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Abstract. We prove a related fixed point theorem for two mappings in two
fuzzy metric spaces using an implicit relation which gives fuzzy versions of
theorems of [1], [2] and [10].

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [11] in 1965. George
and Veeramani [3] modified the concept of fuzzy metric space introduced by
[5]. Fisher [2], Aliouche and Fisher [1], Telci [10] proved some related fixed
point theorems in compact metric spaces. Recently, Rao et.al [7] and [8] proved
some related fixed point theorems in sequentially compact fuzzy metric spaces.
Motivated by a work due to Popa [6], we have observed that proving fixed point
theorems using an implicit relation is a good idea since it covers several contractive
conditions rather than one contractive condition.

It is our purpose in this paper to prove fuzzy versions of theorems of [1], [2]
and [10].

Definition 1.1 ([9]). A binary operation ∗ : [0, 1]×[0, 1] −→ [0, 1] is a continuous
t−norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
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(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t−norm are a ∗ b = ab and a ∗ b =
min{a, b}.

Definition 1.2 ([3]). The 3-tuple (X, M, ∗) is called a fuzzy metric space if X is
an arbitrary non-empty set, ∗ is a continuous t−norm, and M is a fuzzy set on
X2 × [0,∞), satisfying the following conditions for each x, y, z ∈ X and t, s > 0,

(FM-1) M(x, y, t) > 0,
(FM-2) M(x, y, t) = 1 if and only if x = y,
(FM-3) M(x, y, t) = M(y, x, t),
(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(FM-5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X, M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with
center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1

such that B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then
τ is called the topology on X induced by the fuzzy metric M . This topology is
Hausdorff and first countable.

Example 1.3. Let X = R. Denote a ∗ b = a.b for all a, b ∈ [0, 1]. For each
t ∈ (0,∞), define

M(x, y, t) =
t

t + |x− y|
for all x, y ∈ X.

Definition 1.4 ([3]). Let (X, M, ∗) be a fuzzy metric space.

(1) A sequence {xn} in X converges to x if and only if for any 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that for all n ≥ n0, M(xn, x, t) > 1 − ε ;
i.e., M(xn, x, t) → 1 as n →∞ for all t > 0.

(2) A sequence {xn} in X is called a Cauchy sequence if and only if for any
0 < ε < 1 and t > 0, there exists n0 ∈ N such that for all n, m ≥ n0,
M(xn, xm, t) > 1− ε; i.e., M(xn, xm, t) → 1 as n,m →∞ for all t > 0.

(3) A fuzzy metric space (X, M, t) in which every Cauchy sequence is conver-
gent is said to be complete.

Lemma 1.5 ([4]). For all x, y ∈ X, M(x, y, .) is a non-decreasing function.

Definition 1.6. Let (X, M, ∗) be a fuzzy metric space. M is said to be continuous
on X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

whenever {(xn, yn, tn)} is a sequence in X2 × (0,∞) which converges to a point
(x, y, t) ∈ X2 × (0,∞); i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 1.7 ([4]). M is a continuous function on X2 × (0,∞).
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Definition 1.8. (X, M, ∗) is said to be sequentially compact fuzzy metric space
if every sequence in X has a convergent subsequence in it.

Let Φ be the set of all functions φ : [0, 1]6 −→ [0, 1] such that if either
(φa) : φ(u, 1, u, v, v, 1) > 0 or
(φb) : φ(u, u, 1, v, 1, v) > 0 for all u, v ∈ (0, 1),
then u > v.

Example 1.9. φ(t1, t2, t3, t4, t5, t6) = t1 − ϕ(t2, t3, t4, t5, t6), where ϕ : [0, 1]5 →
[0, 1] which verifies for all u, v ∈ (0, 1),

(ϕa) : u > ϕ(1, u, v, v, 1) or
(ϕb) : u > ϕ(u, 1, v, 1, v)
implies u > v. Then φ ∈ Φ.

Example 1.10. Let φ(t1, t2, t3, t4, t5, t6) = t1−min{t2, t3, t4, t5, t6}. Then φ ∈ Φ.

