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Abstract

In this paper, we provide an explicit solution for the homogeneous fractional delay oscillation difference equation with an
order 26 ranging from 1 to 2. This solution is achieved through the construction of discrete sine and cosine-type delayed matrix
functions. Subsequently, we employ the discrete Laplace transform technique, a powerful method for handling nonhomogeneous
terms, to investigate the solution of the corresponding nonhomogeneous equation. The study then delves into the Ulam-Hyers-
type stabilities of the homogeneous equation, leveraging the representation of the solution. To validate the stability theory,
we illustrate a numerical example. Finally, we extend our analysis by presenting an exact solution for the nonhomogeneous
fractional difference equation with 1 < 25 < 2, utilizing the discrete two-parameter delayed sine and cosine-type function.
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1. Introduction

In the last few decades, the field of fractional calculus, sometimes referred to as non-integer calcu-
lus, has become increasingly popular because of its diverse applications. There has been an increasing
awareness that fractional differential systems are more suitable for modeling real-world issues in various
fields like mathematical physics, biophysics, electrochemistry, and engineering; see [14, 16, 23, 28, 29, 34,
46, 48, 49] and the references listed. The solution to linear fractional-order differential equations can be
expressed in terms of Mittag-Leffler functions. Various Mittag-Leffler functions and their properties have
been developed to analyze the solution’s behavior.

Many nonlinear mathematical models are exclusive to discrete time domains, leading to a rise in inter-
est towards discrete fractional-order systems. It is important to note that discrete fractional-order calculus
is a numerical formula in discrete form that does not introduce any numerical errors [51]. As a result,
discrete fractional-order calculus has become a popular subject of discussion, with several noteworthy
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results [4, 5, 15, 24, 29, 52, 53] being published. A significant development in recent times has been the
formulation of explicit solutions for fractional-order difference systems using various discrete Mittag-
Leffler functions [1-3, 6, 7, 11, 14, 50]. These functions act as counterparts to the continuing Mittag-Leffler
function.

The inclusion of both present and past states in differential equations facilitates the modeling of
systems with memory, enabling accurate representation of phenomena like automatic steering, control,
and stabilization; see [8-10, 33, 36, 42, 45]. In order to examine the stability and controllability of fractional-
order delay differential systems, different types of delayed Mittag-Leffler matrix functions have been
developed as the fractional-order analog of delayed exponential matrix functions.

Despite the extensive research on fractional retarded differential systems in continuous time, covering
various aspects such as stability and controllability, there is a lack of studies on fractional delayed differ-
ence systems of order 1 < « < 2 in discrete-time. Although there is sufficient work available for the case
of order 0 < o < 1, see [18, 19, 21, 22, 24, 26, 30, 31, 41, 44, 47], the literature in this area is not as extensive.
This manuscript endeavors to rectify the insufficiency in this matter. It is widely acknowledged that the
sine and cosine functions, as two distinct trigonometric functions, serve as the solutions for second-order
differential systems. In the study [32], a solution formula for the Cauchy problem in a second-order linear
delayed system is proposed using delayed sine and cosine matrices. These trigonometric functions play
a crucial role in investigating the controllability and stability of second-ordered differential systems with
time-delay in continuous time [12, 13, 17, 20, 37-40, 43]. From what we know, there are scarce studies
in discrete-time that relate to the ones in the works mentioned above. The inspiration from the above
discussions has led us to focus on investigating the below Caputo fractional delayed difference system of
order 1 < 2 < 2 with noncommutative coefficient matrices,

{ CVEev (o) = A1V (0) + AV (0 —1) +f(0), 0 € Zy, (1.1)

v(o) =V (o), Vv(o) =V (o), ceZ] ,

where CV(Z)‘S is the Caputo fractional difference of order 1 < 28 < 2, r € Z; is a delay, { : Z(l)—r — R"
is an initial function, Aj, Ay € R™*™ are square matrices, z : Z; — R"™, and the function f : Z; — R™ is
continuous.

The paper highlights various significant discoveries and contributions.

* A novel matrix function, known as the discrete delayed Mittag-Leffler matrix function, is presented
in this study. This function is derived from two noncommutative matrices and serves as a general-
ization of the conventional discrete delayed exponential matrix function.

¢ A discrete delayed Mittag-Leffler matrix function is utilized to derive a representation of an analyt-
ical formula for solving linear/semilinear fractional delayed difference systems.

* An established criterion is presented for determining the stability of linear/nonlinear fractional
delayed difference systems. This criterion is derived from the exact solution that has been derived.

¢ The research delves into the investigation of solutions for nonlinear fractional delayed difference
equations, specifically exploring their existence and uniqueness.

2. Groundwork

Within this section, we showcase the tools that are currently accessible in the literature. Z, =
{a,a+1,a+2,...}, Z¢ ={..,a—2,a—1,a}, Z8 = {a,a+1,a+2,...,b}, where a,b € R (real num-
bers) with b —a € Z;. R™ is an n-dimensional real space endowed with the norm ||.||, and R™*™ is the
set of all square matrices whose entries are real numbers. We also use the same symbol ||.| as an arbitrary
matrix norm on R™*™.
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Definition 2.1 ([42]). The determining equation R (i,j) is of the following recursive form

and

fori,j € Zy.

Remark 2.2 ([42]). By employing the above recursive equation, one can easily reach to the explicit form in
the following table:

j=0 j=1 j=2 j=3 j=p
R(L3) I ® ® © ®
R(Z,]) A] Az C) C)
R(3,j) A2 MDAy + M A A2 0 S}
R (4,1) A | A D18y + Do) + DA | AJAS + Mo (A Mg + MoAy) | A3
R(p+1,j) Af AE

Lemma 2.3. It is apparent that R (i+1,j) = © provided that j <i+1.

