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£8S*— COMPACTNESS IN L-FUZZY TOPOLOGICAL SPACES

I. M. HANAFY

ABSTRACT. In this paper, the notion of 35*—compactness is introduced in
L—fuzzy topological spaces based on S*—compactness. A 35*—compactness
L-fuzzy set is S*—compactness and also f—compactness. Some of its prop-
erties are discussed. We give some characterizations of (35*—compactness in
terms of pre-open, regular open and semi-open L—fuzzy set. It is proved that
£S* —compactness is a good extension of f—compactness in general topology.
Also, we investigated the preservation theorems of 3S*—compactness under
some types of continuity.

1. INTRODUCTION

It is known that compactness and its stronger and weaker forms play very
important roles in topology. The concepts of compactness in [0, 1]—fuzzy set
theory was first introduced by C.L. Chang in terms of open covers [4]. Gdguen
pointed out a deficiency in Chang’s compactness theory by showing that the
Tychonoff Theorem is false [8]. Since Chang’s compactness has some limitations,
Gantner, Steinlage and Warren introduced a—compactness [6], Lowen introduced
fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [11, 12]
and Wang and Zhao introduced N —compactness [18,19]. Recently Shi introduced
S*—compactness [15] in L—fuzzy topological spaces.

The notion of f—compactness is one of the good strong forms of compactness
in topology. It was generalized and studied by many authors in fuzzy topological
spaces ( see [1,3,9] ).

In this paper, following the lines of Shi [15] we shall introduce a new notion
of f—compactness in L—fuzzy topological spaces named (3S*—compactness. A
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characterizations and properties of 35*—compactness is of interest. Also, we show
that the S—continuous ( M [—continuous ) image of a fS*—compact L—fuzzy
topological space is S*—compact ( S*—compact ). Moreover, we introduce a
good definition of local S*—compactness ( local 3S*—compactness ) in L—fts’s.

2. Preliminaries

Throughout this paper, (L,V,A,) is a completely distributive de Morgan
algebra, and X a nonempty set. L~ is the set of all L—fuzzy sets on X. An
element a in L is called a prime element if a > b A ¢ implies a > bor a > c. a
in L is called a co-prime element if @’ is a prime element [7]. The set of nonunite
prime elements in L is denoted by P(L). The set of nonzero co-prime elements
in L is denoted by M(L). The binary relation < in L is defined as follows: for
a,b € L, a < biff for every subsets D C L, the relation b < sup D always implies
the existence of d € D with a < d. In a completely distributive de Morgan
algebra L , each element b is a sup of {a € L : a < b}. In the sense of [10, 17],
{a € L : a < b} is the greatest minimal family of b, in symbol 3(b). Moreover
for b € L, define g*(b) = B(b) N M(L), a(b) = {a € L : a’ <V} and o*(b) =
a(b) N P(L). For a € L and G € L*, we denote G = {x € X : G(z) £ a} and
G(a) = {JJ eX:ae ﬁ(G(SL‘))} [15, 16].

An L—fuzzy topological space ( L—fts , for short ) is a pair (X,S) , where
3 is a subfamily of LX which contains —o, —; and is closed with respect to
suprema and finite infima. < is called an L—fuzzy topology on X. Each member

of & is called an open L—fuzzy set and its complement is called a closed L—fuzzy
set.

Definition 2.1 [10,17]. For a topological space (X, 7), let w(7) denote the
family of all lower semicontinuous functions from (X,7) to L, i.e., wr (1) = {G €

LX : GW € 7,a € L}. Then wy(7) is an L—topology on X, in this case,
(X, wr (7)) is called topologically generated by (X, 7).

Definition 2.2. An L— fuzzy set G in an L— fts (X, ) is said to be:

(i) a—open (resp. a—-closed) if G <int cl int G (resp.G > cl int cl G ),[5];
(i1) semiopen (resp. semiclosed) if G < cl int G (resp. G > int cl G ), [2] ;
(1ii) preopen (resp. preclosed) if G <intcl G (resp. G > clint G ), [5] ;
(iv) B —open (resp.B —closed) it G < cl int ¢l G (resp. G > int cl int G ),[5];
(v) regular open (resp. regular closed ) if G =int ¢l G (resp. G = cl int G
2l;

)l

(vi) regular semiopen (resp.regular semiclosed) if there exists a regular open subset

H of X such that H C G C ¢l H ( resp. if there exists a regular closed subset
H of X such that H O G Dint H ), [14].