Example 1.11. φ(t1, t2, t3, t4, t5, t6) = t1 − ϕ(min{t2, t3, t4, t5, t6}), where ϕ :
[0, 1] → [0, 1] which satisfies ϕ(t) ≥ t for all t ∈ [0, 1]. Then φ ∈ Φ.

2. Main results

Theorem 2.1. Let (X, M1, θ1) and (Y,M2, θ2) be two fuzzy metric spaces and
T : X −→ Y , S : Y −→ X be two mappings satisfying

φ1

(
M1(Sy, STx, t), M1(x, Sy, t), M1(x, STx, t),
M2(y, Tx, t), M2(y, TSy, t), M2(Tx, TSy, t)

)
> 0 (2.1)

φ2

(
M2(Tx, TSy, t), M2(y, Tx, t), M2(y, TSy, t),
M1(x, Sy, t), M1(x, STx, t), M1(Sy, STx, t)

)
> 0 (2.2)

for all x ∈ X, y ∈ Y with x 6= Sy, y 6= Tx and for all t > 0, where
φ1, φ2 ∈ Φ. Suppose that one of the following is true:
(a) (X,M1, θ1) is sequentially compact and ST is continuous on X.
(b) (Y, M2, θ2) is sequentially compact and TS is continuous on Y .
Then, ST has a unique fixed point u ∈ X and TS has a unique fixed point v ∈ Y .
Further, Tu = v and Sv = u.

Proof. Assume that (X, M1, θ1) is sequentially compact and ST is continuous on
X. Define φ : X → R by φ(x) = M1(x, STx, t) for all x ∈ X and for every
t > 0. Since φ a continuous real-valued function on the compact X, it attains its
maximum; i.e., there exists u ∈ X such that

φ(u) = M1(u, STu, t) = max{φ(x) : x ∈ X}.
Suppose that Tu 6= TSTu. Then, u 6= STu.

Putting y = Tu and x = STu in (2.1) we have

φ1

(
M1(STu, STSTu, t), M1(STu, STu, t), M1(STu, STSTu, t),

M2(Tu, TSTu, t), M2(Tu, TSTu, t), M2(TSTu, TSTu, t)

)
= φ1

(
M1(STu, STSTu, t), 1, M1(STu, STSTu, t),

M2(Tu, TSTu, t), M2(Tu, TSTu, t), 1

)
> 0
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and so by (φa)

M1(STu, STSTu, t) > M2(Tu, TSTu, t). (2.3)

Putting x = u and y = Tu in (2.2) we get

φ2

(
M2(Tu, TSTu, t), M2(Tu, Tu, t), M2(Tu, TSTu, t),

M1(u, STu, t), M1(u, STu, t), M1(STu, STu, t)

)
= φ2

(
M2(Tu, TSTu, t), 1, M2(Tu, TSTu, t),

M1(u, STu, t), M1(u, STu, t), 1

)
> 0.

Therefore by (φa)

M2(Tu, TSTu, t) > M1(u, STu, t). (2.4)

From (2.3) and (2.4) we obtain

φ(STu) = M1(STu, STSTu, t)

> M2(Tu, TSTu, t)

> M1(u, STu, t) = φ(u)

which is a contradiction and so TSTu = Tu.
Let Tu = v and Sv = u. Then STu = Sv = u and TSv = Tu = v.

For the uniqueness of u, suppose that STu′ = u′ with u 6= u′. Then, STu 6=
STu′ and Tu 6= Tu′.

Putting x = u and y = Tu′ in (2.1) we have

φ1

(
M1(STu′, STu, t), M1(u, STu′, t), M1(u, STu, t),

M2(Tu′, Tu, t), M2(Tu′, TSTu′, t), M2(Tu, TSTu′, t)

)
= φ1

(
M1(u, u′, t), M1(u, u′, t), 1,

M2(Tu, Tu′, t), 1, M2(Tu, Tu′, t)

)
> 0

and so by (φb)

M1(u, u′, t) > M2(Tu, Tu′, t). (2.5)

Putting x = u, y = Tu′ in (2.2) we get

φ2

(
M2(Tu, TSTu′, t), M2(Tu′, Tu, t), M2(Tu′, TSTu′, t),

M1(u, STu′, t), M1(u, STu, t), M1(STu′, STu, t)

)
= φ2

(
M2(Tu, Tu′, t), M2(Tu, Tu′, t), 1,

M1(u, u′, t), 1, M1(u, u′, t)

)
> 0.

