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Abstract

Consider the following nonlocal integro-differential operator of Lévy-type £ given by

o) {f (x—i— €0 (E,y)) —f(x) —eot (g,y> 6if(x)13(y)}vg‘(dy) + [(§>o¢71 b(i) (z) +b} (%)} 0;f(x),

related to stochastic differential equations driven by multiplicative isotropic x-stable Lévy noise (1 < « < 2). We study by using
homogenization theory the behavior of u®® : R¢ — R of double perturbed Kolmogorov, Petrovskii and Piskunov (KPP)-type
with periodic coefficients varying over length scale 5 and nonlinear reaction term of scale 1/¢,

LEsf(x) = J}R

a‘a‘ff (t,x) = Lg‘léus’é (t,x) + %f (%,usfé(t,x)) , xeRY, 0<t, )
u2(0,x) = ug(x), x € R4

The behavior is required as ¢, both tend to 0. Our homogenization method is probabilistic. Since 5 and ¢ go at the same rate,
we may apply the large deviations principle with homogenized coefficients.
Keywords: Homogenization, large deviations, nonlocal parabolic PDE, SDE with jumps, Feynman-Kac formula.
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1. Introduction

In mechanics, physics or bio-materials engineering, most observed phenomena are characterized by a
large number of spatial scales. The mathematical complexity associated with describing these phenomena
increases exponentially with the number of scales. Under certain conditions, if the size of the micro-
structures encountered is appreciably small compared to the characteristic distance of the field of study,
asymptotic analysis is used to study the behavior of the material (or medium) using the infinitesimal
parameter  representing the ratio between these two typical lengths (see, for example, [1, 5-7] and the
papers therein). This process is quite common in dynamical systems, but is rather complicated when
a taxis term is involved in the model itself. In chemotaxis mechanisms, the scenario is to take into
account the interactions between the cells and their environment, while simplifying the equations to
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obtain approximate models that describe the collective movement of the cells (see, for instance [8, 15-17]).
Homogenization is a mathematical and physical concept used to simplify the study of complex systems
by replacing them with simpler models that are easier to analyze. Clearly, the large deviation principle
(LDP) allows us to investigate the asymptotic behavior of large stochastic systems, and several variants
can be found in the literature. For our purposes, in the framework studied by Freidlin and Wentzell
[13], the theory of small perturbations of dynamical systems, the principal term of the operator is perturbed
by a small parameter e. The combinatorial effects of homogenization and large deviations is a classical
problem which goes back to Baldi [2] at the end of the 20’th century. Such a problem has been most
extensively investigated by Freidlin and Sowers [12] in stochastic differential equations (SDEs) on the
whole of RY. The basic LDP calculations of these two papers involve deriving the Varadhan formula
and identifying the barrier. There are several generalizations of the Varadhan formula, see for example
Baxendale and Stroock [4], but all require some form of differentiability. Inspired by [2, 12], our aim in
this paper is highly motivated by the consideration to combine the two principles in a compatible way,
for a class of semilinear parabolic partial differential equations (PDEs).

We first give the rate function Sg ¢ of the large deviations, in fact since 5 and ¢ go at the same rate to
zero, this function is expressed by the homogenized coefficients of the PDE (1), next we express the solu-
tion of PDE (1) by the use of backward stochastic differential equations (BSDEs) in [3] and the Feynman-
Kac formula, then we consider an auxiliary solution via ¢ log u®?® by applying techniques due to Pradeilles
[19]. The limit of this auxiliary solution helps us to find the limit of u®® when both ¢, § tend to zero. We
show in the end that there exists a function V* (which depends on Sg ) such that u®® tends to zero if
(t,x) € {V* < 0} and tends to 1 in the interior of {V* = 0}.

We organize the paper as follows. In Section 2, we present some general assumptions and definitions.
Section 3 contains the results of large deviations principle. In Section 4, we study the behavior of the
solution of the PDE (1).