It is obvious that each of semiopen and preopen L—fuzzy set implies 3 — open.
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Definition 2.3. A function f : X — Yis said to be fuzzy S—continuous [5]
(resp. M [—continuous [9]) if the inverse image of every open ( resp. 5 — open )
L—fuzzy set in Y is # — open ( resp. [ — open ) L—fuzzy set in X.

Definition 2.4 [15]. Let (X,S3) be an L—fts, a € M(L) and G € L*. A
subfamily & of L¥ is called a 3, — cover of G if for any x € X with a ¢ 8(G'(x)),
there exists an A € ¢ such that a € B(A(z)). A B, — cover £ of G is called an
open (resp. regular open, preopen, etc. ) [, — cover of G if each member of ¢ is
open ( resp. regular open, preopen, etc. ) .

It is obvious that £ is a (3, — cover of G iff for any z € X it follows that
a€ [(G'(x)v — AeVA(2)).

Definition 2.5 [15]. Let (X,S) be an L—fts, a € M(L) and G € L*. A
subfamily ¢ of L is called a Q, — cover of G if for any € X with G(z) £ d, it
follows that — A € {VA(x) > a. A Q, — cover £ of G is called an open ( resp.
regular open, preopen, etc. ) @, — cover of G if each member of ¢ is open ( resp.
regular open, preopen, etc. ) .

Definition 2.6 [15]. Let (X,S3) be an L—fts, a € M(L) and G € L*. G is
called S*—compact if for any a € M (L), each open 3, — cover of G has a finite
subfamily F' which is an open Q, — cover of G. (X, <) is said to be S*—compact
if —1 is S*—compact.

Definition 2.7 [14]. An L—fts (X, ) is said to be extremely disconnected if
cl G € S for every G € S.

Definition 2.8 [13]. Let X be a set. A prefilterbase in X is a family Q C L*
having the following two properties:

(1) for every G € Q, G # .
(17) for every G, H € Q) there is a W € Q such that W < G A H.

Moreover, € is said to be maximal iff for each G C L¥, one of the two L—fuzzy
sets GG, G' contains a member of (2.

3. Characterizations and properties of 35S*—compactness in L—fts’s

Definition 3.1. Let (X,S) be an L — fts and G € L*. Then G is called
BS*—compact if for any a € M(L), every 3 — open [3, — cover of G has a finite
subfamily F' which is f—open Q,—cover of G . (X, <) is said to be 35*—compact
if X is fS*—compact.

It is clear that every 5S*—compactness is f—compactness [1].
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Remark 3.2. Since every open L—fuzzy set is —open then every 3S*—compact-

ness is S*—compactness.

Example 3.3. Let L = [0,1], X be an infinite set , & = {0,G, X} be an

L—fuzzy topology , where G(z) = 0.5 for all x € X. Then any L—fuzzy set in

(Y

(X,SQ) is § — open and the set of all open L—fuzzy set in (X,S) is . In this
case, we can easily obtain that H(z) = 0.7 for all z € X is not 35*—compact
and any L—fuzzy set is S*—compact.

Theorem 3.4. Let (X,3) be an L — fts. If G and H are $S*—compact

L—fuzzy subsets of X, then sois GV H.

Proof. For any a € M (L), suppose that £ is an (3 — open [3, — cover of GV H.