In the case of constant coefficient matrices that commute, the following observation can be made.

Remark 2.4. In the light of the permutable matrices A; and A;, we have
R(i+1,j) = (]?)Aﬁ—mzi, i,j € Zo.
As stated in the following lemma, for non-permutable matrices A; and A; and r =0, R (i + 1, j) exhibits
a generalization of binomial formula.

Lemma 2.5. The ensuing generalized binomial formula remains true:

1
(Ar+(1-5)"A)" =) R(1+1,j) (1—s)"

j=0
Proof. 1t is so easy to prove by using the mathematical induction, so we omit it. O
Lemma 2.6. We have
(sT—A—(1 —s)*Az)’1 = iiR(lJrl k) (1—s)* 1
55 ’ glo+5’

where 1 is the identity matrix.

Proof. We have

(s°T—A1—(1—3)" AQ)_l =s P (I-s (A1 +(1—s) AZ))

0]

1
Z +(1=s)" Ste+s ZZR 1+ 1K) (1—8)" Sto+s”

1=0 1=0 j=0

—1

where ||s7% (A1 + (1 —5)" Az) || < 1 has been used. O
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The present article introduces particular notations and provides an overview of essential findings
pertaining to nabla calculus, which is employed in the current study.

Definition 2.7 ([27]). The generalized rising function is characterized by

: Tlo+T)
o) ’

whenever the equation is valid for the values of o and r where the right-hand side makes sense. Specifi-
cally, 0" = 0.

Definition 2.8 ([27]). The (nabla) fractional Taylor monomial Js(0, a) of order & can be expressed as
follows

(0—a)®
re+1)’

where the side on the right of the equation makes sense for & ¢ Z~!.

Js(o,a) =

Below, we outline the nabla fractional sum using the nabla fractional Taylor monomial, the nabla
Riemann-Liouville fractional difference, and the nabla Caputo fractional difference, the (nabla) Leibniz
Formula.

Definition 2.9 ([27]). The (nabla) fractional sum is defined as follows

o

Js-1(0,0(s)V(s)Vs = > Js 1(o,p(s))v(s),

s=a+1

V(o) = j
a
the nabla fractional difference is defined as follows

o

Jos-1(0,p(s)v(s)Vs= > T s 1(0,p(s)v(s),

s=a-+1

V3v(o) :J

a

where 0 € Zg, p(s) =s—1,z:Zy41 — Rand 6 > 0. In particular, Vev(a) =0.

Definition 2.10 ([27]). Suppose that z : Z,11 — R. For 0 € Z,, the (nabla) Caputo fractional difference
of order 1 < & < 2 is defined as follows

o

J-541(0,0(s))V?v(s)Vs = D ] 511(0,0(s))V>(s).

CViv(o) = Vi P Vv (0) :J
s=a+1

a

Theorem 2.11 ([27]). Let z: Z.q¢ X Z.q+1 — R. Then

\Y <JUV(G,S)VS) = JU Vsv(o,8)Vs+v(p(o),0), 0€Zq.1.

a a

The formula for the well-known composition rule of distinct fractional sums is provided in the theorem
statement below.

Theorem 2.12 ([27]). Suppose that z: Z.q 1 — R and 8,1 > 0. Then Vo ®V " v(o) = Vi "v(0), 0 € Zqg.
Lemma 2.13 ([27]). Assume that € R and 6 > 0 with u—6—1 € Zy. Then
vgé]’ufl(o_/ Cl) = ILLJréfl(o-/ G.), 0c Za/

and
Vg]}i—l(o-/ a) = ]u—é—l(cr (1) = Cvg]}i—l(o-/ a)r (S Za/

and for0 <u<landt e Zq41,

VZ”V;L(G)V(G) = V(G) - Iu—l(G/ p(a))v(a)
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Moving forward, we shall examine the key application of the Laplace transform. Much like its usage in
classical calculus, the Laplace transform presents a refined and elegant way for depicting IVPs associated
with fractional difference equations in a sophisticated manner.

Theorem 2.14 ([27]). The Laplace transform in the discrete sense is given as follows

[e¢]

Lafvi(s)=) (1—5)""v(a+o0).

o=1

Definition 2.15 ([27]). A function z : Z,+1 — R is exponentially ordered & > 0 whether there are real
numbers T € Z,; and S > 0 such that the absolute value of v (o) is less than or equal to S5°, for every
(S AR

Lemma 2.16 ([27]). When dealing with a function z : Z4y1 — R that has exponential order b, the Laplace
transform is well-defined as long as [1 — s| < b.

Definition 2.17 ([27]). Letall 0 € Z441 and v,y : Z4+1 — R. The convolution product of two functions
is given as follows

(v+y) (o) ZJGV(U—p(k)Jra)y(k)Vk.

a

Theorem 2.18 ([27]). We have that
La {V * y} (S) =£Laq {V} (S) La {U} (S) ’
where z,y : Z.q — R.

Theorem 2.19 ([27]). Assume & > 0 and the nabla Laplace transform of v : Zq11 — R converges for [1 —s| < r
for some v > 0. Then
La{Vv}(s) =s°La{V}(s)

for |1 —s| <min{1,r}.