2. Preliminaries

In this paper, we use Einstein’s convention that the repeated indices in a product will be summed
automatically. By B, we means the open ball in R centering at the origin with radius r > 0, we shall
omit the subscript when the radius is one. We denote by €* (Cf) with integer k > 0 the space of
(bounded) continuous functions possessing (bounded) derivatives of orders not greater than k. We shall
explicitly write out the domain if necessary. Denote by €, (R?) := €} (RY), it is a Banach space with
the supremum norm |[f[|y = sup, cga [f(x)l. The space €} (R?) is a Banach space endowed with the
norm |/f]j, = |If|lo + Z};l |[V®if||. For a noninteger A > 0, the Holder spaces C* (€}) are defined as

the subspaces of €M (C’IL)M) consisting of functions whose |A|-th order partial derivatives are locally
Holder continuous (uniformly Holder continuous) with exponent A — |A]. These two spaces CL* and

GILJM obviously coincide when the underlying domain is compact. The space G}LJM (RY) is a Banach space

endowed with the norm [[f[, = [[f[,, + [vivl fla—[a), where the seminorm []x/ with 0 < A" < 1 is
defined as [f])/ := sup,, YERY x £y w (this seminorm can also be defined for the case A’ = 1, which
, , x—y

is exactly the Lipschitz seminorm). In the sequel, the torus T¢ := R9/Z¢ will be used frequently. Denote
by D := D (R;T?) the space of all T9-valued cadlag functions on R, equipped with the Skorokhod
topology. We shall always identify the periodic function on RY of period 1 with its restriction on T¢.

For simplicity, we can organize all of this by setting 8, := 5, where lim,_,0 5, = 0.

(H.1) We assume that lim,_ 5—; =v>0.

Let (Q, F,p, {Cﬂ}@o) be a filtered probability space endowed with a Poisson random measure N e

on R4\ {0} x R} with jump intensity measure v¥(dy) = %v"‘(dy) = %, where 1 < a < 2, ¢ > 0.



A. Coulibaly, J. Nonlinear Sci. Appl., 16 (2023), 168-179 170

Denote by N the associated compensated Poisson random measure, that is,
Rewe™ (dyds) := Nowe ! (dyds) —v¥(dy)ds.

We assume that the filtration {F},, satisfies the usual P-null conditions. Let L%¢ ' = {Lf"i_l} . be a
= t

=

d-dimensional isotropic «-stable Lévy process given by

_ t o t B
Lye ' ::J J yN*e 1(dyds)—i—J J yN@ " (dyds).
0 JB\(0} 0 JBe

Given ¢ > 0,x € RY, consider the following:

5%

x— £,0¢ £,0¢ £,0¢ _
aX{e = b (X) dt+ by (X0 )dt+w<xg€ , AL l),
X% = x
0 4

(2.1)

or more precisely,

t oa—1 ed¢ £,0¢ t £,0¢
Xi"sﬁzx—f—J [s -bo (Xs >+b1<xs )]ds—i—J J G(XS ,y> eN &€ 1(dyds)
0 Lo g8 de 0 JB\{0} de
t XE,55 1
+J J 0( ;7 ,y> eN*€ " (dyds).
0 ¢ 3

Before continuing, we list some general assumptions for the PDE (1) and the nonlocal SDE (2.1). We
consider ug € Cp (R?) and we set sup, .ga ug(x) = g < oo. Letting Uy = {x € R? : up(x) > 0}, since ug

(o} J—
is continuous we have Uy = Up. We assume that f: RY x R — R is periodic in each direction with respect
to the first argument, and it verifies:

e Vx € RY, f(x,1) =0;
e there exists ¢ € (‘BE (R4 x R, R) such that f(x,y) = c(x,y) -y, with
cx,y)>0,vxecRY, ye[0,1)UR*, and c(x,y) <0,¥xecRY, y>1.

And we assume that
maxc(x,y) = c(x) =c(x,0) >0, ¥x € R,

(H.2) i) (bo, b1, up): R3¢ — RY x R4 x R, are all periodic of period 1 in each component.
ii

111

x — (0(x,-),c(x,-)) is periodic of period 1 in each component.
by, b1, ¢ are of class G{i with B satisfying : 1 -5 < < 1.
The initial functions ug is continuous.

v

~ — — —

The function o : R4 x R¢ — R satisfies the following conditions.

