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SOME PROPERTIES OF B-CONVEXITY

HONGMIN SUOL2*

Communicated by S. S. Chang

ABSTRACT. In this paper, we give a characteristic of B-convexity structures
of finite dimensional B-spaces: if a finite dimensional B-space has the weak
selection property then its B-convexity structure satisfies H-condition. We
also get some relationships among B-convexity structures, selection property
and fixed point property. We show that in a compact convex subset of a finite
dimensional B-space satisfying H-condition the weak selection property implies
the fixed point property.

1. INTRODUCTION AND PRELIMINARIES

The convexity of space plays a very important role in fixed point theory and
continuous selection theory. There were many works deal with various kinds of
generalized, topological, or axiomatically defined convexities[T], 2, B, [4]. Most
of them were to establish various fixed point theorems and selection theorems in
topological space without linear structure such as some generalizations of Brouwer
fixed point theorem, Fan-Browder fixed point theorem and Michael selection
theorem[2], 5, 6], [7, [§]. Recently, Briec[2] introduced the B-convexity by alge-
bra borrows from topological ordered vector spaces and semilattice both. Briec
proved that all the basic results related to fixed point theorems available in B-
convexity[2].

The aim of this paper is to give some relationships among B-convexity struc-
ture, selection property and fixed point theorems. We prove that if X is a B-space
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with B-convexity and of weak selection property with respect to any standard
simplex Ay then X satisfies H-condition, and we show that in a compact con-
vex subset of a B-space with B-convexity structure the weak selection property
implies the fixed point property.

A B-convex set can be seen as an abstract cone, in as much as we have a partial
order and a multiplication by positive reals compatible with that partial order,
we will remain in the finite dimensional setting of R™ with its natural partial
order. Let n; and nsy be two positive integers whose sum is n and

R™ = {(xl’ S Ty c R™ maw{%} < 0}7
Riz — {(3;1’ e ’xm) c R™ ma:v{a:z} S 0}
We identify R™ x R’? with an octant of R" . Fort € R, and x € R™ x R? | tx

is usual multiplication by a scalar, for z and y in R™ x R'?, we let  V y be the
element of R" x R'? defined in the following way:

(zVy); = { maac{xj,yj} if  j> nll (1.1)

Then one can easily see that:
(A) (z,y) — = V y is associative, commutative, and idempotent , and also
continuous ,and = V 0 = z for all R™ x R}” .

(B) For t € Ry, the map t — tx is continuous and order preserving, and
for all ¢1,¢; in Ry and for all  and y in R™ x RY?, (tite)r = ti(tax) and
txVy) = (tz) V (ty).

A finite dimensional B-space (of type(ni,ns))) is, by definition, a subset X of
R™ x R"? such that:

(BS)0e X,Vt>0and Ve € Xtz € X and Vx,y € X, 2 Vy € X.
For a subset B of X the following properties are equivalent[I]:

(B1)Va,y € B,tzVy € B Vte|0,1],
(B2)Vay, -+ , 2, € B, and Viq, -+ ,t, € [0, 1] such that

mallgigm{tj} = 1, tll'l VeV tm.iljm = \/tll'l € B.

Definition 1.1. A subset of X for which (B1) or (B2) holds is called B-convex|[I].

For example (B1) holds for increasing set (S is increasing if + < y and z € S
implies y € S). Sets of the form [[}",[a;, b;] are B-convex in R’}.
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Since an arbitrary intersection of B-convex sets is B-convex, and arbitrary set
S C X is always contained in a smallest B-convex subset of X, we call that set
the B-convex hull of S, it is denoted by [S]. From (B2) one has the following
characterization:

The B-convex hull of S it is the set of all elements of the form t;21 V- - Vi, Tm
with x; € S and mal’lgigm{t]’} = 1, ti < [0, 1]

B-convex sets also are contractible[2]. We recall that a set A is contractible if
there exists a continuous map h : A x [0,1] — A such that the map a — h(a,0)
is constant and a — h(a, 1) is the identity map of A.

For finite dimensional B-space X we define a map as follows:

B xV2ty if 0<t<1/2
(K(x’y’t)_{ @—20zvy if 1/2<t<l. (1.2)
To see that a B-convex set B is contractible one fixes zy € B and take h(z,t) =
K(xg,z,t).

Other properties of B-convex and foxed points theorem and related matters in
the framework of B-convexity see [2].