Theorem 2.20 ([27]). Assume Vv : Zq—n1 — R is of exponential order v > 0. Then

La{VavH(s) =s"La{vH(s) = ) s VR v (a)

m=1
for [1 —s| <, for eachn € Z;.

Lemma 2.21. Assume & € (1,2). If the Laplace transform of v : Zq4—1 — R converges for |1 —s| < v for some
positive r, then one has

La {VIv}(s) =s%La{V}(s) —s>v(a) —s° Vv (a).
Proof. Follows form the Definition 2.10 and Theorems 2.19 and 2.20. O

Lemma 2.22 ([27]). Assume that 6 € C\Z>,,. One has

Lallsl @ (s) = g, =8 <1

The subsequent lemmas will demonstrate various fresh features of the discrete Laplace transform.
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Theorem 2.23. One has

Calv(=1}s)=) (1-9s)"v(a+o-1)= ) (1-5)"""v(a+o0)
o=1 o=1—r

0
(1—s)°" " v(a+o)+ Z (1—3s)°""1v(a+0)

o=1—r

ot

Q
Il
—

0
=(1-9)"Ca{M(s)+ D> (1-5)"""v(a+o0).

o=1—r

Lemma 2.24. Assume that 5 € C\Z*>°,,. One has

L IR o
SO{F(mSJroc) e

where j, m € Zy, « € R and (o) = max{o,0}.

, 11—sl <1,

Proof. Indeed,

a ('—)T‘)TBJ”X 1 i O__JT)ErmSJroc 1 i
0 I (md + o) = I(md+ «) )
00 mé+o—1
—(1—s)" Z (1—s)" 1&
o I'(md+ «)
(1—s ]Ti 1—5) 11 (DY ot _ (1—s)"
— I ( mé—i—oc) smdto

Lemma 2.25. Assume ||A1]] < 1,8 >0, and p € R. Then

£0 {E?/L (-, a)} (s) =s®H 1 (s°1— Al)_1

for |
Lemma 2.26. Assume ||A1]] < 1,8 >0, and p € R. Then

o { S0y N, - () = (1= " (PT— A —(1-5)7 ),

2o {&5E (—m)}(s) = (1=9)™ (F1- A1~ (1-5)7 )
(1—s)™s201 (BT Ay — (1—5)" Ag)~ 1_20{¢§11$2(.—m)}(s),

(1= )™ 272 (BT A = (1-5)" A0) ' = Lo { &84, (- —m) } (s),

for | )T Ay, m € Zy.
Proof. Under given assumptions, one easily calculates
o 1 "
(1—s)™sH (5261—A1 (1—s)" ZZR (1+1,5) )mﬂrszzﬁ

1=0 j=0
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= 5 s Fa
=2 DR 1+1,])£0{ (216 +26 — ) }(S)

1=0 j=0
o 1 216+26—p—1
—m—jr)5
0¢ > ) R(1+1,j (s)
=5 r (215 +25—p)

:go{sggﬁr(a—m)}.

The proofs of the remnant identities are omitted because they can be proved in the same manner as the
first one. -

3. Delay discrete fractional matrix functions

Within this section, we present the discrete fractional cosine-type and sine-type delayed matrix func-
tions for non-permutable real matrices A; and A;. These functions are utilized to derive the precise
solution of the Caputo fractional delayed difference system.

Definition 3.1 ([27]). Let « € R, ||A1|| < 1, & > 0. The discrete fractional Mittag-Leffler matrix function is
defined as

g ZA1]15+<X 1(0,a), 0€Zy.

Definition 3.2. The discrete fractional cosine-type delayed matrix function ¢4
defined as follows

5 u .- generated by Ay, A; is

O, ceZ1,
© (o )m 00 ( _r)w
Al SR+,
Q:SAiiArZ (0) := 1;0 (218 + ) 121 ( ) (216 + )
o (o —pr)2SFRT .
+- R (l+ 1, ) , oc€ Z P ,
Ep PRt 1 )

Definition 3.3. The discrete fractional sine-type delayed matrix function 6?,1‘1/%2 generated by Ay, A; is
defined as follows

©, ceZ1,
o ( BT (o — ) DETR=T
+ Y R(A+1,1 -
S5 (o) = ; ((2i+1) 8+ ) él ( ) r(2i+1)5+mn)
(o —pr)EEF IS
+ZR i+1p) cezH,

Tr(2it)o+uw ~

where O is the zero matrix.

Definition 3.4. The discrete cosine-type and sine-type delayed matrix function QIBA,ZHJ, generated by A;
are defined as follows

0, ceZ,
A T—1 Dot ii—1 Mo+ —1
Cur ()= (@ (oo pr oz
Mw 7 T2+ 2 T(2pd+u) ’
0, cezZ,
A Stu—1 A5+ u—1 D1 e+u—1
S5 (0) = (cr)ff“ 1+A (cr—T)%f’ﬂl 1+.__+Ap(a pr)y (2p+1)3+u—1 oezlh (p+1)r
Fr6+w % TBs+n) 2 T(2p+1)6+w) ‘
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(0) =69 (0).

