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LOCAL CONVERGENCE ANALYSIS OF INEXACT
NEWTON–LIKE METHODS

IOANNIS K. ARGYROS1∗ AND SAÏD HILOUT2

Abstract. We provide a local convergence analysis of inexact Newton–like
methods in a Banach space setting under flexible majorant conditions. By
introducing center–Lipschitz–type condition, we provide (under the same com-
putational cost) a convergence analysis with the following advantages over ear-
lier work [9]: finer error bounds on the distances involved, and a larger radius
of convergence.

Special cases and applications are also provided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x? of equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. For the sake of simplic-
ity, assume that a time–invariant system is driven by the equation ẋ = Q(x), for
some suitable operator Q, where x is the state. Then the equilibrium states are
determined by solving equation (1.1). Similar equations are used in the case of
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discrete systems. The unknowns of engineering equations can be functions (differ-
ence, differential, and integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
single unknowns). Except in special cases, the most commonly used solution
methods are iterative–when starting from one or several initial approximations a
sequence is constructed that converges to a solution of the equation. Iteration
methods are also applied for solving optimization problems. In such cases, the
iteration sequences converge to an optimal solution of the problem at hand. Since
all of these methods have the same recursive structure, they can be introduced
and discussed in a general framework.

We use the inexact Newton–like method (INLM):

xn+1 = xn + sn, B(xn) sn = −F (xn) + rn (n ≥ 0), (x0 ∈ D) (1.2)

to generate a sequence {xn} (n ≥ 0) approximating x?. Here, B(x) ∈ L(X ,Y)
the space of bounded linear operators from X into Y , are approximations of the
Fréchet–derivative F ′(x); the residuals rn satisfy

‖ Pn rn ‖≤ θn ‖ Pn F (xn) ‖ (n ≥ 0), (1.3)

for a suitable forcing sequence {θn}, and some invertible sequence {Pn} of pre-
conditioners for the linear equation in (1.2).

If Pn = I, and Bn = F ′(xn) (n ≥ 0), we obtain the inexact Newton method
(INM). A survey of convergence results under various Lipschitz–type conditions
for (INM) and (INLM) can be found in [4], [5] (see also [1]–[3], [7]–[15]).

In this study, we are motivated by the elegant work in [9], and optimization
considerations. We introduce center–Lipschitz–type conditions (see (2.2)), and
use it to find upper bounds on the distances ‖ F ′(x)−1 F ′(x?) ‖ (x ∈ D). This
approach leads (under the same computational cost) to a local convergence anal-
ysis, with the following advantages: finer estimates for the distances ‖ xn − x? ‖
(n ≥ 0), and a larger convergence radius.

Special cases and applications are also provided in this study.

2. Local convergence analysis of (INLM)

We provide the main local convergence theorem for (INLM):

Theorem 2.1. Let F : D ⊆ X −→ Y be a continuously differentiable operator.
Let x? ∈ D, R > 0, and set

κ = sup {t ∈ [0, R) : U(x?, t) = {x ∈ X : ‖ x− x? ‖< t} ⊆ D}. (2.1)

Assume:

F (x?) = 0, F ′(x?)−1 ∈ L(Y ,X );
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there exist functions f0, f : [0, R) −→ (−∞, +∞) continuously differentiable,
such that:

‖ F ′(x?)−1 [F ′(x)− F ′(x?)] ‖≤ f ′0(‖ x− x? ‖)− f ′0(0), (2.2)

‖ F ′(x?)−1 [F ′(x)−F ′(x?+τ (x−x?))] ‖≤ f ′(‖ x−x? ‖)−f ′(τ ‖ x−x? ‖), (2.3)

for all x ∈ U(x?, κ), and τ ∈ [0, 1];

f(0) = f0(0), and f ′(0) = f ′0(0) = −1; (2.4)

f ′0, f ′ are convex and strictly increasing; (2.5)

Choose: θ ∈ [0, 1), w1, w2, with w2 ∈ [0, w1), such that:

w1 θ + w2 < 1. (2.6)

Set:
v = sup {t ∈ [0, R) : f ′(t) < 0}, (2.7)

ρ0 = sup {t ∈ [0, v) : w1 (1 + θ)

(
f(t)

t f ′0(t)
− f ′(t)

f ′0(t)