(H.3) i) Vx € RY, the function y — o(x,y) is of class €.
ii) There exists a constant C > 0, such that for any x;,x2,y € RY, |o(x1,y) — o(x1,y)| < Clx1 —x2| yl.
iii) The oddness condition: for all x,y € RY, o(x, —y) = —o(x, y).
) There exists a positive bounded measurable ¢ : RY — R, such that for all x,y € R¢Y,
d(x) Myl < olx,y) < d(x)y-

v
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Let us introduce the linear operator A" defined as

A%V (x) = [f (x+0(x,y)) —f(x)— 0o (x,y) aif(x)lg(y)} v¥(dy), xeR<

JAlR“\{O}

By virtue of the oddness condition and the symmetry of the jump intensity measure v*, we can rewrite
the operator A" as (see [14]):

ATVf(x) = [f (x +2) — f(x) —z'd:f(x)1p (Z)] vo*(x,dz), x€RY,

LRC‘\{O}

where the kernel v°* is given by

vOX(x,A) = 1A (o(x,y)) v¥(dy), A€ B(RN\{0}).

LR‘i\{O}

Next, to move the SDE (2.1) to the torus T4, we define )~(,‘E”6 = 1 XE e

(52 /ea1)/ via the canonical quotient
map 7: R4 — R4/Z4. It is not difficult to check that

~ ~ a—1 ~ ~
aXgPe = [bo (R5%) + Sty (RE%) ] de+ o (Xi2e, 2eary), 2
veEde _ x ’
XO - E,
where
t . t
| ::J J yN“(dyds)—i—J J yN*(dyds),
0 JB\{0} 0 JBe
d with < €170 N 5 L& 2 {L%} by the self-similarity. We shall al ider the limit
and wi (82 /o 1)t %5, /eyt [ = (LY} by the self-similarity. We shall also consider the limi

SDE (2.2), namely

dX¢ = b (X¢) dt +v* o1 (X¢) dt +5, (X, dLY), Xo =x,
1
Y
We need a stronger convergence as follows.

where, o (-, y) := 50 (-, vy) is the point-wise limit as ¢ | 0 of 6%6 (~, %y).

(H.4) Yy € RY, %G(x,ny) — %O'(X,Yy) uniformly in x € R4, asn — .
Let £ be the linear integro-partial differential operator given by
L% = A" 4 (bg+v* by) - V.

By requirement there exists a £$-Feller process on R and by periodicity assumption on the coefficients
such a process induces a process X which is a strong Markov process on the torus T4, moreover the £*-
process is ergodic (see [14]). We denote by p, its unique invariant measure on (T4, B (T¢)).

Thanks to [14, Proposition 4.11 (equation without second member)], there is a unique periodic solution
@ € C*TB of the Poisson equation

L@+ Do :J bo(x)py (dx) such that J @(x)py (dx) =0.
Td Td

Now we set

r

C:=| c(x)py(dx),
JTd

Toi= | (040 (b0 b) (717547 0]y (a),

r

Vu(A) = j 1A (0(x, y)) w(d)v*(dy), A B (RO\{0}).
R4\ {0} JT4d
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3. Large deviation principle

The theory of large deviations is concerned with events A for which probability IP (X¢°< € A) con-
verges to zero exponentially fast as ¢ — 0 (see [9]). The exponential decay rate of such probabilities is
typically expressed in terms of a rate function § mapping R¢ into [0, +0o]. Our method allows us to
characterize the LDP by analysing the logarithmic moment generating function [9, Chap. 2.3]. Initially
the corresponding rate function is identified as the Legendre transform of the limit (when it exists) of the
logarithmic moment generating function defined as:

. T l £,5;
llir}] gt (0) := llir}]elogIE {exp (6 (6, X{ >> } .

~ X &b X
s o (2) ()

oa—1

Let ¢ € C*TB (T9). If we set

then we have by It6’s formula

t
£

¢ :x—i-J

0 50(71

€

t
(I+V([)5) |: bO& —|—b1£:| (Xglég) dS—l-(SEJ A&O‘g,v“(pa (X£,55) ds
£

0

t
£ €8e - £8:) | o et
+68J0 LRd\{O} [(ps <XS e (XS‘ y)) e (X5 )}N (dyds)

t
—I-J €0, <X§£’E, dLg"a_l) ,
0

where Co(x) = ¢ () for ¢(x) in {bo(x), b1(x), db(x), Vo, o{x, )} Note that v¥(yA) =y *v*(A), A €
B (R\ {0}). Before proceeding, let us define for all z € T4,

