision of 4N such that the mesh of the subdivision less than
1/2k. And let νk be the set of vertices of all subsimplexes in this subdivision.

For each υ ∈ νk, let

λk(υ) = min{j ∈ χ(υ) : f(υ) ∈ F (yj)}.
Then λk(υ) is nonempty, since υ ∈ conv{ej : j ∈ χ(υ)} and

f(υ) ∈ f([{ej : j ∈ χ(υ)}]) ⊂ [{yj : j ∈ χ(υ)}] ⊂
⋃

j∈χ(υ)

F (yj).

By the hypothesis, it is easy to see that λk is a normal label function of the
subdivision.

So for each k = 1, 2, · · · , there must exist a subsimplex Tik with complete labels
by Sperner’s Lemma. Let zk

0 , · · · , zk
n be all vertices of subsimplex Tik , and

λ(zk
0 ) = 0, λ(zk

1 ) = 1, · · · , λ(zk
n) = n.

By the definition of λ, we have

f(zk
0 ) ∈ F (y0), f(zk

1 ) ∈ F (y1), · · · , f(zk
n) ∈ F (yn).

Note that zk
0 , · · · , zk

n are some vertices of subsimplex Tik ,so that d(zk
i , zk

j ) ≤
1/2k, i, j ∈ {0, 1, · · · , n}. Since 4N is compact, we may assume that there
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is y∗ ∈ 4N such that zk
i → y∗, i = 0, 1, · · · , n . Then f(zk

i ) → f(y∗). It fol-
lows from the closeness of each F (yi) that f(y∗) ∈ F (yi), i = 0, 1, · · · , n, and⋂

i∈N F (yi) 6= ∅. This completes the proof. �

Theorem 2.4. . Let a finite dimensional B-space Y satisfying H-condition, X
is a convex compact subset of Y , and F : X → 2X a multivalued mapping with
nonempty convex images and preimages relatively open in X. Then F has a fixed
point.

Proof. . Since X is compact and X =
⋃

x∈X F−1(x), there exists a finite subset
{x0, x1, · · · , xn} of X such that X =

⋃n
i=0 F−1(xi). Then

⋂n
i=0[X \ F−1(xi)] = ∅.

Let

G(x) = [X \ F−1(x)], ∀x ∈ X.

With Theorem 2.3, we know that G is not a KKM -mapping, so that there exists
a finite subset {y0, y1, · · · , yn} such that

[{y0, y1, · · · , yn}] 6⊂
m⋃

i=0

G(yi).

Then there is some y∗ ∈ [{y0, y1, · · · , yn}] such that y∗ /∈ G(yi) for all i =
0, 1, · · ·m, that is

y∗ ∈ F−1(yi), ∀i = 0, 1, · · · , m.

Consequently

yi ∈ F ∗(y), ∀i = 0, 1, · · · , m.

Therefore

y∗ ∈ [{y0, y1, · · · , ym}] ⊂ F (y∗).

Which complete the proof. �

Theorem 2.5. . Let X be a compact topological space, a finite dimensional B-
space Y satisfying H-condition, and F : X → 2Y a multivalued mapping with
nonempty convex images and preimages relatively open in X. Then F has a
continuous selection.

Proof. . Since X is compact and X =
⋃

y∈Y F−1(y), there exists a finite sub-

set {y0, y1, · · · , ym} of X such that X =
⋃n

i=0 F−1(yi). Now let {pi : i =
0, 1, · · · , n} be a partition of unity subordinate to the finite covering {F−1(yi) :
i = 0, 1, · · · , n}. Define a mapping φ : X →4N by

φ(x) =
n∑

i=0

pi(x)ei, ∀x ∈ X.

On the other hand, since Y satisfies H-condition, there exists a singlevalued
continuous mapping f : 4N → [{y0, y1, · · · , yn}] such that s(4J) ⊂ [yj : j ∈ J ]
for each nonempty subset J ⊂ N .

Now our desired mapping g is given by

g = f ◦ φ.
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In fact, it is easy to verify that φ(x) ∈ 4J(x) for each x ∈ X, where J(x) = {i ∈
N : pi(x) 6= 0}. By the convexity of F (x) , we do have that {yj : J(x)} ⊂ F (x)
and thus

g(x) = f(φ(x)) ⊂ f(4J(x)) ⊂ [yj : j ∈ J ] ⊂ [yj, pj(x) 6= 0] ⊂ [yj : yj ∈ F (x)] ⊂ F (x).

This complete the proof. �
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