Then by

(GVH)(x)V — A€ tVA(x) = (G'(x)V — A€ VA(x)) AN H (2)V —
A€ VA(z))
we obtain that for any x € X, a € (G (z)V — A€ éVA(z)) and a €

B(H'(x)v — A€ &VA(x)). This shows that £ is an 5 — open 3, — cover of

G

18

and H, we know that £ has finite subfamily F; and F; such that F} and F,
a 3 — open @), — cover of G and H respectively. Hence for any z € X, a <

G'(z)V — A€ FiVA(z)and a < H'(z)V — A € FyVA(z). Take W = F1UF;,

is
A
A
G

a finite subfamily of £ and it satisfies the following condition a < G'(z)V —
€ WVA(z) and a < H'(x)V — A € WVA(x), hence a < (GV H) (z)V —
€ WVA(x). This shows that W is a § — open ), — cover of G V H, therefore
V H is 85*—compact

Corollary 3.5. Let (X, <) be an L — fts. Every L—fuzzy subset G with finite

support is 45" —compact relative to X.

Proof. Obvious.
Theorem 3.6. An L — fts (X,<) is S*—compact if every § — closed fuzzy

subset is 45" —compact relative to X.

Proof. For any a € M (L), suppose that {v; : j € J} be an § — open 3, —

cover of X. Let jo € J, then v} is 3 — closed and so by the hypothesis v} is
BS*—compact. Now, £ = {v; : j € J—( jo}} is an B — open 3, — cover of X.
Since vj, is 35" —compact there exists a finite subfamily &y of § such that & is a

B

— open ), — cover of X. Hence X is a 3S*—compact.

Corollary 3.7. An L— fts X is fS*—compact if every semiclosed ( a—-closed,

preclosed, reqular semiclosed ) L—fuzzy subset of X is (3S*—compact relative
to X.

Proof. Clearly since each semiclosed ( a—closed, preclosed, regular semiclosed)

L—fuzzy subset of X is § — closed.
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Now, we characterize (35* —compactness in the sense of preopen, reqular open
and semiopen L—fuzzy subsets.

Theorem 3.8. An extremely disconnected L — fts X is 5S*—compact iff for
any a € M(L), every preopen [3, — cover of X has a finite subfamily F* which is
a preopen QQ, — cover of X.

Proof. For any a € M(L), Let {v; : j € J} be a preopen (3, — cover of X.
Then v; < int clv; for each j € J and so v; < cl v; < ¢l int clv;. Hence the
family {v, : j € J} is a 8 — open (3, — cover of X. Thus, by the hypothesis, there
exists a finite subset F' of J which is a preopen @, — cover of X.

Conversely, Let {v; : j € J} be a f—open 3, — cover of X. Then for each j € J
,v; < clint clv; = int cl int clv; = int clv; from the extremely disconnected of
X. Hence v; < int clv; for each j € J and so {v; : j € J} is a preopen 3, — cover
of X. So there exists a finite subset F' of J which is a 3 — open ), — cover of X.

Theorem 3.9. Each extremely disconnected L — fts X in which every g —
open L—fuzzy subset of X is semiclosed is S*—compact iff for any a € M (L),
every semiopen (3, — cover of X has a finite subfamily F' which is a semiopen
Q). — cover of X.

Proof. For any a € M(L), Let {v; : j € J} be a semiopen (3, — cover of X.
Since every semiopen is 3 — open, then {v; : j € J} is a § — open 3, — cover of
X. By the 8S*—compactness of X | there exists a finite subset F' of J which is
a semiopen ), — cover of X.

Conversely, Let {v; : j € J} be a 38— open 3, — cover of X. Since the closure of
each § — open is semiopen , the family {cl v; : j € J} is a semiopen [3, — cover
of X . By the hypothesis, there exists a finite subset F' of J which is a semiopen
Qo — cover of X. But for each j € J, we have v; < ¢l int clv; which implies
that cl v; < clint clv; = int cl int clv; = int clv; for each j € J and hence
(int clv; = j € F} is a semiopen @, — cover of X. By the hypothesis each
B — open L—fuzzy subset of X is semiclosed, then v; > int clv; for each j € F.
Hence (v, : j € F'} is a f — open Q, — cover of X.

Theorem 3.10. Each extremely disconnected L — fts X in which every
8 — open L—fuzzy subset of X is semiclosed is 3S*—compact iff for any a €
M(L), every regular open 3, — cover of X has a finite subfamily F' which is a
regular open @), — cover of X.

