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Abstract
The oscillatory behavior of solutions of an even-order neutral differential equation with distributed deviating arguments

is considered using Riccati, generalized Riccati transformations, integral averaging technique of Philos type and the theory of
comparison. New sufficient conditions are established in both canonical and noncanonical cases. Two examples are given to
support our results.
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1. Introduction

In this article, we discuss the oscillation property of solutions of the even-order neutral differential
equation (

a (τ)
(
v
(n−1)

(τ)
)γ)′

+

∫b
a

q (τ, s) f (x (g (τ, s)))ds = 0, τ > τ0, (1.1)

where v(τ) = x (τ) +
∫d
c p (τ,µ) x (σ (τ,µ))dµ, γ is a quotient of odd positive integers and n > 4 is an even

integer under the condition

δ (τ0) =

∫∞
τ0

1

a
1
γ (τ)

dτ =∞, or δ (τ0) =

∫∞
τ0

1

a
1
γ (τ)

dτ <∞.

Throughout the paper, we assume that

(H1) a (τ) ∈ C1 ([τ0,∞), (0,∞)) , a′ (τ) > 0;
(H2) p (τ,µ) ∈ C ([τ0,∞)× [c,d] , [0,∞)) , 0 6

∫d
c p (τ,µ)dµ 6 p < 1;

(H3) σ (τ,µ) ∈ C ([τ0,∞)× [c,d] ,R) , ∂σ(τ,µ)
∂µ > 0, σ (τ,µ) 6 τ, and lim inf

τ→∞ σ (τ,µ) =∞;

Email address: amina.aboalnour@science.menofia.edu.eg (A. A. El-Gaber)

doi: 10.22436/jnsa.017.02.01

Received: 2023-10-11 Revised: 2023-12-04 Accepted: 2024-01-16

http://dx.doi.org/10.22436/jnsa.017.02.01
http://dx.doi.org/10.22436/jnsa.017.02.01
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.017.02.01&domain=pdf


A. A. El-Gaber, J. Nonlinear Sci. Appl., 17 (2024), 82–92 83

(H4) q (τ, s) ∈ C ([τ0,∞)× [a,b] , [0,∞)), f ∈ C (R,R) , with f (z) /zβ > K, for all z 6= 0, and for some
positive constant K and β is a quotient of odd positive integers;

(H5) g (τ, s) ∈ C([τ0,∞) × [a,b] ,R), ∂g(τ,s)
∂s > 0, g (τ, s) 6 τ,g′∗ (τ) > 0, where g∗ (τ) = g (τ,a), and

lim inf
τ→∞ g (τ, s) =∞.

By a solution of (1.1), we mean a nontrivialfunction x (τ) ∈ C(n−1) ([τx,∞)) , τx > τ0, which has the

property a (τ)
(
v
(n−1)

(τ)
)γ
∈ C1 ([τ1,∞)) and satisfies (1.1). We consider only those solutions x (τ) of

(1.1), which satisfy sup {|x (τ)| : τ > τ∗} > 0 for τ∗ > τx. A solution x (τ) of (1.1) is termed oscillatory if it
has arbitrarily large zeros on [τx,∞); otherwise, it is said to be nonoscillatory. Equation (1.1) is termed
oscillatory if all its solutions oscillate.

In dynamical models, delay and oscillation effects are often formulated by means of external sources
and/or nonlinear diffusion, perturbing the natural evolution of related systems; see, e.g., [10, 11, 18]. It
is notable that in the last few decades, there has been considerable interest in studying the oscillation
property of solutions of differential equations and applications; see [1, 2, 4, 8, 9, 12, 15–17] and the
references therein. Moreover, in the modeling of various problems arising in engineering and natural
sciences, the authors often use differential equations with distributed deviating arguments. Therefore,
the analysis of qualitative properties of solutions of such equations is crucial for applications, see [23, 24].
Meanwhile, we mention here the works of Zhang et al. [25, 26] and Li and Rogovchenko [14], where they
studied the higher-order half-linear delay differential equation(

r (τ)
(
x
(n−1)

(τ)
)α)′

+ q (τ) xβ (g (τ)) = 0,

α,β are the ratios of odd positive integers, β 6 α. More recently Li and Rogovchenko [13] were concerned
with the oscillation of solutions of equation

v
(n)