)
+ w1 θ + w2 < 1}, (2.8)

and
σ0 = min {κ, ρ0}; (2.9)

B(xn) are invertible approximations of F ′(xn) (n ≥ 0), and

‖ B(xn)−1 F ′(xn) ‖≤ w1, (2.10)

‖ B(xn)−1 F ′(xn)− I ‖≤ w2; (2.11)

the residuals rn (n ≥ 0) satisfy

‖ Pn rn ‖≤ θn ‖ Pn F (xn) ‖, (2.12)

for some invertible matrix sequence {Pn} (n ≥ 0) preconditioners for the linear
system in (INLM), and a forcing sequence {θn} (n ≥ 0) of non–negative numbers
satisfying

θn cond (Pn F ′(xn)) ≤ θ (n ≥ 0). (2.13)

Then, sequence {xn} generated by (INLM) is well defined, remains in U(x?, σ0),
for all n ≥ 0, and converges to x?.

Moreover, the following estimates hold for all n ≥ 0:

‖ xn+1 − x? ‖≤ α0 ‖ xn − x? ‖, (2.14)

where,

0 ≤ α0 = w1 (1+θ)

(
f(‖ x0 − x? ‖)

‖ x0 − x? ‖ f ′0(‖ x0 − x? ‖)
−f ′(‖ x0 − x? ‖)

f ′0(‖ x0 − x? ‖)

)
+w1 θ+w2 < 1.

(2.15)
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Proof. By the definition of v, x ∈ U(x?, σ0), hypotheses (2.5), we deduce:

f ′0(‖ x− x? ‖) < 0.

Using (2.2), we obtain in turn:

‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ f ′0(‖ x− x? ‖)− f ′0(0) < −f ′0(0) = 1 (by (2.4))
(2.16)

It follows from (2.16), and the Banach lemma on invertible operators [4], [5], [12]
that F ′(x)−1 ∈ L(Y ,X ), and

‖ F ′(x)−1 F ′(x?) ‖ ≤
(

1− ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖
)−1

≤
(

1− (f ′0(‖ x− x? ‖)− f ′0(0))

)−1

=
1

|f ′0(‖ x− x? ‖)|
,

(2.17)
since σ0 ≤ v.

It follows that

x+ = x + s, B(x) s = −F (x) + r (2.18)

is well defined.

In view of (INLM), and (2.18), we obtain the identity:

x+ − x? = B(x)−1 (F (x?)− (F (x) + F ′(x) (x? − x)))+
(B(x)−1 F ′(x)− I) (x? − x) + B(x)−1 r.

(2.19)

We shall find upper bounds on the composers of (2.19). Using (2.2)–(2.4), and
(2.17), we have in turn:

‖ −F ′(x)−1 (F (x?)− (F (x) + F ′(x) (x? − x))) + (x? − x) ‖

≤‖ F ′(x)−1 F ′(x?) ‖ ‖ F ′(x?)−1 (F (x?)− F (x)− F ′(x) (x? − x)) ‖ + ‖ x? − x ‖

≤‖ F ′(x)−1 F ′(x?) ‖
∫ 1

0

‖ F ′(x?)−1 (F ′(x + τ (x? − x))− F ′(x)) ‖ d τ ‖ x? − x ‖ +

‖ x? − x ‖

≤

∫ 1

0

(f ′(‖ x− x? ‖)− f ′(τ ‖ x− x? ‖)) d τ ‖ x− x? ‖

|f ′0(‖ x− x? ‖)|
+ ‖ x? − x ‖

≤ f(0)− f(‖ x− x? ‖) + f ′(‖ x− x? ‖) ‖ x− x? ‖
−f ′0(‖ x− x? ‖)

+ ‖ x− x? ‖

= g(‖ x− x? ‖)+ ‖ x− x? ‖,
(2.20)
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where,

g(t) =
−f(t) + f ′(t) t

−f ′0(t)
. (2.21)

We also have:

‖ F ′(x)−1 P−1 ‖ ‖ P F (x) ‖≤‖ (P ′ F (x))−1 ‖ ‖ P F ′(x) ‖ (g(‖ x−x? ‖)+ ‖ x−x? ‖).
(2.22)

Using (2.10), (2.11), (2.15) (2.19), and (2.20), we have in turn:

