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RELATED FIXED POINT THEOREMS IN FUZZY METRIC
SPACES

K. P. R. RAO1∗, ABDELKRIM ALIOUCHE2 AND G. RAVI BABU3

Abstract. We prove a related fixed point Theorem for four mappings which
are not continuous in four fuzzy metric spaces, one of them is a sequentially
compact fuzzy metric space. Our Theorem in the metric version generalizes
Theorem 4 of [1]. Finally, We give a fuzzy version of Theorem 3 of [1].

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [11] in 1965. George
and Veeramani [4] modified the concept of fuzzy metric space introduced by
Kramosil and Michalek [6]. Recently, Fisher [3], Telci [10] and Aliouche and
Fisher [1] proved some related fixed point Theorems in compact metric spaces.
Motivated by a work due to Popa [7], we have observed that proving fixed point
theorems using an implicit relation is a good idea since it covers several contrac-
tive conditions rather than one contractive condition. In this paper, we mainly
prove a related fixed point Theorem for four mappings which are not necessarily
continuous in four fuzzy metric spaces, using an implicit relation, one of them is
a sequentially compact fuzzy metric space. One of our Theorems in the metric
version generalizes a theorem of Aliouche and Fisher [1]. We give also a fuzzy
version of Theorem 3 of [1]..

Definition 1.1 ([9]). A binary operation ∗ : [0, 1]×[0, 1] −→ [0, 1] is a continuous
t−norm if it satisfies the following conditions:

1) ∗ is associative and commutative,
2) ∗ is continuous,
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3) a ∗ 1 = a for all a ∈ [0, 1],
4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t−norm are a ∗ b = ab and a ∗ b =
min{a, b}.
Definition 1.2 ([4]). A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t−norm a and M is a fuzzy set on
X2 × (0,∞) satisfying the following conditions for each x, y, z ∈ X and t, s > 0,

1) M(x, y, t) > 0,
2) M(x, y, t) = 1 if and only if x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Definition 1.3 ([3]). Let (X,M, ∗) be a fuzzy metric space.
1) For t > 0, the open ball B(x, r, t) with center x ∈ X and radius 0 < r < 1

is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
2) Let (X,M, ∗) be a fuzzy metric space and τ be the set of all A ⊂ X with

x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then, τ is a topology on X induced by the fuzzy metric M .

3) A sequence {xn} in X converges to x if and only if for any 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that for all n ≥ n0, M(xn, x, t) > 1 − ε ; i.e.,
M(xn, xm, t) → 1 as n →∞ for all t > 0.

4) A sequence {xn} in X is called a Cauchy sequence if and only if for any 0 <
ε < 1 and t > 0, there exists n0 ∈ N such that for all n,m ≥ n0, M(xn, xm, t) >
1− ε ; i.e., M(xn, xm, t) → 1 as n,m →∞ for all t > 0.

5) A fuzzy metric space (X,M, t) in which every Cauchy sequence is convergent
is said to be complete.

Definition 1.4. A subset A of X is said to be F−bounded if there exists t > 0
and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 1.5 ([5]). Let (X,M, ∗) be a fuzzy metric space. Then, M(x, y, t) is
non-decreasing with respect to t, for all x, y in X.

Lemma 1.6 ([5]). Let (X,M, ∗) be a fuzzy metric space. Then, M is a continuous
function on X2 × (0,∞).

Definition 1.7. (X,M, ∗) is said to be sequentially compact fuzzy metric space
if every sequence in X has a convergent sub-sequence in it.

Let Φ be the set of all functions φ : [0, 1]6 −→ [0, 1] such that if either
φ(u, 1, u, v, v, 1) > 0 or φ(u, u, 1, v, 1, v) > 0 for all u, v ∈ [0, 1), then u > v.