(τ) + h (τ) x (σ (τ)) = 0,

with v (τ) = x (τ) + p (τ) x (g (τ)) . It is notable that the asymptotic behavior of higher-order neutral differ-
ential equations with distributed deviating arguments has received few interest in the literature. Recently,
Moaaz et al. [19] studied the oscillation of the differential equation(

a (τ)
(
v
(n−1)

(τ)
))′

+

∫b
a

h (τ,u) f (x (g (τ,u)))du = 0, τ > τ0,

with v (τ) = xα (τ) + p (τ) x (σ (τ)) in the canonical case.
In this article, we are concerning with the oscillatory behavior of solutions of Eq. (1.1) by applying the

Riccati, generalized Riccati transformations, integral averaging technique of Philos type and the theory of
comparison. In this work we shall consider both canonical and noncanonical cases.

2. Auxiliary lemmas

In this section, we outline some lemmas needed for our results.

Lemma 2.1 ([20]). Let y (τ) be a positive and m-times differentiable function on an interval [τ0,∞), with non-
positive mth derivative y(m) (τ), which is not identically zero on any interval [τ1,∞), τ1 > τ0, and such that
y(m−1) (τ)y(m) (τ) 6 0. Then there exist constants 0 < ξ < 1 and P > 0 such that y′ (ξτ) > Pτm−2y(m−1) (τ)

for all sufficient large τ.

Lemma 2.2 ([2]). Let y(m) (τ) be of fixed sign and y(m−1) (τ)y(m) (τ) 6 0, for all τ > τ0. If limτ→∞ y (τ) 6= 0,
then for every ξ ∈ (0, 1) there may exist τξ > τ such that y (τ) > ξ

(m−1)!τ
m−1

∣∣y(m−1) (τ)
∣∣ for τ > τξ.



A. A. El-Gaber, J. Nonlinear Sci. Appl., 17 (2024), 82–92 84

Lemma 2.3 (Philos, [21]). Let y ∈ CI ([τ0,∞),R+) . If y(I) (τ) is eventually of one sign for all large τ, then there
exist a τ1 > τ0 and an integer i, 0 6 i 6 I with I+ i even for y(I) (τ) > 0, or I+ i odd for y(I) (τ) 6 0 such that

i > 0 yields y(j) (τ) > 0 for τ > τ1, j = 0, 1, . . . , i− 1, and

i 6 I− 1 yields (−1)i+j y(j) (τ) > 0 for τ > τ1, j = i, i+ 1, . . . , I− 1.

Lemma 2.4. Suppose that x (τ) is a solution of (1.1), which is eventually positive. Assume that v′ (τ) > 0. Then(
a (τ)

(
v(n−1) (τ)

)γ)′
6 −q1 (τ) v

β (g∗ (τ)) , (2.1)

where q1 (τ) = K (1 − p)β
∫b
a q (τ, s)ds.

Proof. The proof is very similar to the proof of Lemma 2.4 of [6].

3. Oscillation results

In this section, we begin with the canonical case δ (τ0) =∞.

Theorem 3.1. If there exist ϑ (τ) ∈ C1 ([τ0,∞), (0,∞)) ,b (τ) ∈ C1 ([τ0.∞), [0,∞)), κ ∈ (0, 1), and ε,C > 0,β >
γ > 1 such that

∫∞
τ0

Ω (ξ) − a (ξ) ϑ (ξ)

[
ϑ′(ξ)
ϑ(ξ) + (γ+ 1) κεg′∗ (ξ)gn−2

∗ (ξ)b
1
γ (ξ)

]γ+1

(γ+ 1)γ+1 [κεg′∗ (ξ)gn−2
∗ (ξ)

]γ
dξ =∞, (3.1)

where Ω (τ) = ϑ (τ)
(
Cβ−γq1 (τ) − [a (τ)b (τ)]′

)
+ κεg′∗ (τ)g

n−2
∗ (τ)a (τ) ϑ (τ)b1+ 1

γ (τ) , then Eq. (1.1) is
oscillatory.

