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SOME PROPERTIES OF C-FRAMES OF SUBSPACES

M. H. FAROUGHI1, R. AHMADI2∗ AND Z. AFSAR3

Abstract. In [13] frames of subspaces extended to continuous version namely
c-frame of subspaces. In this article we consider to the relations between c-
frames of subspaces and local c-frames. Also in this article we give some im-
portant relation about duality and parseval c-frames of subspaces.

1. Introduction and preliminaries

Throughout this paper H will be a Hilbert space and H will be the collection
of all closed subspace of H, respectively. Also, (X,µ) will be a measure space,
and v : X → [0, +∞) a measurable mapping such that v 6= 0 a.e. We shall denote
the unit closed ball of H by H1.

Frames were introduced in the context of non-harmonic Fourier series [9], and
frame of subspaces introduced by Casazza and Kutyniok in [4]. Outside of signal
processing, frames did not seem to generate much interest until the ground break-
ing work of [8]. Since then the theory of frames began to be more widely studied.
During the last 20 years the theory of frames has been growing rapidly, several
new applications have been developed. For example, besides traditional appli-
cation as signal processing, image processing, data compression, and sampling
theory, frames are now used to mitigate the effect of losses in pocket-based com-
munication systems and hence to improve the robustness of data transmission on
[6], and to design high-rate constellation with full diversity in multiple-antenna
code design [12]. In [1, 2, 3] some applications have been developed.
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The frames of subspaces were considered by Casazza and Kutyniok [12]. In
that paper they formulated a general method for piecing together local frames to
get global frames. The importance of that approach is that it is both necessary
and sufficient for the construction of global frames of local frames.

In this paper we try to obtain relations between c-frames of subspaces and local
c-frames. Also we get many useful relation about dual discussions.

Definition 1.1. Let {fi}i∈I be a sequence of members of H. We say that {fi}i∈I

is a frame for H if there exist 0 < A ≤ B < ∞ such that for all h ∈ H

A‖h‖2 ≤
∑
i∈I

|〈fi, h
〉|2 ≤ B‖h‖2. (1.1)

The constants A and B are called frame bounds. If A,B can be chosen so that
A = B, we call this frame an A-tight frame and if A = B = 1 it is called a parseval
frame. If we only have the upper bound, we call {fi}i∈I a Bessel sequence. If
{fi}i∈I is a Bessel sequence then the following operators are bounded,

T : l2(I) → H, T (ci) =
∑
i∈I

cifi (1.2)

T ∗ : H → l2(I), T ∗(f) = {〈f, fi

〉}i∈I (1.3)

Sf = TT ∗f =
∑
i∈I

〈
f, fi

〉
fi. (1.4)

This operators are called synthesis operator, analysis operator and frame opera-
tor, respectively.

Theorem 1.2. Let {fi}i∈I be a frame with frame operator S. Then

h =
∑
i∈I

〈
h, S−1fi

〉
fi, ∀h ∈ H.

The series converges unconditionally for all h ∈ H.

Proof. See [7] Theorem 5.1.6. ¤
In case {fi}i∈I is an overcomplete frame, by Theorem 5.6.1 in [7] there exist

frames {gi}i∈I 6= {S−1fi}i∈I for which h =
∑

i∈I

〈
h, gi

〉
fi, for each h ∈ H. Such

frame is called dual frame of {fi}i∈I and {S−1fi}i∈I is called canonical dual frame
of {fi}i∈I .

Lemma 1.3. Assume that {fi}i∈I and {gi}i∈I are Bessel sequences in H. Then
the following are equivalent.
(i) h =

∑
i∈I

〈
h, fi

〉
gi, for each h ∈ H.

(ii) h =
∑

i∈I

〈
h, gi

〉
fi, for each h ∈ H.

(iii)
〈
h, k

〉
=

∑
i∈I

〈
h, fi

〉〈
gi, k

〉
, for each h, k ∈ H.

In case the equivalent condition are satisfied, {fi}i∈I and {gi}i∈I are dual frame
for H.

