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ON Φ-FIXED POINT FOR MAPS ON UNIFORM SPACES

M. ALIMOHAMMADY1 AND M. RAMZANNEZHAD2

Abstract. The concept of fixed point is extended to Φ-fixed point for those
maps on uniform spaces. Two results are presented, first for single-valued maps
and second for set-valued maps.

1. Introduction and preliminaries

The fixed point theorem has applications in almost all branches of mathematics.
The considering of the existence of fixed point for a mapping, is expressed in
metric spaces, and some authors have extended this result in some other versions
[1], [2], [3] and [4]. M.A. Khamsi and W.A. Kirk [6] have collected many results in
fixed point theory which is a good source in this branch. Here, we would improve
their results for single-valued and set-valued maps in uniform spaces, which is a
generalization for metric space.

Definition 1.1. Let X be a nonempty set and Φ ⊂ 2X×X satisfies in the following
:
1) For any u ∈ Φ, ∆ = {< x, x >: x ∈ X} ⊂ u.
2) If u ∈ Φ and u ⊂ υ, then υ ∈ Φ.
3) If u, υ ∈ Φ, then u ∩ υ ∈ Φ.
4) For any u ∈ Φ, there exists υ ∈ Φ such that, υoυ ⊂ u,
where, υoυ = {(x, z) : ∃y ∈ X; (x, y) ∈ ν and (y, z) ∈ ν}.
5) u ∈ Φ imply that, u−1 ∈ Φ,
where, u−1 = {(x, y) : (y, x) ∈ u}.
Then, Φ is said to be a uniform structure for X and (X, Φ) a uniform space.
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Definition 1.2. Let (X, Φ) be a uniform space and T : X → X be a single-valued
mapping, x0 ∈ X is said to be Φ-fixed point for T , if (x0, Tx0) ∈

⋂
u∈Φ u.

Definition 1.3. Let (X, Φ) be a uniform space and T : X → 2X a set-valued
mapping, then x0 ∈ X is said to be a Φ-fixed point for T if there exists z ∈ Tx0

such that (x0, z) ∈ ⋂
u∈Φ u.

We set u[x] = {y ∈ X; < x, y >∈ u} for any x ∈ X, u ∈ Φ.

2. Main results

Theorem 2.1. Suppose that (X, Φ) is a uniform space and T : X → X a single-
valued map. If there is z ∈ X such that for any ν ∈ Φ, ν[z] ∩ ν[Tz] 6= ∅, then T
has at least one Φ-fixed point in X.

Proof. To show that T has at least one Φ-fixed point in X, we must prove there
exists at least one x0 of X, such that (x0, Tx0) ∈

⋂
u∈Φ u. Suppose on the con-

trary, assume that for any x0 ∈ X there exists u0 ∈ Φ, such that (x0, Tx0) /∈ u0.
According to the property of uniform space, there exists ν ∈ Φ, such that
υoυ ⊂ u0. Therefore, (x0, Tx0) /∈ υoυ. Hence, for any y ∈ X, (x0, y) /∈ ν or
(y, Tx0) /∈ ν, Then, for any y ∈ X, y /∈ ν[x0] or y /∈ ν[Tx0]. Therefore, we obtain
ν[x0] ∩ ν[Tx0] = ∅, which is a contradiction by assumption. Hence, there exists
x0 ∈ X such that for any u ∈ Φ, (x0, Tx0) ∈

⋂
u∈Φ u, i.e., x0 is Φ-fixed point for

T in X.

The following result is a direct consequence Following Theorem 2.1.

Corollary 2.2. It should be noticed in Theorem 2.1, if (X, Φ) is a Hausdorff
uniform space, then T has at least one fixed point in X.

Theorem 2.3. Suppose that (X, Φ) is a uniform space and T : X → 2X is a
set-valued mapping. If there exists at least one x0 ∈ X such that for any u ∈ Φ
and for any z ∈ Tx0, u[x0] ∩ u[z] 6= ∅, then x0 is a Φ-fixed point for T .

Proof. We will prove that, there is at least one x0 ∈ X and there exists
z ∈ Tx0 such that (x0, z) ∈ ⋂

u∈Φ u. On the contrary, for any x0 ∈ X, and for
any z ∈ Tx0, there exists u0 ∈ Φ such that (x0, z) /∈ u0. Hence, there is ν ∈ Φ
such that υoυ ⊂ u0, we have (x0, z) /∈ υoυ. Therefore, for any y ∈ X, (x0, y) /∈ ν
or (y, z) /∈ ν. Then for any y ∈ X, y /∈ ν[x0] ∩ ν[z], i.e., ν[x0] ∩ ν[z] = ∅ which is
a contradiction. There is at least one x0 ∈ X which is a Φ-fixed point for T .

Following is a direct result of Theorem 2.3.

Corollary 2.4. In Theorem 2.3, if (X, Φ) be a Hausdorff uniform space, then in
fact x0 is a fixed point for T .
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