Proof. For the sake of contradiction, suppose that x (τ) is an eventually positive solution of (1.1) on [τ0,∞).
Then there exists τ1 > τ0 such that x (σ (τ,µ)) > 0 and x (g (τ, s)) > 0 for τ>τ1. Hence we deduce that
v (τ) > 0 for τ>τ1, and (

a (τ)
(
v
(n−1)

(τ)
)γ)′

= −

∫b
a

q (τ, s) f (x (g (τ, s)))ds 6 0.

Using Lemma 2.3, we obtain

v (τ) > 0, v′ (τ) > 0, v(n−1) (τ) > 0 and v(n) (τ) 6 0, (3.2)

for τ > τ1, and by using Lemma 2.4, we obtain (2.1). Define

w (τ) = ϑ (τ)

[
a (τ)

(
v(n−1) (τ)

)γ
v
γ (κg∗ (τ))

+ a (τ)b (τ)

]
. (3.3)

It is clear by (3.3) that w (τ) > 0 for τ > τ1, and

w′ (τ) =
ϑ′ (τ)

ϑ (τ)
w (τ) + ϑ (τ) [a (τ)b (τ)]′ + ϑ (τ)

(
a (τ)

(
v
(n−1)

(τ)
)γ)′

vγ (κg∗ (τ))

− ϑ (τ)
γκa (τ)g′∗ (τ)

(
v
(n−1)

(τ)
)γ
v′ (κg∗ (τ))

vγ+1 (κg∗ (τ))
,
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i.e.,

w′ (τ) 6
ϑ′ (τ)

ϑ (τ)
w (τ) + ϑ (τ) [a (τ)b (τ)]′ − ϑ (τ)

q1 (τ) v
β (g∗ (τ))

vγ (κg∗ (τ))

− ϑ (τ)
γκa (τ)g′∗ (τ)

(
v
(n−1)

(τ)
)γ
v′ (κg∗ (τ))

vγ+1 (κg∗ (τ))
.

By Lemma 2.1, and since v
(n−1)

(τ) is nonincreasing, we have

v′ (κg∗ (τ)) > εg
n−2
∗ (τ) v

(n−1)
(g∗ (τ)) > εg

n−2
∗ (τ) v

(n−1)
(τ) . (3.4)

Since v (τ) is positive and increasing, we have

v (g∗ (τ)) > v (κg∗ (τ)) .

Moreover, since there may exist a positive constant C such that v (g∗ (τ)) > C, then

w′ (τ) 6
ϑ′ (τ)

ϑ (τ)
w (τ) + ϑ (τ) [a (τ)b (τ)]′ −Cβ−γϑ (τ)q1 (τ) − ϑ (τ)

γκεa (τ)g′∗ (τ)
(
v(n−1) (τ)

)γ+1
gn−2
∗ (τ)

vγ+1 (κg∗ (τ))
,

and from the definition of w, we have

v
(n−1)

(τ)

v (κg∗ (τ))
=

1

a
1
γ (τ)

[
w (τ)

ϑ (τ)
− [a (τ)b (τ)]

] 1
γ

,

then

w′ (τ) 6
ϑ′ (τ)

ϑ (τ)
w (τ) + ϑ (τ) [a (τ)b (τ)]′ −Cβ−γϑ (τ)q1 (τ) (3.5)

− γκεg′∗ (τ)g
n−2
∗ (τ)

ϑ (τ)

a
1
γ (τ)

(
w (τ)

ϑ (τ)
− [a (τ)b (τ)]

)γ+1
γ

.

Now we define

Φ =
w (τ)

ϑ (τ)
and Ψ = a (τ)b (τ) .