Example 1.8. Let φ(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4, t5, t6}. Then φ ∈ Φ.
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2. Main results

Theorem 2.1. Let (X,M1, θ1), (Y, M2, θ2), (Z, M3, θ3) and (W,M4, θ4) be fuzzy
metric spaces and B : X −→ Y , T : Y −→ Z , A : Z −→ W , S : W −→ X be
mappings satisfying

(1) φ1




M1(SATy, SATBx, t),M1(x, SATy, t),
M1(x, SATBx, t),M2(y, Bx, t),

M2(y, BSATy, t),M2(Bx, BSATy, t)


 > 0

for all x ∈ X, y ∈ Y with y 6= Bx and for all t > 0, where φ1 ∈ Φ,

(2) φ2




M2(BSAz,BSATy, t),M2(y, BSAz, t),
M2(y, BSATy, t),M3(z, Ty, t),

M3(z, TBSAz, t),M3(Ty, TBSAz, t)


 > 0

for all z ∈ Z, y ∈ Y with z 6= Ty and for all t > 0, where φ2 ∈ Φ,

(3) φ3




M3(TBSw, TBSAz, t),M3(z, TBSw, t),
M3(z, TBSAz, t),M4(w, Az, t),

M4(w, ATBSw, t),M4(Az, ATBSw, t)


 > 0

for all z ∈ Z, w ∈ W with w 6= Az and for all t > 0, where φ3 ∈ Φ,

(4) φ4




M4(ATBx, ATBSw, t),M4(w, ATBx, t),
M4(w, ATBSw, t),M1(x, Sw, t),

M1(x, SATBx, t),M1(Sw, SATBx, t)


 > 0

for all x ∈ X, w ∈ W with x 6= Sw and for all t > 0, where φ4 ∈ Φ.
Further, suppose that one of the following is true:
(a) (X,M1, θ1) is sequentially compact and SATB is continuous on X.
(b) (Y, M2, θ2) is sequentially compact and BSAT is continuous on Y .
(c) (Z, M3, θ3) is sequentially compact and TBSA is continuous on Z.
(d) (W,M4, θ4) is sequentially compact and ATBS is continuous on W .
Then, SATB has a unique fixed point u ∈ X, BSAT has a unique fixed point
v ∈ Y , TBSA has a unique fixed point w ∈ Z and ATBS has a unique fixed
point q ∈ W . Further, Bu = v , Tv = w , Aw = q and Sq = u.

Proof. Suppose that (a) holds. For every t > 0, define φ(x) = M1(x, SATBx, t)
for all x ∈ X. Then, there exists p ∈ X such that φ(p) = M1(p, SATBp, t) =
max{φ(x) : x ∈ X}.
Suppose that BSATBSATBp 6= BSATBSATBSATBp. Then, TBSATBp 6=
TBSATBSATBp, ATBp 6= ATBSATBp and p 6= SATBp.

Putting y = BSATBSATBp and x = SATBSATBSATBp in (1) we have

φ1




M1(SATBSATBSATBp, SATBSATBSATBSATBp, t),
M1(SATBSATBSATBp, SATBSATBSATBp, t),

M1(SATBSATBSATBp, SATBSATBSATBSATBp, t),
M2(BSATBSATBp, BSATBSATBSATBp, t),
M2(BSATBSATBp, BSATBSATBSATBp, t),

M2(BSATBSATBSATBp, BSATBSATBSATBp, t)




> 0
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and so

(5) φ(SATBSATBSATBp) > M2(BSATBSATBp, BSATBSATBSATBp, t).

Putting y = BSATBSATBp and z = TBSATBp in (2) we get

φ2




M2(BSATBSATBp, BSATBSATBSATBp, t),
M2(BSATBSATBp, BSATBSATBp, t),

M2(BSATBSATBp, BSATBSATBSATBp, t),
M3(TBSATBp, TBSATBSATBp, t),
M3(TBSATBp, TBSATBSATBp, t),

M3(TBSATBSATBp, TBSATBSATBp, t)




> 0.