Remark 3.5. Tt is clear that Qi?i/ (0) = €242 (¢) and G52 SauT

o,u,r o,u,r

ALAy AL

We can reexpress the delayed discrete fractional sine and cosine-type matrix functions &5 "*, €5

in terms of the fractional Taylor monomial as follows Js(c, a),

@/ (S Zil,
SAUAY (5. Y AJis1)s+u1(0,0)+ X RE+1L1) J2is1)55u1(0,7)
s (0) =< {0 N i=1
‘|‘"'+.ZR i+1,p)]2ir)s+u—1(0p7), UEZPH
i=p
81 (S Z_l,
ALAs (o Y Alsisip—1(0,004+ X R(i+1,1) Joistp1(0,7)
0:5 LT (O‘) L= i=0 - i=1
+-+ Y R(+1Lp) Jaisty (0,p7), cezi .
i=p

Lemma 3.6. We have the following inequalities

Audy llAall, IIAzH Ay lA1lL11A:]]
HGSpr H Gép.r 66 ST Qt& ST (U)

Proof. Based on the properties of norms, one can easily obtain

oo oo .
. ’L s
|8 )] < X Il atens ru1 (0,00 + Y (1> 1811 A2l T4 1)54 1 (0,7)
i=0 i=1

— (1 - Al llA
Tt Z<p) 18117 182ll” zesn)s.4-1 (0, pr) = S5t 1 (o).

The proof of the latter is so easy to prove observing that of the former. O

4. The explicit solution

The main goal of this section is to explore a representation of an exact solution to the linear Caputo
fractional delayed difference system.
The initial focus is on the homogeneous Caputo fractional delayed difference system outlined:

CV3Z(0) =MZ(o)+MZ(o—71), CEZy,

Z(o) =0, GEZl o TEZ,
where CV%f’ is the Caputo fractional difference of order 1 < 26 < 2, Z: Z; — R™, r € Z;, is a delay
parameter, Aj, Ay are n x n real matrices.

Theorem 4.1.

(a) The delayed discrete fractional sine-type matrix function 6?1_’%12 . satisfies homogeneous system:

CV3®Z(0)=MZ(0)+MZ(oc—71), 0€Z,
Z(0)=0, ccZ) T e Zs.

1—r/

(b) The delayed discrete fractional cosine-type matrix function Qﬁ?}l’fz satisfies homogeneous system:

CV%ZSZ(G) =MNZ(0)+AZ(o—71), 0€Zy,
Z(0)=1, Z(0)=0©, ccZ',6 r€Z,.
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Proof. Now, for o € Z; we show that
CV2665A1 %izr( )= AlGéA,l—'%iz,r( )+ A265 6+2r(0_r)‘ (4.1)

For o € Z, there exists p € Z; such that 0 € Z,; (P+)T e apply the mathematical induction on p € Zy to
% pply p

demonstrate its trueness. It is easy to check the trueness of the identity for p = 0. For p = 1, we consider

1
G52, (o) ZZR 141,j) Jaist1 (0,j7) = ZZR (i+1,) 2541 (0,37), 0€Z).  (42)
i=0j=0 i=0j=0

Taking the Caputo fractional difference CV%{’ of (4.2), we acquire

oo 1
Cv%é@?l %ih(g) = ZZR (i+1,j) V§Tais41 (0,i7).
i=0j=0

After taking into account the subintervals and Lemma 2.13, we get
VG, (0) = CVY (Alfais+1(0,0) + R(1+1,1) Jaiss1 (0,7))
i=0

= VY (AlJ2is+1(0,0) + R(i+1,1) Jais41 (0 —7,0))
i—0

> (AJais—2541(0,0) + R (i+1,1) Jais—2541 (0 —1,0))

,.a.
l
_

s

,A
Il
o

(AT 21541 (0,0) + R (i+2,1) Jaisr1 (0 —1,0))

|
>

A,A A, A
165 550 r (0) + 8265 %, (0 —T), 0 €2y,

where the information CVéé J1(0,0) = CV%é Ji(o —1,0) = 0 has been used. Now, let us assume its validity
for p =n, that is

oo mn
Aq,A . . . +1
G542, (0) =Y Y R(i+1)) Jaissr (0,j7), oz,
i=0j=0
satisfies (4.1). In the case where p = n + 1, we can examine the same calculations as in the initial scenario

(n+2)r
for o € Z (nt1)r

oo n+1
VR G5 2. (0) = CVEY Y R(i+1,§) Jaista (0,§7)
i=0j=0
oo n+1
=> > R(i+1,j)Jais—25+1(0,7)
i=1j=0
oo n+1
=> ) R(i+2)Jais+1(0,j7)
1=0j=0
oo n+1 00 n4+1
=A1) D R(A+1§)Jaiss1(0,§1) +42) Y R(i+1Lj—1)Jais41 (0,7

i=0j=0 i=0j=0
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oo n+l1 0o m
=A1) Y Ri4+1j)J2ist1(0,jm) +482) D R(i+1,5)Jais 1 (0—7,j7)
1=0j=0 i=0j=0

Aq,A A1, A
=065 5% (0) + 226575, (00— 1),
which is what we look for the craved result. It is easily obtained from the definition of 6?17’%12 (o) that
it satisfies the initial condition. The proof of the latter is omitted because it can be proved in the same
manner as the former. O

We examine the Caputo fractional delayed difference system

{Vﬁév(ﬁ) =Av(0) +Ayv (0 —1) +(0), 0E€Z, (43)

v(o)=vY(0), Vv(o)=V (o), 0€Z) , r>0,

P Z(l)_T — R™ is an initial function. Let f : Z; — R be a function of exponential order, we perform the
Laplace transform to acquire an analytical form of a solution of (4.3).

Theorem 4.2. Then the representation of the unique solution of the fractional IVP (4.3) is offered as follows
v (0) = €512 (0)v (0) + G552, L (0) Vv (0)

0 o
+J S5y (0 —p(k) =)Ao (K) Vk+L Gyt (0 —p(k) f(K)VK, o€ Zy.
—T

Under the assumptions 1 < 25 < 2, ||A1|| < 1, f: Z1 — R is exponentially ordered.