And by using the inequality (see [22])

Φ1+ 1
γ − (Φ−Ψ)1+ 1

γ 6 Ψ
1
γ

[(
1 +

1
γ

)
Φ−

1
γ
Ψ

]
, ΦΨ > 0, γ > 1,

we have(
w (τ)

ϑ (τ)
− [a (τ)b (τ)]

)γ+1
γ

>

[
w (τ)

ϑ (τ)

]1+ 1
γ

+
1
γ
[a (τ)b (τ)]1+

1
γ −

(
1 +

1
γ

)
[a (τ)b (τ)]

1
γ

ϑ (τ)
w (τ) . (3.6)

Using (3.5) and (3.6), for τ > τ1, we have

w′ (τ) 6
ϑ′ (τ)

ϑ (τ)
w (τ) + ϑ (τ) [a (τ)b (τ)]′ −Cβ−γϑ (τ)q1 (τ)

+ γκεg′∗ (τ)g
n−2
∗ (τ)

ϑ (τ)

a
1
γ (τ)

[(
1 +

1
γ

)
[a (τ)b (τ)]

1
γ

ϑ (τ)
w (τ) −

1
γ
[a (τ)b (τ)]1+

1
γ −

w1+ 1
γ (τ)

ϑ1+ 1
γ (τ)

]
.
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Then

w′ (τ) 6 ϑ (τ)
(
[a (τ)b (τ)]′ −Cβ−γq1 (τ)

)
+

[
ϑ′ (τ)

ϑ (τ)
+ (γ+ 1) κεg′∗ (τ)g

n−2
∗ (τ)b

1
γ (τ)

]
w (τ)

−
γκεg′∗ (τ)g

n−2
∗ (τ)

a
1
γ (τ) ϑ

1
γ (τ)

w1+ 1
γ (τ) − κεg′∗ (τ)g

n−2
∗ (τ)a (τ) ϑ (τ)b1+ 1

γ (τ) .

Now letting

T =
ϑ′ (τ)

ϑ (τ)
+ (γ+ 1) κεg′∗ (τ)g

n−2
∗ (τ)b

1
γ (τ) , R =

γκεg′∗ (τ)g
n−2
∗ (τ)

a
1
γ (τ) ϑ

1
γ (τ)

, and Y = w (τ) ,

and using the inequality (see [3])

TY − RY
κ+1
κ 6

κκ

(κ+ 1)κ+1
Tκ+1

Rκ
,R > 0 and T are constants, (3.7)

then we have

w′ (τ) 6 −Ω (τ) + a (τ) ϑ (τ)

[
ϑ′(τ)
ϑ(τ) + (γ+ 1) κεg′∗ (τ)gn−2

∗ (τ)b
1
γ (τ)

]γ+1

(γ+ 1)γ+1 [κεg′∗ (τ)gn−2
∗ (τ)

]γ . (3.8)

Integrating (3.8) from τ1 to τ, we obtain

∫τ
τ1

Ω (ξ) − a (ξ) ϑ (ξ)

[
ϑ′(ξ)
ϑ(ξ) + (γ+ 1) κεg′∗ (ξ)gn−2

∗ (ξ)b
1
γ (ξ)

]γ+1

(γ+ 1)γ+1 [κεg′∗ (ξ)gn−2
∗ (ξ)

]γ
dξ 6 w (τ1) −w (τ) ,

which contradicts (3.1) and so the proof is completed.

Theorem 3.2. If there exist ξ (τ) ∈ C1 ([τ0,∞), (0,∞)) and a positive constant L such that β 6 γ. If∫∞
τ0

[
ξ (u)q1 (u) −

[ξ′ (u)]2 a (u)

4Lξ (u)g′∗ (u)g
(n−1)β−1
∗ (u)

]
du =∞, (3.9)

then equation (1.1) oscillates.

Proof. For the sake of contradiction, suppose that x (τ) is an eventually positive solution of (1.1) on [τ0,∞).
Then there exists τ1 > τ0 such that x (σ (τ,µ)) > 0 and x (g (τ, s)) > 0 for τ>τ1. As in the proof of Theorem
3.1, we obtain (3.2), and also (2.1) is satisfied. Now letting

φ (τ) =
ξ (τ)a (τ)

[
v
(n−1)

(τ)
]γ

[v (κg∗ (τ))]
β

,

then φ (τ) > 0, and

φ′ (τ) =
ξ′ (τ)

ξ (τ)
φ (τ) +

ξ (τ)
[
a (τ)

[
v
(n−1)

(τ)
]γ]′

[v (κg∗ (τ))]
β

− ξ (τ)
βκa (τ)g′∗ (τ)

(
v(n−1) (τ)

)γ
vβ−1 (κg∗ (τ)) v′ (κg∗ (τ))

v2β (κg∗ (τ))

6
ξ′ (τ)

ξ (τ)
φ (τ) −

ξ (τ)q1 (τ) [v (g∗ (τ))]
β

[v (κg∗ (τ))]
β

− ξ (τ)
βκa (τ)g′∗ (τ)

(
v(n−1) (τ)

)γ
vβ−1 (κg∗ (τ)) v′ (κg∗ (τ))

v2β (κg∗ (τ))
.