Proof. Follows from the above theorem, since each regular open L—fuzzy
subset of X is semiopen.

Definition 3.11. Let (X,S) be an L — fts. A prefilterbase Qon X is said to
be f—converges ( S—converges ) to a € M (L) if for every 5 — open ( semiopen
) L—fuzzy set G containing a there exists H € Q) such that H < ¢l G.
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Definition 3.12. Let (X, ) be an L— fts. A prefilterbase Qon X is said to be
f—accumulates ( S—accumulates ) at a € M (L) if for every [ — open ( semiopen
) L—fuzzy set G containing a and for every H € Q |, we have H A cl G # ¢.

Proposition 3.13. Let 2 be a maximal prefilterbase in an L — fts (X, <),
then the following statements are equivalent:

(1) Qis f—accumulates ( S—accumulates ) at a € M(L).
(17) Q is B—converges ( S—converges ) to a € M(L).

Proof. (i) — (i7) : To prove that € is f—converges ( S—converges ) to a €
M(L), Let G be a f—open ( semiopen ) L— fuzzy set in X such that a € G. Since
Q2 is f—accumulates ( S—accumulates ) at a, then for every H € Q, HAcl G # .
Thus there exists a proper L— fuzzy subset C' < H such that C' < ¢l G. Since
C # ¢, then C' is a member of some prefilterbase in X. But € is maximal,
then C' is a member of 2. Thus for every § — open ( semiopen ) L— fuzzy set G
containing a there exists H = C' € {2 such that H < ¢l G. Then (2 is f—converges
( S—converges ) to a.

(11) — (i) : Let G be a 8 — open ( semiopen ) L— fuzzy set in X such that
a € G. Since () is f—converges ( S—converges ) to a, then there exists H € ()
such that H < ¢l G and thus H A ¢l G is a member of some prefilterbase in X.
But €2 is maximal, then H A cl G € Q, So for every H; € Q, H; A (H A cl G)
contains a member of ), then H; A cl G # ¢ for every H; € ). Hence € is
f—accumulates (S—accumulates ) at a.

The following result shows that the notion of f—converges ( resp. f—accumulates)
and s—converges ( resp. s—accumulates ) are equivalent for any prefilterbase.

Proposition 3.14. Let (X,3) be an L — fts. A prefilterbase Qon X is
B—converges ( resp. f—accumulates ) to a € M(L) iff 2 is s—converges ( resp.
s—accumulates ) to a € M(L).

Proof. Since any semiopen L—fuzzy set containing a is 3 — open L—fuzzy set
containing a, The necessity is obvious. The sufficiency follows from the fact that
the closure of any 3 — open L—fuzzy set containing a is a semiopen L—fuzzy set
containing a.

Now, we give a characterization of 3S*—compact in the sense of convergent
prefilterbasis and by means of finite intersection property.

Theorem 3.15. The following statements are equivalent for any L— fts (X, J):
(i) X is pS*—compact.

(#7) Each maximal prefilterbase is f—converges.

(171) Each prefilterbase is f—accumulates at an L—fuzzy point a € M(L).
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Proof. (i) — (ii) : Let Q = {G, : j € J} be a maximal prefilterbase on X.
Suppose that €2 does not f—converges, then {2 does not f—accumulate. Then
for all @ € M(L), there exists a 3 — open L—fuzzy set G, of X with a € G,
and H;, € § such that H;, Acl G, = ¢. Then the family {G, : a € X} of
B —open L—fuzzy subsets is 3 — open (3, — cover of X. Since X is 45" —compact,
there exists a finite subfamily {G,,, ..., Gan} which is § — open Q, — cover of X.

So {cl Goyy.oovcl Gop} is B — open @, — cover of X. Since ) is a prefilterbase
there exists Hy € €2 such that Hy <— j = 1A H;, and Hy A cl G,5 = ¢. So,

HoN — j=1N cl Goj = ¢. Hence Hy = ¢, which contradicts that € is a
prefilterbase.

(1) — (4i7) : Since each maximal prefilterbase 2 on X [—converges, Q) is
[B—accum- ulates. Since each prefilterbase is contained in a maximal prefilterbase
which is f—accumulates, each prefilterbase f—accumulates.