Therefore

(6) M2(BSATBSATBp, BSATBSATBSATBp, t)
> M3(TBSATBp, TBSATBSATBp, t).

Putting z = TBSATBp and w = ATBp in (3) we obtain

φ3




M3(TBSATBp, TBSATBSATBp, t),
M3(TBSATBp, TBSATBp, t),

M3(TBSATBp, TBSATBSATBp, t),
M4(ATBp, ATBSATBp, t),
M4(ATBp, ATBSATBp, t),

M4(ATBSATBp,ATBSATBp, t)




> 0

and so

(7) M3(TBSATBp, TBSATBSATBp, t) > M4(ATBp, ATBSATBp, t).

Putting w = ATBp and x = p in (4) we have

φ4




M4(ATBp, ATBSATBp, t),M4(ATBp, ATBp, t),
M4(ATBP, ATBSATBp, t),M1(p, SATBp, t),

M1(p, SATBp, t),M1(SATBp, SATBp, t)


 > 0.

Hence

(8) M4(ATBp, ATBSATBp, t) > M1(p, SATBp, t) = φ(p).

From (5), (6), (7) and (8) we get φ(SATBSATBSATBp) > φ(p) which is a
contradiction. Therefore

(9) BSATBSATBp = BSATBSATBSATBp.

Denote BSATBSATBp = v ∈ Y . Then from (9), v = BSATv.
Let Tv = w ∈ Z, Aw = q ∈ W , Sq = u ∈ X. Then v = BSATv = BSAw =
BSq = Bu.
Also, SATBu = SATv = SAw = Sq = u, TBSAw = TBSq = TBu = Tv = w
and ATBSq = ATBu = ATv = Aw = q.

For the uniqueness of u, suppose that SATBu′ = u′ with u 6= u′. Then,
SATBu 6= SATBu′, ATBu 6= ATBu′, TBu 6= TBu′ and Bu 6= Bu′.
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Putting x = u and y = Bu′ in (1) we have

φ1




M1(SATBu′, SATBu, t),M1(u, SATBu′, t),
M1(u, SATBu, t),M2(Bu′, Bu, t),

M2(Bu′, BSATBu′, t),M2(Bu, BSATBu′, t)


 > 0

and so

M1(u, u′, t) > M2(Bu, Bu′, t)....(10).

Putting z = TBu, y = Bu′ in (2) we get

φ2




M2(BSATBu,BSATBu′, t),M2(Bu′, BSATBu, t),
M2(Bu′, BSATBu′, t),M3(TBu, TBu′, t),

M3(TBu, TBSATBu, t),M3(TBu′, TBSATBu, t)


 > 0.

Therefore

M2(Bu, Bu′, t) > M3(TBu, TBu′, t).....(11).

Putting z = TBu, w = ATBu′ in (3) we obtain

φ3




M3(TBSATBu′, TBSATBu, t),M3(TBu, TBSATBu′, t),
M3(TBu, TBSATBu, t),M4(ATBu′, ATBu, t),

M4(ATBu′, ATBSATBu′, t),M4(ATBu, ATBSATBu′, t)


 > 0.

Hence

M3(TBu, TBu′, t) > M4(ATBu, ATBu′, t)....(12)

Putting x = SATBu, w = ATBu′ in (4) we have

φ4




M4(ATBSATBu,ATBSATBu′, t),M4(ATBu′, ATBSATBu, t),
M4(ATBu′, ATBSATBu′, t),M1(SATBu, SATBu′, t),

M1(SATBu, SATBSATBu, t),M1(SATBu′, SATBSATBu, t))


 > 0

and so

M4(ATBu, ATBu′, t) > M1(u, u′, t)....(13)

Using (10), (11), (12) and (13) we get

M1(u, u′, t) > M1(u, u′, t)

which is a contradiction. Hence, u is the unique fixed point of SATB. Similarly,
we can prove the uniqueness of fixed points of BSAT , TBSA and ATBS. In a
similar manner, the Theorem holds if either (b) or (c) or (d) is true. ¤

The following Example illustrates Theorem 2.1.