Proof. Implementing £, to both sides of (4.3),
Lo {“VE v} () = MLo (v} (s) + Moo v (- =)} + Lo {F} (s),
and using Lemma 2.23, which is expressed with the special choices as follows, we get
£o {Cv%,f’v} (s) = s22€0{v} (s) — s> 1v (0) — s*>2Vv (0),
20 Lo (v} (s) = 5?71V (0) = sV (0) = A1 €9 (v} (s) + D2 (1 —5)" Lo {V} (s)
+ i (1=5)"" Mg (1) + Lo {f} (s).
=1-

1 T

Rearranges the terms,
0
(1= A1 — (1—=5)" Ag) Lo v} (s) = s IV (0) +s2 2V (0)+ Y (1—5)"" Ay () + Lo {f} (s).
1=1—7r

By settling out the equation for £y {Vv} (s) one gets

£V} (s) = 21 (20 — A — (1= )" Ag) v (0)+ 822 (2 — A — (1—5)" Ay) " Vv (0)

0
Y )™ (B A - (1-8)" ) A (m)

m=1—r

(B (1—s) A —(1—5)"Ay) " Lo{f}(s).

By applying the inverse Laplace transform to nabla, and utilizing Lemma 2.26 along with the convolution
property (Theorem 2.18), we obtain

v(0) = €5 (0)v (0) + G532, (o) Vv (0)
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LY st — p(k) =) (k) + | 842 (0 pl0)) (1K,

m=1—r

which finishes the proof. O

The subsequent theorem demonstrates that it is possible to eliminate the requirement that f : Z; — R
possesses an exponential order.

Theorem 4.3. Let 1 < 26 < 2and f: Z; — R, |A1]| < 1. Then a representation of the unique solution of the
difference system (1.1) is offered as follows

v (0) = €512 (0)v (0) + G552, L (0) Vv (0)

- JO S5y (0—p(k) — 7)Ao (K) VK + r Gyt (0 —p(k) f(K)VK, o€ Zy. (4.4)
—r
Proof. One has to implement the operator ©V3? to (4.4). It is so easy to observe the expression
v(0) = €577 (0)v (0) + 655, 0V (0) + J | S22 0 plk) — )b (k) Tk
—r
fulfills the equation CV%(SV (0) =A1v (o) +Ayv (o —1). So, it is enough to show that f fulfills (1.1),

Cy2y(g) =C V28 UO Go¥l? (0—p(k) f(k)Vk] :

One makes the following simple calculations
Cvv(o) =€ vgézgggéz —p(k)) f(k)

= V%SZZAJJ(MM,l (o —p(k),0) f(k)

i
¢ v(%ékiil% (i+1L D@51 (0—p(k),1) (k)
-+ VoékleR 1+1,9) J2i1)s15-1 (0= p(k), pr) f(K)
o
= kii)milzm (0= p(k),0) f(k) + kzlillz (i+1,1) Jais—1 (0= p(K),7) F(K)
+- -+§1§R (i+1,p) Jais—1 (0 — p(k), pr) f(k).
=li=p
Due to é}l (o— p(k),0) (k) = f(0), we have
CV%*”ZG?%?Z —p(k)) (k) = (o) + Aiimihimil (0~ p(k),0) (k)

k=11i=0
O o0

+) Y R(i+2DTaisis-1(0—p(k),1) f(K)

k=1i=0
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+...+Z Z R(i42,p) Jais+5—1 (0 —p(k), pr) f(k).

k=li=p—1

Based on the recurrence equation of the determining equation (2.1), one gets

V(o) = f(0) + A J &L (0 —p(t) f(L)VE+ (o) + AZJ 6?15?2 (0—1—p(t)) f(H)Vt
0 0

= f(0) + A J: Go¥? (0 —p(t) FL)VE+ (o) + Ay L Go¥i? (o —1—p(t) f(1)Vt

=A1v(o)+Ayv(o—T1)+T(0),

which is what we want to prove. O

Remark 4.4. In the case A; = ©, €22 (o) = ¢OA (0) and G (0) = G (o) are finite sums given by

o,u,r S, 1,1 o,u,r o,u,r
o, cezZ,
A — 2j8 1
Q:ézur( )— p 2]( —]T)] e O_EZerl
=0 r2jd+uw ’ ’
and
e, ceZ1,
A —
S (0= 0y (o E IS

A , GEZP+1 ,
=072 T (2§ + 1) 6+ )

so the explicit solution transforms to the following formula
A 0 A
V(o) = &7, (0)v(0) + 65 2 542, (0)VV(0) +J G55, (0—p(k) —1)A2) (k) VK
—T
o
+ Jo stAfs,r (c—p(k)) f(k)Vk, o€ Z;.

Remark 4.5. Ay and A; are permutable, i.e., AjA; = AyA;. Then, the representation of the explicit solution
is of the same structure, but the cosine-type and sine-type functions make into the following shapes

O, ceZ1,
Pl B () arale
et (o) =1 S 'TRB+w S\ 1 r(2i5+ )
210+pu—1
© (i1 yip,p(o—pr) _—
APAP A G
+- +Z< ) 1 2 FR+w 0€Zpr
and
e, - - ceZ
iA . (0.)(21+1)6+u 1 f < i1 >A _—_ (O__T)Er21+1)5+u71
S (0):={ & TR+ D+ | 5 (TR
(2i+1)d+p—1
X (i+1 P (o—pr)y r
+o AP AP , cezl
Ep( p ) PO T2+ )5+
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5. Ulam-Hyers stability: linear systems

One of the most important concept in the theory of differential equations is the data dependence.
There are some special data dependence in the theory of functional equations such as Ulam-Hyers, Ulam-
Hyers-Rassias, finite-time, Lyapunov, etc. Especially, the Ulam-Hyers-type stabilities were taken up by
a number of mathematicians and the study of this area has become one of the central subjects in the
mathematical analysis area. So, we discuss distinct types of Ulam-Hyers stabilities for the linear system.