Proof. See [7] lemma 5.6.2. ¤
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Definition 1.4. For a countable index set I, let {Wi}i∈I be a family of closed
subspaces in H, and let {vi}i∈I be a family of weights, i.e., vi

〉
0 for all i ∈ I.

Then {Wi}i∈I is a frame of subspace with respect to {vi}i∈I for H if there exist
0 < C ≤ D < ∞ such that for all h ∈ H

C‖h‖2 ≤
∑
i∈I

vi
2‖πWi

(h)‖2 ≤ D‖h‖2 (1.5)

where πWi
is the orthogonal projection onto the subspace Wi.

We call C and D the frame bounds. The family {Wi}i∈I is called a C-tight
frame of subspaces with respect to {vi}i∈I for H, if in 1.5 the constants C and
D can be chosen so that C = D, a parseval frame of subspaces with respect to
{vi}i∈I for H provided C = D = 1 and an orthonormal basis of subspaces if
H =

⊕
i∈I Wi. If {Wi}i∈I possesses an upper frame bound, but not necessarily a

lower bound, we call it is a Bessel sequence of subspace with respect to {vi}i∈I

for H with Bessel bound D. The representation space employed in this setting is

(
∑
i∈I

⊕Wi)l2 = {{fi}i∈I |fi ∈ Wi and {||fi||}i∈I ∈ l2(I)}.

Let {Wi}i∈I be a frame of subspaces with respect to {vi}i∈I for H. The synthesis
operator, analysis operator and frame operator are defined by

TW : (
∑
i∈I

⊕Wi)l2 → H with TW (f) =
∑
i∈I

vifi,

T ∗
W : H → (

∑
i∈I

⊕Wi)l2 with T ∗
W (h) = {viπWi

(h)}i∈I ,

SW (h) = TW T ∗
W (h) =

∑
i∈I

v2
i πWi

(h).

By proposition 3.16 in [13], if {Wi}i∈I is a frame of subspaces with respect to
{vi}i∈I for H with frame bounds C and D then SW is a positive and invertible
operator on H with CId ≤ SW ≤ DId.
Continuous frame or frames associated with measurable space was introduced in
[10]. The basic definitions and properties are below:

Definition 1.5. Let (X,µ) be a measure space. Let f : X → H be weakly
measurable (i.e., for all h ∈ H, the mapping x → 〈

f(x), h
〉

is measurable). Then
f is called a continuous frame or c-frame for H if there exist 0 < A ≤ B < ∞
such that for all h ∈ H

A‖h‖2 ≤
∫

X

|〈f(x), h
〉|2dµ ≤ B‖h‖2. (1.6)

The representation space employed in this setting is

L2(X,µ)

= {ϕ : X → H| ϕ is measurable and

∫

X

||ϕ(x)||2dµ < ∞}.
The synthesis operator, analysis operator and frame operator are defined by
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Tf : L2(X,µ) → H

〈
Tfϕ, h

〉
=

∫

X

ϕ(x)
〈
f(x), h

〉
dµ(x). (1.7)

T ∗
f : H → L2(X,µ)

(T ∗
f h)(x) =

〈
h, f(x)

〉
. (1.8)

Sf : H → H

Sf = TfT
∗
f , (1.9)

〈
Sf (h), k

〉
=

〈
TfT

∗
f (h), k

〉
=

∫

X

〈
f(x), h

〉〈
k, f(x)

〉
dµ(x).

Also by Theorem 2.5. in [15] Sf is positive, self-adjoint and invertible.

Theorem 1.6. Let f be a continuous frame for H with a frame operator Sf and
let V : H → K be a bounded and invertible operator. Then V ◦ f is a continuous
frame for K with the frame operator V SfV

∗.

Proof. See [15]. ¤
Definition 1.7. Let f, g be c-frames for H. We say that g is a dual frame for f
if for each h, k ∈ H

〈
h, k

〉
=

∫

X

〈
h, f(x)

〉〈
g(x), k

〉
dµ(x).