(3.10)
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Now from Lemma 2.2, for every λ ∈ (0, 1), we have

v (κg∗ (τ)) >
λκn−1gn−1

∗ (τ) v(n−1) (κg∗ (τ))

n− 1!
, τ > τλ > τ1. (3.11)

Now since v is increasing and as in Theorem 3.1, we have (3.4). Now using (3.4), (3.10), and (3.11), we
obtain

φ′ (τ) 6
ξ′ (τ)

ξ (τ)
φ (τ) − ξ (τ)q1 (τ)

−
βεκ

[
λκn−1

n−1!

]β−1
a (τ) ξ (τ)g′∗ (τ)g

n−2
∗ (τ)

[
gn−1
∗ (τ)

]β−1 (
v(n−1) (τ)

)2γ

v2β (κg∗ (τ))
(
v(n−1) (τ)

)γ−β .

Moreover, since v(n−1) (τ) is a positive non-increasing function then there exists a positive integer L∗ such
that v(n−1) (τ) 6 L∗. Then

φ′ (τ) 6
ξ′ (τ)

ξ (τ)
φ (τ) − ξ (τ)q1 (τ) −

Lg′∗ (τ)g
(n−1)β−1
∗ (τ)

ξ (τ)a (τ)
φ2 (τ) ,

where L = (L∗)β−γ εβκ
[
λκn−1

n−1!

]β−1
, by completing square, we obtain

φ′ (τ) 6 −ξ (τ)q1 (τ) +
[ξ′ (τ)]2 a (τ)

4Lξ (τ)g′∗ (τ)g
(n−1)β−1
∗

.

By integrating from τ2 to τ, we get

0 < φ (τ) 6 φ (τ2) −

∫τ
τ2

[
ξ (s)q1 (s) −

[ξ′ (s)]2 a (s)

4Lξ (s)g′∗ (s)g
(n−1)β−1
∗ (s)

]
ds.

This is a contradiction with (3.9), and so the proof is completed.

Theorem 3.3. If the differential equation

z′ (τ) + q1 (τ)

[
εg∗ (τ)

n− 1! (a (g∗ (τ)))
1
γ

]β
z
β
γ (g∗ (τ)) = 0 (3.12)

is oscillatory for some constant ε ∈ (0, 1), then equation (1.1) is oscillatory.

Proof. For the sake of contradiction, suppose that x (τ) is an eventually positive solution of (1.1) on [τ0,∞).
Then there exists such that x (σ (τ,µ)) > 0 and x (g (τ, s)) > 0 for τ>τ1 > τ0. As in the proof of Theorem
3.1, we obtain (3.2). By using Lemma 2.2, we find

v (τ) >
ετn−1v(n−1) (τ)

n− 1!
.

Thus, from (2.1), we have(
a (τ)

(
v(n−1) (τ)

)γ)′
+ q1 (τ)

[
ε (g∗ (τ))

n−1

[a (g∗ (τ))]
1
γ n− 1!

]β (
[a (g∗ (τ))]

1
γ v(n−1) (g∗ (τ))

)β
6 0,

we see that z (τ) = a (τ)
(
v(n−1) (τ)

)γ
is a positive solution of the differential inequality

z′ (τ) + q1 (τ)

[
ε (g∗ (τ))

n−1

[a (g∗ (τ))]
1
γ n− 1!

]β
(z (g∗ (τ)))

β
γ 6 0.