Definition 5.1. System (4.3) is of Ulam-Hyers stability when there is a real number K > 0, for each € > 0
and each y : Z] — R™ fulfilling

{ 1VEy (0) =My (0) —Azy (0 —1) = f(0)[| <€, 0 € Z], T € 25, (5.1)

ly(o)—v (o) <e, 02

there exits an explicit solution v : Z] — R™ of (4.3) such that ||v (o) —y (0)| < Ke, 0 € Z].

Definition 5.2. System (4.3) is of Ulam-Hyers-Rassias stability w.r.t. ¥ when there is a real number Ky > 0,
for each € > 0, \p > 0, a nonincreasing ¥ : Zg — R, and each y : Zg — R™ fulfilling

0 (5.2)

{ |€V3%y (0) — Ay (0) —Apy (0 —7) —f(0)|| < e¥ (0), 0 € Z], v € 2y,
ly(o) = (o)|<ep, o€Z” .,

there exists an explicit solution v : Zg — IR™ of (4.3) such that ||v (c) —y (0)|| < Ky¥ (o) €, 0 € Z], where
Ky is a constant of Hyers-Ulam-Rassias.

Remark 5.3. From (5.1), there is g : Zg — R™ fulfilling

{ CVZPy (o) — Ay (o) — Ay (o—1) —f(0) =g(0), 0EZ], rE€Z,,
y(o)=v (o), Vv(o)=Vi (o), 0€Z’

where ||g (o) <€, o€ Z].
Remark 5.4. From (5.2), there is G : Zg — R™ fulfilling

{ CVady (o) — Ay (o) — Ay (0 —1) —f(0) =G (0), o EZ], T €Z,,
y(o)=v (o), Vv(o) =V (o), 0€Z’

where ||G (0)|| < ¥ (0)e, 0€Z].
Theorem 5.5. (4.3) is stable in the sense of Ulam-Hyers on Z{ .

Proof. For an arbitrary real number € >0,y : Z{ — R™ fulfills

{ |€V3%y (0) — Ay (0) —Axy (0—1) —f(0)|| <€, 0 € Z], T € Z,,
ly (@) =W (o)l <e [IVy(o) =V (o) <e 0€Zl, .

With the aid of Remark 5.3, there is g : Z] — R™ fulfilling

{ CVZy () — Ay (0) — Ay (6 —1)—f(0) =g(0), 0 € Z], T € Zy,
y(o) =1 (o), Vv(o)=Vi (o), c€Z

where ||g (o) < €, 0 € Z]. Base on Theorem 4.3 we have

0
Y (0) = Y2 (o) 01+ 68743, (V¥ (0)+ | &242 (0~ p(m) ~ 1) (m) Vm
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+ L S5a? (0—p(s) [f(s) +9 ()] Vs, 0 € Zy.

therefore, we can get

v (o)~ JO &24% (6 p(s)) g (5) Vs
ZH@%?ZG p(s HHQ

=1

(i\ sgxa o—p(s))H) ¢
s=1
( 0

.
- p(s))H) (Zggﬁllr Azl (s))> e =Ke,

w

> lesxa
5,0,

s=1

-
where K = >~ GQAHIH’”AZH (o0 —p(s)).(1.1) is stable in the setting of Ulam-Hyers on ZlT based on Definition
—1 e

s=
5.1. O

Theorem 5.6. (1.1) is stable in the sense of Ulam-Hyers-Rassias on Z.] .

Proof. For an arbitrary real number € >0,y : Z _; — R™ fulfills

{ HCV%{’y(G)—Aly( o) — Azy o—71) —f H e, 0EZ], T€Z,,
[y (o) = (o)| < e, VY (o o) <ep, 0z’

With the help of Remark 5.4, there is G : Z] — R™ holding

{ CV3y (o) =My (o) — Ay (o—1)—f(0) =G(0), 0 €Z], T€Zy,
y(o)=v (o), Vy(o) =V (o), 02,

where ||G (0)|| < e¥ (o), 0 € Z]. Base on Theorem 4.3 we have
0
y(0) = Y2 (01 01+ 68741, (V¥ (0)+ | &2¢2 (o — plm) 1) (m) Vm
-1

+ LU &24% (6 p(s)) [f(s) + G ()] Vs, 0 € Zi.

Therefore, we can get

[v(o) =y (o)] =

L &34 (g~ p(s)) G (s) Vs

s=1

< (Z [Sre (o—p(s))H) e (s)
5?1 .