By Theorem 1.6 S−1
f f is a c-frame for H with frame operator S−1

f . Also we have
∫

X

〈
h, f(x)

〉〈
S−1

f f(x), k
〉
dµ(x) =

∫

X

〈
h, f(x)

〉〈
f(x), S−1

f (k)
〉
dµ(x)

=
〈
Sf (h), S−1

f (k)
〉

=
〈
h, k

〉
,

thus S−1
f f is a dual frame for f and called canonical dual frame.

Now we will introduce the continuous version of frames of subspaces and we
shall obtain some useful properties as out it.

Definition 1.8. Let F : X → H be such that for each h ∈ H, the mapping
x 7→ πF (x)(h) is measurable (i.e. is weakly measurable ). We say that F is a
c-frame of subspaces with respect to v for H if there exist 0 < A ≤ B < ∞ such
that for all h ∈ H

A‖h‖2 ≤
∫

X

v2(x)‖πF (x)(h)‖2dµ ≤ B‖h‖2. (1.10)

F is called a tight c-frame of subspaces with respect to v for H if A,B can be
chosen so that A = B, and parseval if A = B = 1. If we only have the upper
bound, we call F is a c-Bessel mapping with respect to v for H.
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Definition 1.9. Let F : X → H. Let L2(X,H, F ) be the class of all measurable
mapping f : X → H such that for each x ∈ X, f(x) ∈ F (x) and

∫

X

‖f(x)‖2dµ < ∞.

It can be verified that L2(X,H, F ) is a Hilbert space with inner product de-
fined by

〈
f, g

〉
=

∫

X

〈
f(x), g(x)

〉
dµ

for f, g ∈ L2(X,H, F ).

Remark 1.10. For brevity, we shall denote L2(X,H, F ) by L2(X,F ). Let F be a
c-Bessel mapping with respect to v for H, f ∈ L2(X,F ) and h ∈ H. Then:

|
∫

X

v(x)
〈
f(x), h

〉
dµ| = |

∫

X

v(x)
〈
πF (x)(f(x)), h

〉
dµ|

= |
∫

X

v(x)
〈
f(x), πF (x)(h)

〉
dµ|

≤
∫

X

v(x)‖f(x)‖.‖πF (x)(h)‖dµ

≤ (

∫

X

‖f(x)‖2dµ)1/2(

∫

X

v2(x)‖πF (x)(h)‖2dµ)1/2

≤ B1/2‖h‖(
∫

X

‖f(x)‖2dµ)1/2.

So we may define:

Definition 1.11. Let F be a c-Bessel mapping with respect to v for H. We
define the pre-frame operator (synthesis operator) TF : L2(X,F ) → H, by

〈
TF (f), h

〉
=

∫

X

v(x)
〈
f(x), h

〉
dµ, (1.11)

where f ∈ L2(X,F ) and h ∈ H.

By the remark 1.10, TF : L2(X,F ) → H is a bounded linear mapping. Its
adjoint

T ∗
F : H → L2(X,F )

will be called analysis operator, and SF = TF ◦ T ∗
F will be called c-frame of

subspaces operator. The representation space in this setting is L2(X,F ).

Remark 1.12. Let F be a c-Bessel mapping with respect to v for H. Then TF :
L2(X,F ) → H is indeed a vector-valued integral, which for f ∈ L2(X,F ) we
shall denote by

TF (f) =

∫

X

vfdµ (1.12)
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where 〈 ∫

X

vfdµ, h
〉

=
〈 ∫

X

v(x)
〈
f(x), h

〉
dµ, h ∈ H.

For each h ∈ H and f ∈ L2(X,F ), we have〈
T ∗

F (h), f
〉

=
〈
h, TF (f)

〉

=

∫

X

v(x)
〈
h, f(x)

〉
dµ

=

∫

X

v(x)
〈
πF (x)(h), f(x)

〉
dµ

=
〈
vπF (h), f

〉
.

Hence for each h ∈ H,

T ∗
F (h) = vπF (h). (1.13)

So T ∗
F = vπF .