‖ x+ − x? ‖ ≤ ‖ B(x)−1 F ′(x) ‖ ‖ F ′(x)−1 F ′(x?) ‖ ×
‖ F ′(x?)−1 (F (x?)− (F (x) + F ′(x) (x? − x))) ‖ +
‖ B(x)−1 F ′(x)− I ‖ ‖ x− x? ‖ +
‖ B(x)−1 F ′(x) ‖ ‖ F ′(x)−1 P−1 ‖ ‖ P r ‖

≤ w1 g(‖ x− x? ‖) + w2 ‖ x− x? ‖ +
w1 θ ‖ F ′(x)−1 P−1 ‖ ‖ P F (x) ‖

≤ w1 g(‖ x− x? ‖) + w2 ‖ x− x? ‖ +
w1 θ (g(‖ x− x? ‖)+ ‖ x− x? ‖).

(2.23)

By letting x+ = xn+1, x = xn in (2.24), we get:

‖ xn+1 − x? ‖ ≤ w1 g(‖ xn − x? ‖) + w2 ‖ xn − x? ‖ +
w1 θ (g(‖ xn − x? ‖)+ ‖ xn − x? ‖)

≤ α0 ‖ xn − x? ‖<‖ xn − x? ‖,
(2.24)

which imply xn+1 ∈ U(x?, σ0), and lim
n−→∞

xn = x?.

That completes the proof of Theorem 2.1. �

Remark 2.2. If f(t) = f0(t) on [0, R), then, Theorem 2.1 reduces to Theorem 4
in [9]. Note that in view of (2.3), there exists function f0 satisfying (2.2), (2.4),
and (2.5).

Therefore, we have not introduced an additional hypothesis. In practice, the
computation of function f requires that of f0.

Moreover,
f ′0(t) ≤ f ′(t) t ∈ [0, R), (2.25)

holds in general, and
f ′(t)

f ′0(t)
can be arbitrarily large [3]–[6].

Denote by ρ, σ, α the constants (used in [9]) corresponding to ρ0, σ0, α0 re-
spectively by simply replacing f0 by f in definitions (2.8), (2.9), and (2.15).

In view of (2.25), we have:
ρ ≤ ρ0, (2.26)

σ ≤ σ0, (2.27)

α0 ≤ α. (2.28)
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If strict inequality holds in (2.25), then so does in (2.28). Hence, the estimates
on the distances have been improved.

Let us examine some special choices of functions f0, and f .

Case 1: (Lipschitz case)

f0(t) =
K0 t2

2
− t, f(t) =

K t2

2
− t,

B(xn) = F ′(xn), Pn = I, w1 = 1, and w2 = 0 (n ≥ 0).

Then, we get:

α0 = (1 + θ)
K ‖ x− x? ‖

2 (1−K0 ‖ x0 − x? ‖)
+ θ, (2.29)

α = (1 + θ)
K ‖ x− x? ‖

2 (1−K ‖ x0 − x? ‖)
+ θ, (2.30)

which imply

σ0 = min

{
K,

2 (1− θ)

2 (1− θ) K0 + (1 + θ) K

}
, (2.31)

and

σ = min

{
K,

2 (1− θ)

(3− θ) K

}
. (2.32)

If θ = 0, we obtain:

r0 = min

{
K,

2

2 K0 + K

}
, (2.33)

and

r = min

{
K,

2

3 K

}
, (2.34)

which imply

r ≤ r0. (2.35)

Estimate (2.35) shows that we obtain a larger radius of convergence than
in [9]. Below, we provide a numerical example where r < r0 (see Example
2.3).

Case 2: (Smale–Wang case)

f0(t) =
t

1− γ0 t
− 2 t, f(t) =

t

1− γ t
− 2 t (γ ≤ γ0),

and choose:

R =
1

γ0

.

The rest is left to the motivated reader.

More choices of functions f0, and f can be found in [9].
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Example 2.3. Let X = Y = (−∞, +∞), D = U(x?, R) = U(0, 1), and define
function F on D by:

F (x) = ex − 1. (2.36)

Then we obtain:
K0 = e− 1, K = e.

In view (2.33), and (2.34), we get:

r =
2

3 K
= .245252961 < r0 =

2

2 K0 + K
= .324947231. (2.37)
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