< (Z etk (o—p(an) ¥ (o) < (Z@g,%;'"mz“ (c—p(s))> ¥ (0) = Ku¥ (0) €,
s=1 s=1

where Ky = Z 6”A1H 142] (0 —p(s)). The (1.1) is stable in the sense of Ulam-Hyers-Rassias on ZlT based
on the Deflrutlon 5.2. O
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6. Semilinear fractional difference system

The focus of this section is on analyzing the existence and uniqueness of solutions to the nabla frac-
tional nonlinear difference equation (6.1),

{ CVEV(0) =Av(0) +Mv (0 —T1) +f(0,v(0)), 0 €Zy, 6.1)

v(o) =Y (o), GEZ‘LW T €2y,

where the fractional order 25 is between 1 and 2. Regarding the system (6.1), it is our consistent assump-
tion that the function f (o, v) satisfies the Lipschitz condition with respect to the second variable:

I (o, v) = (oy)| < L llz—yll, o€ Z],
with 0 < £¢ < 1. By Theorem 4.3 the equation (6.1) is equivalent to
v (0) = €512 (0)v (0) + 6553, (0) VY (0)
0 o
+J G5y (0 —p(m) —1)Axp (m) VerJ Gy (o—p(s) f(s,v(s))Vs, 6 €2Z1.  (6.2)
-1 0
Theorem 6.1. Under the assumption that f (o, V) fulfills the Lipschitz condition and GQ,A;,H’“AZH (T)£¢T < 1, the

system (6.1) possesses a unique solution v (o).

Proof. 1t is enough to show that (6.1) is of a unique solution. To do this, one defines an operator 1T: Z] —
Zy by

Mv (o) =20 (0) + JOU 6?/16’?2 (c—p(s))f(s,v(s))Vs, neZ,

where
0
20 (0) = €122 (0)v (0) + G552, () Vv (0) + J G5y (0 — p(m) —1)Axp (m) Vm.
—T
The following estimation can be easily made:

(o)
max [Ty () ~ Ty (0] < max | @852 (0~ p(s)) s, (5) ~ (s, y (5)] Vs
oeZ] oeZ{ Jo "

o
<& M2 Ty e max Y v(s) —y (s)]

%
0EZ, s=0

<&Ml () g T max||v(s) —y (s)]].
" seZ]

According to the Banach fixed point theorem, the equation (6.2) possesses a unique solution within Z].
O

Through the utilization of our theoretical results, we will now investigate Ulam-Hyers stability for the
nabla fractional nonlinear difference equation within a finite time interval in this particular section. Our
attention now shifts to:

{ CV§v(0) = A1v (o) + Agv (0 —1) +f(0,v(0)), 0 € Zy, (6.3)

v(o)=v(0), Vy(o) =V (o), c€Z) , 1€y,

where ||A1]] < 1,1 <28 < 2.
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Definition 6.2. If any ¢ > 0 and v (o) satisfies the inequality
HCV(Z)5v (0)—A1v(o)—Ayv(o—1)—f(0,v (cr))H <e¢ oe€Z, (6.4)
and there is such a solution formula y (o) to (6.3) that
|v (o) =y (0)]| < Ce, ||V (o) —Vy(0)|] < Ce, 0€Z],

when C is a positive constant that does not depend on y(o) and v(o), the system (6.3) is classified as
Ulam-Hyers stable.

Prior to exploring the Ulam-Hyers stability criterion for the nabla fractional difference equation within
a finite time interval, it is crucial to lay the foundation with the following Remark, which proves to be
highly useful.

Remark 6.3. Assume that 1 < 26 < 2 and ¢ > 0. From (6.4), there exists x : Zg — R™ satisfying

{ vO y( ) Aly(g)_AZU(O-_T)_f( ) X(G)/ (YEZ}—,TEZZ,
y(o)=v (o), Vy(o) =V (o), 02’

where [x (0)|| <&, 0€Z].

Theorem 6.4. Suppose that f (o, V) is the Lipschitzan ||f (0, v) —f (0,y)|| < £¢ ||z —y|| and the Lipschitz constant
GQ,A;,H’HAZH (T) £¢T < 1. Then system (6.3) on o € ZlT is Ulam- Hyers stable with
GESI%]TH ||A2H (MT

C= .
6HA1H | Az]| (T) &T

Proof. Suppose that x (0), 0 € Z] fulfilling

{xlo)- CVE (0) = Arv(0) = Agv (o —1) =F {0,V (0), 65)

v(o)=v (o), Vy(o) =V (o), 0€Z) , 1€ 2.
Then, ||x (0)|| < &, the solutions v(0) and y(o) to systems (6.3) and (6.5) are
v (o) = €122 (0)v (0) + G552, L (0) Vv (0)
+JOT6§15$2(0—p(k) — ) A (k )Vk+J Go¥2 (0 —p(k) f(k, v (k) VK,
and
y (0) = €52 (0)v (0) + 6537, (o) Vv (0)
+[ ettt 00 anp 09 Vs [ 6252 (0 ple itk y (01 +x (09 7
respectively. Therefore, one admits
Vo) —y (@l < | &8s (0 pt) 10k v 1) = 10k y (] + ()] T

o o
< slaliaal 7y g, L Iv () =y (0 Ve L3110 (1) | G0 v

o
— GQ,A&;II,IIAZH )& Z v (k K|+ GIIAHI HAzII )Z Ix (k)



N. I. Mahmudov, M. Aydin, J. Nonlinear Sci. Appl., 18 (2025), 43-63 59

So one gets
[ Al ][ Azl [ Al [[ Azl -
< iA=2dt o T ibliAzdll
max v () —y (o) < &5 (M) 6T max [|v (o) —y (@) + S35, ! (1) 3 Ix (s)
max v (o) —y (o) < SQ'A&TTH,”AZH i Z Ix (s GQ'A&;H’HAZH T 13
1<o<T = 1—6!’%}”'”A2H T Iy Ts s 1_6!’%31[|/HA2H (T) £fT ’

7. Illustrative examples

In this section, we would like to concretize our theoretical findings with the help of an illustrative
examples.