Definition 1.13. Let F and G be c-Bessel mapping with respect to vs for H.
We say F and G are weakly equal if T ∗

F = T ∗
G, which is equivalent with vπF (h) =

vπG(h), a.e. for all h ∈ H. Since, v 6= 0 a.e., F and G are weakly equal if
πF (h) = πG(h), a.e. for all h ∈ H.

Remark 1.14. Let TF = 0. Now, let O : X → H be defined by O(x) = {0}, for
almost all x ∈ X. Then O is a c-Bessel mapping with respect to v and TO = 0.
Let h ∈ H. Since vπF (h) ∈ L2(X,F ), so∫

X

v2(x)
〈
πF (x)(h), πF (x)(h)

〉
dµ =

∫

X

v(x)
〈
v(x)πF (x)(h), h

〉
dµ

=
〈
TF (vπF (h)), h

〉
= 0.

Thus, πF (x)(h) = 0, a.e. Therefore, πF (h) = πO(h), a.e. Hence F and O are
weakly equal.

2. Main Result

Definition 2.1. Let F be a c-Bessel mapping with respect to v for H, we shall
denote

AF,v = inf
h∈H1

‖vπF (h)‖2, (2.1)

BF,v = sup
h∈H1

‖vπF (h)‖2 = ‖vπF‖2. (2.2)

Remark 2.2. Let F be a c-Bessel mapping with respect to v for H. Since, for
each h ∈ H 〈

TF T ∗
F (h), h

〉
= ‖vπF (h)‖2,

AF,v and BF,v are optimal scalars which satisfy

AF,v ≤ TF T ∗
F ≤ BF,v.

So F is a c-frame of subspaces with respect to v for H if and only if AF,v > 0.
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Proposition 2.3. The following conditions are equivalent.
(i) F is a c-frame of subspaces with respect to v for H with bounds C and D.
(ii) CId ≤ SF ≤ DId.
Moreover the optimal bounds are ‖SF‖ and ‖S−1

F ‖−1.

Proof. (i) ⇒ (ii) is obvious. For (ii) ⇒ (i), let T ∗
F denote the analysis operator

of F . Since SF = TF T ∗
F and then ‖TF‖2 = ‖SF‖, for each h ∈ H, we have

∫

X

v2‖πF (h)‖2 dµ = ‖T ∗
F (h)‖2 ≤ ‖T ∗

F‖2‖h‖2 = ‖SF‖‖h‖2 ≤ D‖h‖2

Also for all h ∈ H,

‖T ∗
F (h)‖2 =

〈
TT ∗(h), h

〉
=

〈
SF h, h

〉
=

〈
S

1
2 h, S

1
2 h

〉
= ‖S 1

2 h‖2 ≥ C‖h‖2.

Also

‖SF‖ = sup
h∈H1

〈
SF (h), h

〉
= sup

h∈H1

‖vπF (h)‖2 = BF,v.

So the optimal upper bound is ‖SF‖. For the optimal lower bound, if C be the
lower bound we have

C‖h‖2 ≤ 〈
S

1/2
F (h), S

1/2
F (h)

〉 ≤ D‖h‖2,

now put h = S
−1/2
F (h). We have

C‖S−1/2
F (h)‖2 ≤ 〈

h, h
〉 ≤ D‖S−1/2

F (h)‖2,

thus

‖S−1
F ‖ = sup

h∈H1

‖S−1/2
F (h)‖2 ≤ C−1.

We conclude that AF,v ≤ ‖S−1
F ‖−1. In other implication we have

‖h‖ ≤ ‖S−1/2
F ‖‖S1/2

F (h)‖.
Hence

inf
h∈H1

‖S1/2
F (h)‖2 ≥ inf

h∈H1

‖h‖2‖S−1/2
F ‖−2 = ‖S−1

F ‖−1,

we conclude that AF,v ≥ ‖S−1
F ‖−1. Finally AF,v = ‖S−1

F ‖−1. ¤

We will need the following results on operators from [11].

Lemma 2.4. Let V be a closed subspace of H and let T be a bounded and invert-
ible operator on H. Then the following assertions are equivalent:
(i) πTV T = TπV .
(ii) T ∗TV ⊂ V.