Using [20, Corollary 1], we see that (3.12) has a positive solution, this is a contradiction and so the proof
is completed.
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4. The noncanonical case δ (τ0) <∞
Definition 4.1. Let D =

{
(τ, s) ∈ R2 : τ > s > τ0

}
, $,$∗ ∈ C (D,R), θ (τ) ∈ C1 ([τ0,∞), (0,∞)) such that

$ (τ, τ) = 0, τ > τ0,$ (τ, s) > 0, τ > s > τ0 and $ has nonpositive continuous partial derivative ∂$
∂s

satisfying for all sufficient large τ1 > τ0,

∂$ (τ, s)
∂s

+
θ′ (τ)

θ (τ)
$ (τ, s) = −

$∗ (τ, s)
θ (τ)

[$ (τ, s)]
γ
γ+1 .

Theorem 4.2. Suppose that (3.9) holds. If there exist positive constants M, λ ∈ (0, 1) ,β 6 γ such that

lim sup
τ→∞

∫τ
τ0

[
$ (τ,h)Mβ−γθ (h)q1 (h)

[
λ

(n− 2)!
gn−2
∗ (h)

]β
−
a (ξ) [$∗ (τ,h)](γ+1)

(γ+ 1)γ+1 θγ (h)

]
dh > 0, (4.1)

and either ∫∞
τ0

δ (s)ds =∞, or (4.2)∫∞
τ0

∫∞
u

δ (s)dsdu =∞, (4.3)

then Eq. (1.1) is oscillatory.

Proof. For the sake of contradiction, suppose that x is an eventually positive solution of (1.1). Now from
the definition of v (τ) we deduce that v (τ) > 0 for τ > τ1 and(

a (τ)
(
v
(n−1)

(τ)
)γ)′

= −

∫b
a

q (τ, s) f (x (g (τ, s)))ds 6 0.

Using Lemma 2.3 there exist three possible cases for τ > τ1 large enough.

(S1) v (τ) > 0, v′ (τ) > 0, v(n−1) (τ) > 0, v(n) (τ) 6 0,
(
a (τ)

(
v
(n−1)

(τ)
)γ)′

6 0;

(S2) v (τ) > 0, v′ (τ) > 0, v(n−2) (τ) > 0, v(n−1) (τ) < 0,
(
a (τ)

(
v
(n−1)

(τ)
)γ)′

6 0;

(S3) v (τ) > 0, v(i) (τ) < 0, v(i+1) (τ) > 0, for every odd integer i ∈ {1, 2, . . . ,n− 3} and v(n−1) (τ) < 0,(
a (τ)

(
v
(n−1)

(τ)
)γ)′

6 0.

Letting (S1) hold, then it follows by Theorem 3.2 that every solution of (1.1) oscillates when the condition
(3.9) holds. Assume that (S2) holds. Define the function

Φ (τ) = θ (τ)
a (τ)

[
v
(n−1)

(τ)
]γ

[
v
(n−2) (τ)

]γ , τ > τ0. (4.4)

Then Φ (τ) < 0, and

Φ′ (τ) =
θ′ (τ)

θ (τ)
Φ (τ) + θ (τ)

[
a (τ)

[
v
(n−1)

(τ)
]γ]′

[
v
(n−2) (τ)

]γ −
γθ (τ)a (τ)

[
v
(n−1)

(τ)
]γ+1

[
v
(n−2) (τ)

]γ+1 .

This with (2.1) and (4.4) leads to

Φ′ (τ) 6
θ′ (τ)

θ (τ)
Φ (τ) − θ (τ)

q1 (τ) v
β (g∗ (τ))[

v
(n−2) (τ)

]γ −
γΦ

α+1
α (τ)

a
1
γ (τ) θ

1
γ (τ)

,
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i.e.,

Φ′ (τ) 6
θ′ (τ)

θ (τ)
Φ (τ) − θ (τ)

q1 (τ) v
β (g∗ (τ))

[
v(n−2) (g∗ (τ))

]γ[
v(n−2) (g∗ (τ))

]β [
v(n−2) (τ)

]γ [
v(n−2) (g∗ (τ))

]β−γ
−

αΦ
γ+1
γ (τ)

a
1
γ (τ) θ

1
γ (τ)

.