(131) — (i) : obvious.

Now in the following, we shall prove that 35*—compactness is a good extension
of f—compactness in general topology.

Lemma 3.16: Let (X, w(7)) be generated topology by (X, 7), Then

(1) x¢ is a B —open L—fuzzy set in (X, w (7)) if G is a § —openset in (X, 7).

(41) G\ is a 3 — openset in (X, 7) for all @ € L if G is a 3 — open L—fuzzy set
in (X, wg(1)).

Proof. (i) Since G is a f—open,then G < cl int ¢l G. Hence xg < Xel int et ¢ =
cl int ¢l x¢ which implies that x¢g is a f — open L—fuzzy set in (X, wr(7)).

(77) Obvious.

Theorem 3.17. Let (X, 7) be a topological space. Then (X, 7) is f—compact
iff (X, wg(7)) is a fS*—compact.

Proof. Let (X,7) be a f—compact . For all a € M(L) , let £ be a 5 —
open 3, — cover of X in (X, wz(7)). By Lemma 3.16 {G“ : G € v} is a 3 — open
of (X, 7). By f—compactness of (X, 7), there exists a finite subfamily F' of £ such
that {G@ : G € F} is a cover of (X, 7). Hence F is a 8 — open Q, — cover of X.
Therefore (X, w (7)) is a S*—compact.

Conversely, let (X, w (7)) be a S*—compact and u be a 5 — open — cover of
(X, 7). Then for each a € 5*(1), {x¢ : G € u} is a B — open B, — cover of X
in (X,w(7)). By fS*—compactness of (X, wr (7)), we know that there exists a
finite subfamily F' of u such that {x¢ : G € F'}isa Q,—cover of X in (X, wr(7)).
Hence F'is a f — open — cover of (X, 7). Therefore (X, 1) is f—compact.

4. Functions and S*—Compactness in L—fts’s
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Throughout, X and Y will be denote L — fts's.

Theorem 4.1. Let f: X — Y be fuzzy f—continuous surjection. If X is a
(S5*—compact L — fts then Y is S*—compact L — fts.

Proof. For all b € M(L), let {v; : j € J} be a family of open L—fuzzy subsets
of Y which is open (3, — cover of Y. Then {f~*(v;) : j € J} is a family of 3 — open
L—fuzzy subsets of X which is § — open B, — cover of X, for all a € M(L)
where f(a) = b. From the 5S*—compactness of X there exists a finite subset
F of J which is 8 — open Q, — cover of X. Hence f(— j € FVf'(v;)) =—
jeEFVf(— je€ FVf(v;) =— j € FVu; and so is open Q, — cover of X
which means that Y is S*—compact .

Theorem 4.2. Let f: X — Y be fuzzy M [—continuous surjection. If X is a
BS*—compact L — fts then Y is a 35" —compact L — fts.

Proof. Similar to the above theorem.

Lemma 4.3. If f: X — Y is fuzzy open and fuzzy continuous function , then
f is fuzzy M —continuous.

Proof. Let H be a 8 — open L—fuzzy set in Y, then H < clintcl H. So
fUH) < f~Yclintcl H) < cl (f~'(intcl H)). Since f is fuzzy continuous, then
fYintcd H) = int (f~'(cl H)). Also , f~Y(intcl H) = int(f'(intcl H)) <
int (fY(cl H)) <intcl (f71(H)). Thus f~Y(H) < cl(f(intcl H)) < cl intcl(f~*(H)).
Hence the result.

Corollary 4.4. Let f: X — Y be fuzzy open and fuzzy continuous function
and X is fuzzy 5S*—compact , then f(X) is fuzzy 3S*—compact .

Proof. It is follows directly from Lemma 4.3 and Theorem 4.2.

Definition 4.5. A function f : X — Y is said to be fuzzy M3 — open iff the
image of every 5 — open L—fuzzy set in X is § — open L—fuzzy set in Y.

Theorem 4.6. Let f: X — Y be a fuzzy M — open bijective function and
Y is BS*—compact, then X is 35*—compact.