Lemma 2.5. Let V be a closed subspace of H and let T be a bounded and invert-
ible operator on H. Then

πV T ∗ = πV T ∗πTV .

Lemma 2.6. Let F be a c-Bessel mapping with respect to v for H. Then F is
c-frame of subspaces with respect to v for H if and only if TF is surjective.
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Proof. Let AF,v > 0. Since, for each h ∈ H

〈
TF T ∗

F (h), h
〉

=

∫

X

v2(x)||πF (x)(h)||2dµ

= ||vπF (h)||2
≥ AF,v‖h‖2.

Therefore, TF : L2(X,F ) → H is surjective. Now let TF is surjective. Let

T †
F : L2(X,F ) → H

be its pseudo-inverse. Since for each h ∈ H

‖h‖ = ‖T †∗
F T ∗

F (h)‖
≤ ‖T †∗

F ‖‖T ∗
F (h)‖

= ‖T †∗
F ‖‖vπF (h)‖,

so AF,v ≥ ‖T †∗
F ‖−2 > 0. ¤

Lemma 2.7. Let F be a c-Bessel mapping with respect to v for H. Then the
frame operator SF = TF T ∗

F is invertible if and only if F is a c-frame of subspaces
with respect to v for H.

Proof. Let SF = TF T ∗
F be invertible. We have

AF,v ≤ inf
h∈H

‖T ∗
F‖ = inf

h∈H

〈
TF T ∗

F (h), h
〉 ∈ σ(TF T ∗

F ),

so AF,v > 0. Now let F be a c-frame of subspaces with respect to v for H. So by
the Lemma 2.6, TF is surjective. Thus there exist A > 0 such that for all h ∈ H

A‖h‖ ≤ ‖T ∗
F (h)‖.

Hence for all h ∈ H

〈
SF (h), h

〉
= ‖T ∗

F (h)‖2 ≥ A2‖h‖2.

Thus by Proposition 3.2.12 in [14], SF is invertible. ¤

Proposition 2.8. Let F be a c-frame of subspaces with respect to v for H, with
c-frame of subspaces operator SF and let T be a bounded and invertible operator
on H. Then TF is a c-frame of subspaces with respect to v for H with c-frame
of subspaces operator STF satisfying

TSF T ∗

‖T‖2
≤ STF ≤ ‖T−1‖2TSF T ∗.
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Proof. By employing Lemma 2.5, for each h ∈ H we have,

〈TSF T ∗

‖T‖2
h, h

〉
=

1

‖T‖2

〈
SF T ∗h, T ∗h

〉

=
1

‖T‖2

∫

X

v2‖πF (x)(T
∗h)‖2 dµ

=
1

‖T‖2

∫

X

v2‖πF (x)T
∗πTF (x)(h)‖2 dµ

≤ ‖T ∗‖2

‖T‖2

∫

X

v2‖πTF (x)(h)‖2 dµ

=
〈
STF h, h

〉
.

Now for the upper bound, by applying Lemma 2.5 to TF (x) and T−1 we have,

πTF (x) = πTF (x)T
∗−1

πF (x)T
∗. Thus

〈
STF h, h

〉
=

∫

X

v2(x)‖πTF (x)(h)‖2dµ

=

∫

X

v2(x)‖πTF (x)T
∗−1

πF (x)T
∗(h)‖2dµ

≤ ‖T−1‖2

∫

X

v2(x)‖πF (x)T
∗(h)‖2dµ

= ‖T−1‖2
〈
SF (T ∗h), (T ∗h)

〉

= ‖T−1‖2
〈
TSF T ∗(h), h

〉
,

and this completes the proof, by Proposition 2.3. ¤

By imposing some extra conditions on Proposition 2.8, we determine STF pre-
cisely as follow.