Since v(n−2) (τ) is positive and decreasing, then v(n−2) (g∗ (τ)) > v
(n−2) (τ) , and there may exist a positive

constant M such that v(n−2) (g∗ (τ)) 6M,

Φ′ (τ) 6
θ′ (τ)

θ (τ)
Φ (τ) −Mβ−γθ (τ)q1 (τ)

vβ (g∗ (τ))[
v(n−2) (g∗ (τ))

]β −
γΦ

γ+1
γ (τ)

a
1
γ (τ) θ

1
γ (τ)

.

Using Lemma 2.2, we have v (g∗ (τ)) > λ
n−2!g

n−2
∗ (τ) v(n−2) (g∗ (τ)) . Then

Φ′ (τ) 6
θ′ (τ)

θ (τ)
Φ (τ) −Mβ−γθ (τ)q1 (τ)

[
λ

(n− 2)!
gn−2
∗ (τ)

]β
−

γΦ
γ+1
γ (τ)

a
1
γ (τ) θ

1
γ (τ)

.

Multiplying by $ (τ, s) and integrating from τ1 to τ, we obtain∫τ
τ1

$ (τ, ξ)Mβ−γθ (ξ)q1 (ξ)

[
λ

(n− 2)!
gn−2
∗ (ξ)

]β
dξ

6 $ (τ, τ1)Φ (τ1) +

∫τ
τ1

[
∂$ (τ, ξ)
∂ξ

+
θ′ (ξ)

θ (ξ)
$ (τ, ξ)

]
Φ (ξ)dξ− γ

∫τ
τ1

$ (τ, ξ)
Φ
γ+1
γ (ξ)

a
1
γ (ξ) θ

1
γ (ξ)

dξ,

= $ (τ, τ1)Φ (τ1) −

∫τ
τ1

$∗ (τ, ξ)
θ (ξ)

[$ (τ, ξ)]
γ
γ+1 Φ (ξ)dξ− γ

∫τ
τ1

$ (τ, ξ)
Φ
γ+1
γ (ξ)

a
1
γ (ξ) θ

1
γ (ξ)

dξ.

Set

R =
γ$ (τ, ξ)

a
1
γ (ξ) θ

1
γ (ξ)

, T =
$∗ (τ, ξ)
θ (ξ)

[$ (τ, ξ)]
γ
γ+1 , and Y = −Φ (ξ) .

Then by using the inequality (3.7), we have

$∗ (τ, ξ)
θ (η)

[$ (τ, ξ)]
γ
γ+1 (−Φ (ξ)) −

γ$ (τ, ξ) (−Φ (ξ))
γ+1
γ

a
1
γ (ξ) θ

1
γ (ξ)

6
1

(γ+ 1)γ+1 [$∗ (τ, ξ)](γ+1) a (ξ)

θγ (ξ)
.

Hence ∫τ
τ1

[
$ (τ, ξ)Mβ−γθ (ξ)q1 (ξ)

[
λ

(n− 2)!
gn−2
∗ (ξ)

]β
−

1

(γ+ 1)γ+1 [$∗ (τ, ξ)](γ+1) a (ξ)

θγ (ξ)

]
dξ

6 $ (τ, τ1)Φ (τ1) < 0,

which contradicts (4.1). For case (S3) assume that v (τ) satisfies (S3). Since
(
a
(
v
(n−1)

)γ)′
6 0, we have for

s > τ > τ1,

a
1
γ
(s) v(n−1) (s) 6 a

1
γ
(τ) v

(n−1)
(τ) .

Multiplying by a
− 1
γ
(s) and integrating the resulting inequality from τ to χ we get

v(n−2) (χ) 6 v
(n−2)

(τ) + a
1
γ
(τ) v

(n−1)
(τ)

∫χ
τ

a
− 1
γ
(s)ds.
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Letting χ→∞, we get

0 6 v
(n−2)

(τ) + a
1
γ
(τ) v

(n−1)
(τ) δ (τ) ,

which yields

v
(n−2)

(τ) > −a
1
γ
(τ) v

(n−1)
(τ) δ (τ) .

Hence there may exist a constant m > 0 such that

v
(n−2)

(τ) > mδ (τ) . (4.5)

Integrating (4.5) from τ1 to τ, we get

v
(n−3)

(τ) − v
(n−3)

(τ1) > m
∫τ
τ1

δ (s)ds.