Example 2.2. Let X = [0, 1], Y = [1, 2) , Z = (2, 3] and W = [3, 4) and

M1(x, y, t) =
t

t + |x− y| , M2(y, z, t) =
t

t + |y − z| , M3(z, w, t) =
t

t + |z − w| and

M4(w, x, t) =
t

t + |w − x| .
Define B : X −→ Y by:

Bx =

{
1 if x ∈ [0, 3/4],

3/2 if x ∈ (3/4, 1].
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T : Y −→ Z by Ty = 3 for all y ∈ Y , A : Z −→ W by

Az =

{
7/2 if x ∈ (2, 5/2],
3 if x ∈ (5/2, 3].

and S : W −→ X by Sw = 1 for all w ∈ W . Let

φ1(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4, t5, t6} and

φ1 = φ2 = φ3 = φ4.

In this Example, the inequalities (1), (2), (3) and (4) are satisfied since the value
of the left hand side of each inequality is 1.
Clearly, SATB(1) = 1, BSAT (3/2) = 3/2, TBSA(3) = 3, ATBS(3) = 3 and
B1 = 3/2, T (3/2) = 3, A3 = 3, S3 = 1.

If B = T , T = S, A = R, S = I (Identity map) and W = X in Theorem 2.1
we get the following Theorem.

Theorem 2.3. Let (X,M1, θ1), (Y, M2, θ2) and (Z, M3, θ3) be fuzzy metric spaces
and T : X −→ Y , S : Y −→ Z , R : Z −→ X be mappings satisfying

(1) φ1

(
M1(RSy,RSTx, t),M1(x,RSy, t),M1(x,RSTx, t),

M2(y, Tx, t),M2(y, TRSy, t),M2(Tx, TRSy, t)

)
> 0

for all x ∈ X, y ∈ Y with y 6= Tx and for all t > 0, where φ1 ∈ Φ,

(2) φ2

(
M2(TRz, TRSy, t),M2(y, TRz, t),M2(y, TRSy, t),

M3(z, Sy, t),M3(z, STRz, t),M3(Sy, STRz, t)

)
> 0

for all z ∈ Z, y ∈ Y with z 6= Sy and for all t > 0, where φ2 ∈ Φ,

(3) φ3

(
M3(STx, STRz, t),M3(z, STx, t),M3(z, STRz, t),

M1(x,Rz, t),M1(x,RSTx, t),M1(Rz, RSTx, t)

)
> 0

for all z ∈ Z, x ∈ X with x 6= Rz and for all t > 0, where φ3 ∈ Φ.
Further, suppose that one of the following is true:
(a) (X,M1, θ1) is sequentially compact and RST is continuous on X.
(b) (Y, M2, θ2) is sequentially compact and TRS is continuous on Y .
(c) (Z, M3, θ3) is sequentially compact and STR is continuous on Z.
Then, RST has a unique fixed point u ∈ X, TRS has a unique fixed point v ∈ Y
and STR has a unique fixed point w ∈ Z. Further, Tu = v, Sv = w and Rw = u.

If R = I (Identity map) and Z = X in Theorem 2.3 we obtain

Theorem 2.4. Let (X,M1, θ1) and (Y, M2, θ2) be fuzzy metric spaces and T :
X −→ Y , S : Y −→ X be mappings satisfying

(1) φ1

(
M1(Sy, STx, t),M1(x, Sy, t),M1(x, STx, t),
M2(y, Tx, t),M2(y, TSy, t),M2(Tx, TSy, t)

)
> 0

for all x ∈ X, y ∈ Y with y 6= Tx and for all t > 0, where φ1 ∈ Φ,

(2) φ2

(
M2(Tx, TSy, t),M2(y, Tx, t),M2(y, TSy, t),
M1(x, Sy, t),M1(x, STx, t),M1(Sy, STx, t)

)
> 0

for all x ∈ X, y ∈ Y with x 6= Sy and for all t > 0, where φ2 ∈ Φ.
Further, suppose that one of the following is true:
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(a) (X,M1, θ1) is sequentially compact and ST is continuous on X.
(b) (Y, M2, θ2) is sequentially compact and TS is continuous on Y .
Then, ST has a unique fixed point u ∈ X and TS has a unique fixed point v ∈ Y .
Further, Tu = v and Sv = u.