Proposition 2.9. Let F be a c-frame of subspaces with respect to v for H, with c-
frame of subspaces operator SF and let T be a bounded, self-adjoint and invertible
operator, on H satisfying

T ∗T (F (x)) ⊆ F (x), (2.3)

for all x ∈ X. Then TF is a c-frame of subspaces with respect to v for H with
c-frame of subspaces operator TSF T−1.

Proof. Since T is invertible and bounded, then TF is a c-frame of subspaces with
respect to v for H. Now for determining the related c-frame of subspaces operator
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precisely, we apply the Lemma 2.4

〈
STF h, k

〉
=

∫

X

v2(x)
〈
πTF (x)(h), k

〉
dµ

=

∫

X

v2(x)
〈
TπF (x)(T

−1h), k
〉
dµ

=

∫

X

v2(x)
〈
πF (x)(T

−1h), Tk
〉
dµ

=
〈 ∫

X

v2πF (T−1h)dµ, Tk
〉

=
〈
T

∫

X

v2πF (T−1h)dµ, k
〉

=
〈
TSF T−1h, k

〉
,

for all h, k ∈ H. Now the proof follows by proposition 2.3. ¤

Now we shall have some reconstruction formula for a signal by employing local
c- frames properties and then combining them globally with a focus on c- frame
of subspace property of a system of local c-frames. Also we will show some other
relations between these local c-frames of a system and the system itself, with a
frame of subspaces structure.

Definition 2.10. Let (X,µ) and (Y, λ) be two measure spaces. Let f : X×Y →
H and F : X → H. Let for each x ∈ X, f(x, .) : Y → F (x) be a c-frame for
F (x). Then (F, f) is called a system of local c-frames. Also, the system of local
c-frames (F, f) is called a system of c-frame of subspaces with respect to v for H
if F is a c-frame of subspaces with respect to v for H.

Theorem 2.11. Let (X,µ) and (Y, λ) be two σ-finite measure space. Let f :
X × Y → H, F : X → H be weakly measurable mappings. Let (F, f) be the
system of local c-frames. Let

0 < A(x) = inf
x∈F (x)1

∫

Y

|〈f(x, y), h
〉|2dλ

≤ sup
x∈F (x)1

∫

Y

|〈f(x, y), h
〉|2dλ = B(x) < ∞,

and let

0 < A = inf
x

A(x) ≤ sup
x

B(x) = B < ∞.

Then, (F, f) is a system of c-frame of subspaces with respect to v for H if and
only if

v.f : X × Y → H,

(x, y) 7→ v(x)f(x, y)

is a continuous frame for H.
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Proof. For each h ∈ H we have

A‖vπF (x)(h)‖2 = A

∫

X

v2(x)‖πF (x)(h)‖2dµ

≤
∫

X

A(x)v2(x)‖πF (x)(h)‖2dµ

≤
∫

X

∫

Y

|〈v(x)πF (x)(h), f(x, y)
〉|2dλdµ

=

∫

X

∫

Y

|〈h, v(x)f(x, y)
〉|2dλdµ

=

∫

X×Y

|〈v(x)f(x, y), h
〉|2d(µ× λ)

=

∫

X

∫

Y

|〈πF (x)(h), v(x)f(x, y)
〉|2dλdµ

≤
∫

X

B(x)v2(x)‖πF (x)(h)‖2dµ

≤ B

∫

X

v2(x)‖πF (x)(h)‖2dµ,

and the Theorem is proved. ¤

Proposition 2.12. Let (X,µ) and (Y, λ) be two σ-finite measure spaces, f :
X × Y → H and F : X → H be weakly measurable mappings. Let (F, f) be
a system of c-frame of subspaces with c-frame of subspaces operator SF . Let
f̃(x, .) : Y → F (x) be a dual frame of f(x, .) : Y → F (x) for all x ∈ X, such that

f̃ : X × Y → H be weakly measurable. Then for each h ∈ H, we have:
(i)Reconstruction formula

h =

∫

X

v2S−1
F πF (h) dµ.