A topological space X with a convexity structure C' (e.g. B-convexity) is said
to be of weak selection property with respect to S if every multivalued mapping
F : S — 2% admits a singlevalued continuous selection whenever F is lower
semicontinuous and nonempty closed convex valued. (X, () is said to be of weak
selection property with respect to S if F' : S — 2% admits a singlevalued continu-
ous selection whenever F' is multivalued mapping with nonempty convex images
and preimages relatively open in X (i.e.,F'(z) is convex for each x € S and F~!
is open in S). X is said to be of fixed point property if every continuous selfmap
F on X has a fixed point in X.

Let N ={0,1,2,---,n}, Ax = e%!---e" be the standard simplex of dimen-
sion n, where {e%e!---e"} is the canonical basis of R*™, and for J C N, and
An = co{e’ : j € J} be a face of Ay. For each z € ¢! ---¢", there is a unique
set of numbers tg, - -+ ,t, with, Y " t; =1, t; > 0,4 € N suchthatz =Y  t;e".
The coefficients tg, - - - , 1, are called the barycentric coordinates of x. Let

x(v)={i:v= Ztiei,ti > 0}.
=0

Definition 1.2. Let {T; : i € I} be some simplicial subdivision of standard
simplex Ay = eVl ---e", v denote the collection of all vertices of all subsimplexes

in in the subdivision. A function A : v — {0,1,--- ,n} satisfying

A(v) € x(v),Yv € v,
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is called a normal labeling of this subdivision. Moreover, T; is called a completely
labeled subsimplex or completely labeled lattice if T; must have vertices with the
completes set of labels: 0,1,---n.

Theorem 1.3. Let {T; : i € I} be any simplicial subdivision of Ax and nor-
mally labeled by a function A\. Then there exist odd numbers of completely labeled
subsimplexes of lattices in the subdivision with respect to the labeling function \.

Last theorem is famous Sperner’s lemmal3].

Theorem 1.4. Let Y be a topological space. For each J C N, let T'; be a
nonempty contractible subset of Y. If ) # J C J C N implies Ty C L'y, then
there exists a continuous mapping f such that F(Ay;) C 'y for each nonempty
subset J C N.

This is Horvath’ lemmal0, [7].

2. MAIN RESULTS

According to Horvath’s lemma, we call that a finite dimensional B-space sat-
isfies H-condition if the B-convexity has the following property:

(H) For each finite subset {yo, 1, ,yn} C Y, there exists a continuous map-
ping f : Ax — [{yo,y1, -+ ,yn}] such that f(A;) C [y; : j € J] for each
nonempty subset J C N.

Now, we first prove the crucial result of this section as below.

Theorem 2.1. If a finite dimensional B-space Y with B-convexity is of weak
selection property with respect to any standard simplex, then a finite dimensional
B-space Y satisfies H-condition.

Proof. . Let A= {yo,y1, - ,yn} be any finite subset of Y, Ay = e%! .- ¢e" the
standard simplex of dimension n. For each J C N and each face A; of Ay,
denote the interior of A ; by

A ={ver;:x)=J}.

Define T : Ay — 2V as follows:

T(x) =[{y; :j € x(@)}], v € Ay.
It is routinely to check that T' is with nonempty convex images and preimages
relatively open in Ay. In fact, for each y € Y and each # € T~ !(y), there is
only one face Ay , J = x(z) such that x € AY . So z ¢ A, for any face A
not containing A; . For any A D A, there exists a neighborhood O(x) C Ay
of x such that O(z)( A, = 0 as every face A, is closed and the number of
faces Ay of is finite. Therefore, for any z € O(x), any face A ;» contains z only
if Ay C Ayp. Then for each z € O(x), z € A implies A,y D Ay, So
that x(z) D J = x(x). It follow that T'(z) D T'(z) for all z € O(x), and so
y €T (x) CT(2), ie., z€ T (y) for all z € O(x). . Hence T~ (y) is relatively
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open in Ay.

In addition, it is obvious that T is nonempty closed and convex. Since Y is
of selection property with respect to any standard simplex, there exists a single-
valued continuous mapping f : Ay — Y such that f(z) € T'(z) for all z € Ay.
The definition of 7" implies that f(A;) C [{y; : 7 € J}] for each nonempty subset
J C N, which complete the proof. O

Corollary 2.2. . If a finite dimensional B-space Y with B-convexity is of weak
selection property with respect to any compact Hausdorff space, then a finite di-
mensional B-space Y satisfies H-condition.