This yields

−v
(n−3)

(τ1) > m
∫τ
τ1

δ (s)ds,

which contradicts (4.2). Now we consider the case when (4.2) is not satisfied. Then integrating (4.5) from
τ to∞, we obtain

−v
(n−3)

(τ) > m
∫∞
τ

δ (s)ds.

Integrating again from τ1 to τ, we have

−v
(n−4)

(τ) + v
(n−4)

(τ1) > m
∫τ
τ1

∫∞
u

δ (s)dsdu.

This implies that

v
(n−4)

(τ1) > m
∫τ
τ1

∫∞
u

δ (s)dsdu,

which contradicts (4.3), and this completes the proof .

Remark 4.3. Theorem 4.2 remains true if we used the condition (3.12) of Theorem 3.3 instead of (3.9).

5. Examples and conclusion

Example 5.1. Consider the differential equation[
τ

(
x (τ) +

∫ 1

1
2

µ

τ
x

(
τ+ µ

3

)
dµ

)′′′]′
+

∫ 1

0

8192q0u

125τ3 x3
(
τ+ u

2

)
du = 0, τ > 1, (5.1)

where n = 4,q0 > 0, γ = 1,β = 3, c = 1
2 ,d = 1,a = 0,b = 1,K = 1,a (τ) = τ, 0 6

∫d
c p (τ,µ)dµ =

∫1
1
2

µ
τdµ =

3
8τ <

3
8 < 1. Choosing p = 3

8 , ϑ (τ) = τ2, b (τ) = 1
τ3 , then q1 (τ) =

(5
8

)3 ∫1
0

8192q0u
125τ3 du = 8q0

τ3 ,

Ω (τ) = ϑ (τ)
(
− [a (τ)b (τ)]′ +Cβ−γq1 (τ)

)
+ κεg′∗ (τ)g

n−2
∗ (τ)a (τ) ϑ (τ)b1+ 1

γ (τ) ,

Ω (τ) =

[
2 +

kε

8
+ 8q0C

2
]

1
τ

,
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and ∫∞
τ0

Ω (u) − a (u) ϑ (u)

[
ϑ′(u)
ϑ(u) + (γ+ 1) κεg′∗ (u)gn−2

∗ (u)b
1
γ (u)

](γ+1)

(γ+ 1)(γ+1) [κεg′∗ (u)gn−2
∗ (u)

]γ
du

=

∫∞
τ0

([
2 +

εκ

8
+ 8q0C

2
] 1
u
−

(8 + εκ)2

8εκ
1
u

)
du =∞.

If C2q0 >
1
εκ , κ ∈ (0, 1), ε,C > 0. From Theorem 3.1, it follows that Eq. (5.1) oscillates.

Example 5.2. Consider the differential equation[
τ

(
x (τ) +

∫ 2

1

µ

3τ2x

(
τ+ µ

3

)
dµ

)′′′]′
+

∫ 1

0

q0u

τ
4
3
x

(
τ+ u

4

)
du = 0, τ > 1, (5.2)

where n = 4,q0 > 0, γ = 1,β = 1, c = 1,d = 2,a = 0,b = 1,K = 1,a (τ) = τ, 0 6
∫d
c p (τ,µ)dµ =∫2

1
µ

3τ2dµ = 1
2τ2 <

1
2 < 1. Choosing p = 1

2 , ξ (τ) = τ
1
3 , then

∫∞
τ0

[
ξ (u)q1 (u) −

[ξ′ (u)]2 a (u)

4Lξ (u)g′∗ (u)g
(n−1)β−1
∗ (u)

]
du =

∫∞
1

[
q0

4u
−

16

9Lu
8
3

]
du =∞.

From Theorem 3.2, we deduce that every solution of (5.2) oscillates.

Conclusion 5.3. In this paper, we consider a class of even-order neutral differential equations with dis-
tributed deviating arguments of the type (1.1) in both cases of canonical case δ (τ0) =∞ and noncanonical
case δ (τ0) <∞. We discuss new oscillation criteria using Riccati, generalized Riccati transformations, in-
tegral averaging technique of Philos type, and the method of comparison. For interested researchers, we
suggest studying (1.1) in the case

∫∞
τ0

∫∞
u δ (s)dsdu <∞.
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