Therefore by (φb)

M2(Tu, Tu′, t) > M1(u, u′, t). (2.6)

Using (2.5) and (2.6) we obtain

M1(u, u′, t) > M1(u, u′, t)

which is a contradiction. Hence, u is the unique fixed point of ST . Similarly,
we can prove the uniqueness of the fixed points of TS. In a similar manner, the
theorem holds if (b) is true. �

The following example illustrates our Theorem 2.1.
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Example 2.2. Let (M1, X, θ1), (M2, Y, θ2) be two fuzzy metric spaces such that

M1 (x, y, t) = M2 (x, y, t) =
t

t + |x− y|
and X = [3, 5], Y = (0, 3). Define T :

X → Y and S : Y → X by

Tx =

{
1 if x ∈ [3, 4[
2 if x ∈ [4, 5]

, Sy =

{
3 if y ∈ (0, 1[
4 if y ∈ [1, 3)

.

Let φ1 = φ2 = φ and φ (t1, t2, t3, t4, t5, t6) = t1 −min {t2, t3, t4, t5, t6}. We have

STx = 4 for all x ∈ [3, 5] and TSy =

{
1 if y ∈ (0, 1[
2 if y ∈ [1, 3)

.

It is easy to see that (X,M1, θ1) is sequentially compact, ST is continuous on X
and (Y, M2, θ2) is not a sequentially compact since Y is not a compact subset of
R.

The inequalities (2.1) and (2.2) are satisfied, ST (4) = 4, TS(2) = 2, T (4) = 2
and S(2) = 4.

Taking example 1.9, we get the following corollary which is a fuzzy version of
a theorem of [10].

Corollary 2.3. Let (X, M1, θ1) and (Y,M2, θ2) be two fuzzy metric spaces and
T : X −→ Y , S : Y −→ X be two mappings satisfying

M1(Sy, STx, t) > ϕ1(M1(x, Sy, t), M1(x, STx, t),

M2(y, Tx, t), M2(y, TSy, t), M2(Tx, TSy, t))

M2(Tx, TSy, t) > ϕ2(M2(y, Tx, t), M2(y, TSy, t)

M1(x, Sy, t), M1(x, STx, t), M1(Sy, STx, t))

for all x ∈ X, y ∈ Y with y 6= Tx, x 6= Sy and for all t > 0, where ϕ1 and ϕ2

satisfies (ϕa) and (ϕb). Suppose that one of the following is true:
(a) (X,M1, θ1) is sequentially compact and ST is continuous on X.
(b) (Y, M2, θ2) is sequentially compact and TS is continuous on Y .
Then, ST has a unique fixed point u ∈ X and TS has a unique fixed point v ∈ Y .
Further, Tu = v and Sv = u.

Taking example 1.10, we get the following corollary which is a fuzzy version of
a theorem of [2].

Example 2.4. Let (X, M1, θ1) and (Y, M2, θ2) be two fuzzy metric spaces and
T : X −→ Y , S : Y −→ X be two mappings satisfying

M1(Sy, STx, t) > min{M1(x, Sy, t), M1(x, STx, t),

M2(y, Tx, t), M2(y, TSy, t), M2(Tx, TSy, t)}

M2(Tx, TSy, t) > min{(M2(y, Tx, t), M2(y, TSy, t)

M1(x, Sy, t), M1(x, STx, t), M1(Sy, STx, t)}
for all x ∈ X, y ∈ Y with x 6= Sy, y 6= Tx and for all t > 0.



24 A. ALIOUCHE, F. MERGHADI AND A. DJOUDI

Suppose that one of the following is true:
(a) (X, M1, θ1) is sequentially compact and ST is continuous on X.
(b) (Y,M2, θ2) is sequentially compact and TS is continuous on Y .
Then, ST has a unique fixed point u ∈ X and TS has a unique fixed point v ∈ Y .
Further, Tu = v and Sv = u.
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