Proof. . It is immediate from Theorem 2.1. O

Let X be a subset of a finite dimensional B-space Y. A multivalued mapping
F: X — 2Y is called a KK M-mapping if [A] C (J,c4 F(z) for each finite subset
AcCX.

Theorem 2.3. Let X is subset of a finite dimensional Y B-space satisfying H-
condition and F 'Y — 2% is a KKM-mapping. If F is closed-valued, then
family {F(y) : y € Y} has the finite intersection property.

Proof. . Let {yo,y1, - ,yn} be arbitrary finite subset of X. Since Y satis-
fies H-condition, there exists a singlevalued continuous mapping f : Ay —
{vo, -+ ,yn}] such that f(A;) C [{y; : j € J}] for each nonempty subset j C N.

For each k € {1,2,---} and each g = 1/k > 0, let {T : i € I} be some
simplicial subdivision of Ay such that the mesh of the subdivision less than
1/2%. And let v* be the set of vertices of all subsimplexes in this subdivision.

For each v € V¥, let

N(v) = min{j € x(v) : f(v) € F(y;)}.
Then A\*(v) is nonempty, since v € conv{e’ : j € x(v)} and

fo) € fI{e G ex) CHy g exlc |J Fly)-

Jjex(v)

By the hypothesis, it is easy to see that A* is a normal label function of the
subdivision.

So for each k = 1,2, - -, there must exist a subsimplex 7;, with complete labels
by Sperner’s Lemma. Let 25, - -+, 2¥ be all vertices of subsimplex T;, , and

By the definition of A\, we have
f(Zg) S F(QO)vf(Zf> S F(yl)u e 7f<Z'rk7,) € F(yn)

Note that zj,---,z) are some vertices of subsimplex T;, ,so that d(zf,2}) <

1/2% .5 € {0,1,--- ,n}. Since Ay is compact, we may assume that there
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is y* € Ay such that 2 — y*, i = 0,1,--- ,n . Then f(2F) — f(y*). It fol-
lows from the closeness of each F(y;) that f(y*) € F(y;), i = 0,1,--- ,n, and
Mien F(yi) # 0. This completes the proof. O]

Theorem 2.4. . Let a finite dimensional B-space Y satisfying H-condition, X
is a convex compact subset of Y, and F : X — 2% a multivalued mapping with
nonempty convex images and preimages relatively open in X. Then F has a fived
point.

Proof. . Since X is compact and X = |J, .y F'~'(z), there exists a finite subset
{xo, 21, , 2} of X such that X = J_, F~(z;). Then (N [X \ F~*(z;)] = 0.
Let

G(z)=[X\F'(z)], VrelX.
With Theorem 2.3, we know that G is not a K K M-mapping, so that there exists
a finite subset {yo, 41, -, yn} such that

m

Hyo, v, o}l | Gwn).

i=0
Then there is some y* € [{yo,v1, - ,yn}] such that y* ¢ G(y;) for all i =
0,1,---m, that is

y' e F ' (y), Vi=0,1,---,m.

Consequently
y' € F*(y), Vi=0,1,---,m.
Therefore
y" € {vo, v, sy} CF(Y7).
Which complete the proof. O

Theorem 2.5. . Let X be a compact topological space, a finite dimensional B-
space Y satisfying H-condition, and F : X — 2V a multivalued mapping with
nonempty convexr images and preimages relatively open in X. Then F has a
continuous selection.

Proof. . Since X is compact and X = {J,.y F~'(y), there exists a finite sub-
set {yo,y1,*+ ,Ym} of X such that X = (J',F '(y;). Now let {p; : i =
0,1,--- ,n} be a partition of unity subordinate to the finite covering {F~*(y;) :
i=0,1,--- ,n}. Define a mapping ¢ : X — Ay by

¢(x) =Y pi(r)e’, VreX.
1=0

On the other hand, since Y satisfies H-condition, there exists a singlevalued
continuous mapping f : Ax — [{vo,¥1, -+ ,yn}] such that s(Ay) C [y; : j € J]
for each nonempty subset J C N.

Now our desired mapping g is given by

g=foo.
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In fact, it is easy to verify that ¢(x) € A () for each x € X, where J(z) = {i €
N : pi(x) # 0}. By the convexity of F(x) , we do have that {y, : J(z)} C F
and thus

9(x) = f(¢(x)) C f(As@) Cly; =5 € J] Clyspi(x) # 0] C ly; - y; € Fa)] € Flx).
This complete the proof. O
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