(ii)For each h, k ∈ H we have

〈
h, k

〉
=

∫

X×Y

〈
h, vf

〉〈
S−1

F vf̃ , k
〉
d(µ× λ),

so S−1
F vf̃ : X × Y → H is a dual frame for c-frame v.f : X × Y → H.
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Proof. (i) Since SF is invertible and bounded, for all h ∈ H by applying remark
1.12 we have

〈
h, k

〉
=

〈
S−1

F SF h, k
〉

=
〈 ∫

X

v2πF (h) dµ, S−1
F k

〉

=

∫

X

v2(x)
〈
πF (x)(h), S−1

F k
〉
dµ

=

∫

X

v2(x)
〈
S−1

F πF (x)(h), k
〉
dµ

=
〈 ∫

X

v2S−1
F πF (h) dµ, k

〉
.

(ii) By (i) we have

〈
h, k

〉
=

∫

X

v2(x)
〈
S−1

F πF (x)(h), k
〉
dµ

=

∫

X

v2(x)
〈
πF (x)(h), S−1

F k
〉
dµ

=

∫

X

v2(x)

∫

Y

〈
πF (h), f(x, y)

〉〈
f̃(x, y), S−1

F k
〉
dλdµ

=

∫

X

∫

Y

〈
h, v(x)f(x, y)

〉〈
S−1

F v(x)f̃(x, y), k
〉
dλdµ

=

∫

X×Y

〈
h, vf

〉〈
S−1

F vf̃ , k
〉
d(µ× λ).

¤

By theorem 2.11, v.f is a c-frame for H with associated c-frame operator Sf ,
then we can use the (global) canonical dual frame S−1

f v.f to perform centralized
reconstruction,

〈
h, k

〉
=

∫

X×Y

〈
h, v.f

〉〈
S−1

f v.f̃ , k
〉
d(µ× λ).

The c-frame of subspaces operators can be expressed in terms of local c-frame
operators, as follows:

We denote the synthesis and analysis operator for f(x, .) by Tx and T ∗
x , respec-

tively.

Proposition 2.13. Let T ∗
x̃ , Tx be the associated analysis operators of f̃(x, .) :

Y → F (x) and synthesis operators of f(x, .) : Y → F (x). Let x 7→ TxT
∗
x̃ from X

to B(H, H) is measurable. With the hypothesis of Proposition 2.12 the c-frame
of subspaces operator can be written as

SF (h) =

∫

X

v2TxT
∗
x̃ (h) dµ.
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Proof. For each h, k ∈ H

〈
SF (h), k

〉
=

∫

X

v2(x)
〈
πF (x)(h), k

〉
dµ

=

∫

X

v2(x)
〈
πF (x)(h), πF (x)k

〉
dµ

=

∫

X

v2(x)

∫

Y

〈
h, f̃(x, y)

〉〈
f(x, y), k

〉
dλdµ

=

∫

X

v2(x)

∫

Y

T ∗
x̃ (h)(y)

〈
f(x, y), k

〉
dλdµ

=

∫

X

v2(x)
〈
TxT

∗
x̃ (h), k

〉
dµ

=
〈 ∫

X

v2TxT
∗
x̃ (h)dµ, k

〉
.

¤

Similarly, we have

SF (h) =

∫

X

vTx̃T
∗
x (h) dµ.

Theorem 2.14. With the hypothesis of proposition 2.12 if for each x ∈ X,
f(x, .) : Y → F (x), is a parseval c-frame for F (x). Then F is a parseval c-
frame of subspaces.

Proof. Since f(x, .) : Y → F (x) are Pareval c-frames for all x ∈ X, then Sf(x,.) =
I. We have

〈
SF h, k

〉
=

∫

X

v2(x)
〈
πF (h), k

〉
dµ

=

∫

X

v2(x)

∫

Y

〈
πF (h), f(x, y)

〉〈
f(x, y), k

〉
dλdµ

=

∫

X×Y

〈
h, v(x)f(x, y)

〉〈
v(x)f(x, y), k

〉
d(µ× λ)

=

∫

X×Y

|〈h, v(x)f(x, y)
〉|2d(µ× λ)

=
〈
h, h

〉
.

Hence SF = I. This complete the proof. ¤
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