1) The metric version of Theorem 2.4 in compact metric spaces generalizes
and improves Theorem 4 of Aliouche and Fisher [1] under the implicit relation
φ : R6

+ → R such that φ(u, u, 0, v, 0, v) < 0 or φ(u, 0, u, v, v, 0) < 0 implies u < v.
2) If φ1(t1, t2, t3, t4, t5, t6) = φ2(t1, t2, t3, t4, t5, t6) = t1 − min{t2, t3, t4, t5, t6} in

Theorem 2.4, we get a fuzzy version of a Theorem of Fisher [3].
Finally, we give a fuzzy version of Theorem 3 of Aliouche and Fisher [1] using

the following implicit relations.
We denote by Ψ the set of all functions ψ : [0, 1]4 −→ [0, 1] such that
:(i) ψ is upper semi continuous in each coordinate variable,
(ii) ψ is decreasing in 3rd and 4th variable,
(iii) if either ψ(u, v, 1, u) ≥ 0 or ψ(u, 1, v, 1) ≥ 0 or ψ(u, v, u, 1) ≥ 0 for all
u, v ∈ [0, 1], then u ≥ v.

Example 2.5. ψ(t1, t2, t3, t4) = t1 −min{t2, t3, t4},
Example 2.6. ψ(t1, t2, t3, t4) = t1−φ1(min{t2, t3, t4}), where φ1 : (0, 1] −→ (0, 1]
is an increasing and continuous function with φ(t) > t for 0 < t < 1. For example
φ1(t) =

√
t or φ1(t) = th for 0 < h < 1.

We need the following Lemma of [2].

Lemma 2.7 ([2]). Let {xn} be a sequence in a fuzzy metric space (X,M, ∗) with
M(x, y, t) −→ 1 as t −→ ∞ for all x, y ∈ X. If there exists a number k ∈ (0, 1)
such that

M(xn+1, xn, kt) ≥ M(xn, xn−1, t)

for all t > 0 and n = 1, 2, 3, ... , then {xn} is a Cauchy sequence in X.

Theorem 2.8. Let (X,M1, θ1) and (Y, M2, θ2) be complete fuzzy metric spaces
with M1(x, x′, t) −→ 1 as t −→ ∞ for all x, x′ ∈ X and M2(y, y′, t) −→ 1 as
t −→ ∞ for all y, y′ ∈ Y . Let T : X −→ Y , S : Y −→ X be mappings
satisfying:

(1) ψ1

(
M1(Sy, STx, kt),M2(y, Tx, t),M1(x, Sy, t),M1(x, STx, t)

) ≥ 0,

(2) ψ2

(
M2(Tx, TSy, kt),M1(x, Sy, t),M2(y, Tx, t),M2(y, TSy, t)

) ≥ 0

for all x ∈ X, y ∈ Y and for all t > 0, where ψ1, ψ2 ∈ Ψ and 0 < k < 1.
Then, ST has a unique fixed point u ∈ X and TS has a unique fixed point v ∈ Y .
Further, Tu = v and Sv = u.

Proof. Let x0 be an arbitrary point in X. We define the sequences {xn} and {yn}
in X and Y respectively by: yn = Txn−1, xn = Syn for n = 1, 2, ....
Putting x = xn and y = yn in (1), we have

ψ1(M1(xn, xn+1, kt),M2(yn, yn+1, t), 1,M1(xn, xn+1, t)) ≥ 0.