Proof. For all a € M(L), let {v; : j € J} be a family of 8 — open L—fuzzy
subsets of X which is 5 — open 3, — cover of X.Then {f(v;):j € J} is a family
of 0 — open L—fuzzy subsets of Y which is 5 — open (3, — cover of Y, for all
be M(L) where f(a) =b. From the §S*—compactness of Y there exists a finite
subset I of J which is 3 — open Qp, — cover of Y. But X = f~1(Y) = f~1f(—
J € FVuvj) =— j € FVu; which is f — open @, — cover of X and therefore X
is 35" —compact.
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5- Local S*—compactness ( Local fS*—compactness ) in L—fts’s

In this section, we introduce a good definition of local S*—compactness ( lo-
cal 3S*—compactness ) in L—fts’s. We show that local 3S*—compactness is
preserved under M (G—continuous open functions.

Definition 5.1. Let (X, <) be an L—fts. An L—fuzzy set G is said to be very
S*—compact (very (3S*—compact) if for some b € L it is of the form

H(z) =QDATOPD{.b, if e D C XO0, otherwise

where D = supp G, and for all a € M(L) and every collection {v; : j € J}
of open (3, — cover ( 3 — open 3, — cover ) of X for all x € D | there is a finite
subfamily F' of J which is open Q, — cover (3 — open Q, — cover) of X for all
reD.

It is simply required that xp be S*—compact and also 35*—compact.

By using the above Definition 5.1 , we have the following diagram:

very BS*—compactness =— (5" —compactness

4 4

very S*—compactness =—> S*—compactness.

Definition 5.2. Let (X,3) be an L—fts. We say that (X,S) is locally
S*—compact ( locally 3S*—compact ) if for all z € X and for all @ € M (L) there
exists a very S*—compact (very £S*—compact ) L—fuzzy set H and G € & such
that H > G and H(z) £ a.

Remark 5.3. From the above Definition 5.2, it is clear that every locally
(S*—compact is locally S*—compact.

Theorem 5.4. Let (X,7) be a topological space. Then (X,7) is locally
compact ( locally f—compact ) if the L—fts (X, w(7)) is locally S*—compact (
locally BS*—compact ).

Proof. Let z € X anda € M(L). By the locally compact ( locally f—compact)
of (X, 7) there exist U € 7 and compact ( f—compact ) set C' relative to (X, 7)
such that x € U C C. Then xy € w(7), xu(z) = 1 £ a and xy < xc.
We have by the goodness of S*—compactness ( 3S*—compactness ) that x¢ is
S*—compact (3S*—compact ) in the L—fts (X, w(7)). Hence (X,w(7)) is is lo-
cally S*—compact (locally 3S*—compact ).
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Conversely, Let o € X and a € M(L). By the locally S*—compact ( locally
BS*—compact ) of (X,w(r)) there exists G € w(7) and a very S*—compact (
very (3S*—compact ) L—fuzzy set H, where

H(z) =QDATOPD{.b, if e D C XO0, otherwise

such that G < H and H(zg) £ a. Since G € w(r) there is a basic open
L—fuzzy set \, where

AMz) = QDATOPD{.d, if veVero, otherwise
such that A < G < H and A(zg) € a. Then V C D and so 29 € V € 7. We
also have D is compact ( f—compact ) in (X, 7). Hence (X, 7) is locally compact
( locally S—compact ).

Theorem 5.5. Let f : X — Y be fuzzy S—continuous ( fuzzy M —continuous
) open surjection. If X is locally 5S*—compact then Y is locally S*—compact (
locally £S*—compact ).

Proof. Let y € Y and a € M(L). Then for each x € f~*({y}), there exists
a very [BS*—compact L—fuzzy set H in X and G € Sx such that H > G
and G(x) & a. By Theorems 4.1, 4.2 , we have f(H) is a very S*—compact
(8S*—compact) L—fuzzy subset of YV satisfy that f(H) > f(G), (f(G))(y) £ a
where f(G) € Sy. Hence Y is locally S*—compact ( locally 4S*—compact ).
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