Example 7.1. Consider the following delayed Caputo fractional linear discrete systems:

CVIev (o) = Ay (0) + Ayv (0 —2) +f (o), o€ ZS, 71
{v((r)—tl)(c),V\/(G)—Vd)(G),GGZOI, (7.1)
with
{HCV%*”y(c)—Aw(o)—Azy(o 2)—f(0)]| <08, cezg,
Iy (o) = (o) <1, [[Vy (o) o)| <1, 02,
and
{Hcvg5y(o)—A1y() Azy 0—2)—f(0)]| <08Y(0), o€ Z8,
Iy () = ()] <1, [|[Vy (o) =V (o || <1, oezol,
where

Ql:<8'02 8.02 )’%:<; 0 > V=05 V(o ):[cos(c—i—g),cos(c—kg)]T,‘l’(a):eG.

If y () : Z1 — R? satisfies (7.1), the there exists g (-) : Z; — R? such that ||g (0)|| < &, moreover

{ CV3y (o) = A1y (o) + Ay (0—2) +f(0) +g(0), o€ Z8,
y(o)=v (o), Vv(o) =V (o), c€Z’,,

also the solution of (7.1) is

(7.2)

y (0) = €5152(0)v (0) + 6542 5, () Vv (0)

0 o
+ L G545 (0 — p(m) —2)Ax (m) Vm+J G552 (0 —p(s) [f(s) + g (s)] Vs, o € Zy.

Let e =0.8,and g (-) : Z1 — R?, be as given below

glo)= [gcos (G—i—g), gsin <O'+;[):|T,

o= (o 3))  (Gon 7)) ) = Jemon

The Caputo fractional delayed difference system (7.2) is of the following unique solution

then clearly

y (0) = €5152(0)v (0) + G542 5, () Vv (0)
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0 o
+J S2¥52 (0 — p(m) — 2)Ax (me+J S35 (0= p(s)) [f(s) + g (s Vs, 0 € Zy.
) 0

Then we have

[v(o) =y (o) =

o
Zgéé,o.s,z (0—s+1)g(s) Vs
s=1

7

— 685052 ()9 (1) + 63052 (0 =1 g (2) -+ + 635, (1) 9 (0)

when o € Z§.
For some K > 0, according to Theorem 5.5, we have||v (o) —y (o)| < Ke.

Example 7.2. It follows from Theorem 4.2 that a representation of an explicit solution to the following
delayed Caputo fractional linear discrete systems

Cv(l).zv (0)=1v(0)+2v(c—2)+0, o€ Z°,
v(o)=1, Vv(0) =0, 0 € Z°,,

is given by
v (0) = €55 1,(0)V (0) + Sz 1 4,(0)VV (0)

0 o
+ J G4 062(0 —k—1)2 (k) Vi + J Gp6n (0—k+1)F(K)Vk, 0 € Zy, (7.3)
2 0

whose graph is presented in Figure 1.

V(o)

2000 -
1500
1000 -

500 -

T 1 S R S |
0 1 2 3 4 5 6

Figure 1: The simulation of the explicit solution (7.3).

Example 7.3. We take the following delayed Caputo fractional linear discrete systems into consideration:

{ CVi2v(0) = A1v (o) + Agv (0 —2) +f(0), 0 € ZS5, (7.4)

v(e) =¥ (o), Vv(o) =V (o), 0€Z,,

1 2 5 6 o 0?2 . .. .
where A1 = 3 4) Ay = 7 g) VP (o) = 0) f(o) = 0 . A representation of an explicit solution

to the system (7.4), which is directly calculated from Theorem 4.2, is of the following structure:

v(0) = €3 (0)v (0) + &, (0) Vv (0)
o

0
+J Goza(0—k—1)An (k) ij Sonza (0 —k+1)f(K)Vk, 0 € Zi.
-2 0

With v (o) = [v1 (o) vz (0)]T, each graph of v; (0), 1 =1,2 is offered in Figure 2.
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Figure 2: The graphs of components of the solution v (o) to system (7.4).

8. Conclusion

The significance of the Mittag-Leffler function is evident in its application to fractional calculus and
discrete fractional calculus models, which make use of newly defined operators. In our research, fresh
forms of the delayed nabla fractional cosine-type and sine-type matrix functions were introduced, specifi-
cally created for discrete applications, and labeled as the delayed discrete cosine-type and sine-type matrix
functions. The investigation focused on analyzing the expression of the solution for the delayed Caputo
fractional difference system, incorporating the noncommutative coefficients A; and A,. In order to derive
a clear and explicit representation of the solution, the study employed the delayed discrete cosine-type
and sine-type matrix functions, along with the nabla Laplace transform. In addition, we have explored
particular cases. The stabilities of a fractional delayed difference system with constant noncommutative
coefficients, according to Ulam-Hyers and Ulam-Hyers-Rassias criteria, have been established through the
analytical representation of the exact solution for the Caputo fractional delayed difference system.

By considering the system at hand, we are able to broaden the scope to include the creation of various
discrete fractional operators that are fundamental in nature. These operators include, but are not confined
to, the Atangana-Baleanu fractional difference operators, the Caputo-Fabrizio fractional difference opera-
tors. Furthermore, our findings can be augmented to encompass different types, such as multi-retarded
types, types with variable coefficients, higher-order linear discrete types. It is imperative to thoroughly
investigate each of these newly developed systems in order to analyze their respective properties.
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