RELATED FIXED POINT THEOREMS IN FUZZY METRIC SPACES 201

Since ψ1 is decreasing in 4th variable, we get

ψ1(M1(xn, xn+1, kt),M2(yn, yn+1, t), 1,M1(xn, xn+1, kt)) ≥ 0.

From (iii), we obtain

M1(xn, xn+1, kt) ≥ M2(yn, yn+1, t)...(3)

Putting x = xn−1and y = yn in (2), we have

ψ2(M2(yn, yn+1, kt),M1(xn−1, xn, t), 1,M2(yn, yn+1, t)) ≥ 0.

As ψ2 is decreasing in 4th variable, we get

ψ2(M2(yn, yn+1, kt),M1(xn−1, xn, t), 1,M2(yn, yn+1, kt)) ≥ 0.

From (iii), we obtain

M2(yn, yn+1, kt) ≥ M1(xn−1, xn, t)....(4).

Using (3) and (4) we have for n = 1, 2, ....

M1(xn, xn+1, t) ≥ M1(xn−1, xn, t/k
2) and

M2(yn, yn+1, t) ≥ M2(yn−1, yn, t/k
2).

From Lemma 2.7, it follows that {xn} and {yn} are Cauchy sequences in X and
Y respectively. Hence, {xn} converges to u ∈ X and {yn} converges to v ∈ Y .
Putting x = xn−1 and y = v in (1), we get

ψ1(M1(Sv, STxn−1, kt),M2(v, Txn−1, t),M1(xn−1, Sv, t),M1(xn−1, STxn−1, t)) ≥ 0

Letting n −→∞, we have

ψ1(M1(Sv, u, kt), 1,M1(u, Sv, t), 1) ≥ 0.

Using (iii), we obtain

M1(Sv, u, kt) ≥ M1(u, Sv, t)

and so Sv = u. Similarly, we can show that Tu = v. Now, STu = Sv = u and
TSv = Tu = v.
To prove the uniqueness of u, suppose that ST has a second fixed point u′ in X.

Putting x = u′ , y = v in (1), we get

ψ1(M1(u, u′, kt),M2(Tu, Tu′, t),M1(u
′, u, t), 1)) ≥ 0.

Since ψ1 is decreasing in 3rd variable, we have

ψ1(M1(u, u′, kt),M2(Tu, Tu′, t),M1(u
′, u, kt), 1)) ≥ 0.

From (iii), we obtain

M1(u, u′, kt) ≥ M2(Tu, Tu′, t).

Similarly, we have

M2(Tu, Tu′, kt) ≥ M1(u, u′, t).

Hence

M1(u, u′, t) ≥ M1(u, u′, t/k2)

and so u = u′. The uniqueness of v follows in a similar manner. ¤
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1) If ψ1(t1, t2, t3, t4) = ψ2(t1, t2, t3, t4) = t1 −min{t2, t3, t4} in Theorem 2.7, we
get a fuzzy version of a Theorem of Fisher [3].

2) As in Theorems 2.4 and 2.7, we can obtain fuzzy versions of Theorems of
[9].

The following Example support our Theorem 2.7.

Example 2.9. Let X = [0, 1] = Y and M1(x, y, t) = M2(y, x, t) =
t

t + |x− y|
for all x, y ∈ X and for all t > 0. Define T : X −→ Y and S : Y −→ X by:

Tx =

{
x/2 if x ∈ (0, 1],
1/2 if x = 0.

,

Sy = 1/2 for all y ∈ Y . Let

ψ1(t1, t2, t3, t4) = ψ2(t1, t2, t3, t4)

= t1 −min{t2, t3, t4}.
In this Example, the inequality (1) is satisfied since the value of the left hand
side of inequality is 1 and the inequality (2) is satisfied with k = 1/2.
Clearly, ST (1/2) = 1/2, TS(1/4) = 1/4, S(1/4) = 1/2 and T (1/2) = 1/4.
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