HE? (z,) = @2+ fg(zléi D)= 0z), 970 (z) = AT LRSI g (2) - ATV g (2),
e €
Now, by Girsanov’s formula, we have
oty
ge.(0) = (6,x) + slogIE{ exp <5;J 58 (6,(I+Ve)by (X§,6€)>ds>
e* Jo
Eocfl
5? vt 8“71 = 24 oed
X exp <5“J (6, o [ (I+Ve)by+ AY (p} (X 5)>ds>
a—1
S psé‘a" t £,0 (VE,de S ce,0, x 3.1
cop(% T (e as = o (R ) o () e
a—1
« (St Ge,de ~
X exp <f’s ° J {e%@/He"”(Xs” W) —1— 2 (0, HEP (RS, y) 16 (y)) }V“(dy)dS)
e* Jo R4\{0} €
o "Em;lt Se
X exp (6; ° J {e<e"7(XS’§€"J)> —1-e, G(Xg'éﬂ,y)lg(yw }v“(dy)ds) },
€ Jo R4\{0}

where [ is the expectation operator with respect to the probability P defined as

a—1 co—1

dIP L 55 Wt , ~£,5E ~ ,(55/ )(x 5? 53‘ t ~€,65
T e><1o<sj0 (0, HE® (X5, y) yNwloe/e (dvdsHaaL (0,0 (Xee, ary) >)

£
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_ 8 set e (g,He (XE%ey)) 1 _ B¢ €0 (Yede x )
><exp< ~ Jo LRd\{O}{e 1 <9 H®® (X%, y)1g(y)) }v (dy)ds

" exp(—ég Jf"s"tj {e<e,c(>2§’55 y)) 1 (0, 0(X¢%,y)1p(y)) }v“(dy)ds).
e Jo RA\{0}

Let us set, for all z € T9, for all 6 € RY:

D (2,0) = (6, (I+ V)b (2

" — (o, [(1+90) by + A 0] (2))
e(0,0(zy)) _ &
+J1Rd\{0}{ —1- 00 y)lB(y)>}v )

: 5
+J e E (M 2y)) 1 _ 2 (g HY® (2,y)15(y)) }v*(dy).
Let ¥§ € C*TB (T4) be the unique solution of
£5YE() + 070 (2,0) = | @51z, 0)uy (a2

satisfying [y W§(z)1y (dz) = 0. Such a solution ¥§ must exist agaln by the assumptions on the coefficients
and the Fredholm alternative. So applying It6’s formula to aoci W§ (X0 ), we have

x—1

e I e I I [‘%(st )—Wé(;)]

Td ex 1/5tx
a—1 x—1
8¢ Eég tQS\Pé )'ZS d¢ d 57 6?71 ax—1 Eég tv\ysb XS b¢ d
+ Eocfl 0 ( S ) s— Eocfl Eocfl _Y 0 oY1 ( S ) S

ot i

— J o J HEYe ()N(g’éé,y) N*(dyds).
e“ Jo R4\ {0}

Then putting above equation into (3.1), we obtain

Gen(®) = @)+ | 090,000, (e2)

ox—1

f s [T b (g sy (st )\ [t ge,8
TeloglEy exp J Q7 (X% ) ds— 5 (e =Y J V¥5br (X%) ds
£ 0 ex— g0 0
O¢ E,be X 5£ x
a—1
t

X exp <—5§:J eV ()N(g'f’ﬂ) ds>
e* Jo

et o ewe o «
X exp (J T el g Sy (Xs'éﬁ,y)lsty)}v“(dy)dﬁ }
0 R4\{0} €

where I is the expectation operator with respect to the probability I defined as

ax—1

dlfj 52 ot e s (webe O N
T3 .—exp<—€ExJ'0 H e(XS ,?y)N (dyds)

o—1

£ t € T E, [
J {e(f) HEYO (RE0e, Sey) g %8 e (Xg,és
R4\ (0}

5
X ex
p o oo

) aly) pr=(ay)as ).

€
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Since the coefficients are bounded, we first notice that

o—1
5% 5o (531 ) (ot
sup { exp (e"‘ [‘1’8 (z¢) = VW5 (;)} . (E“l —v* 1) L VYEby (zs) ds)

z€Td
S 5? Se 1 62‘71 o
g eXp(_ [(p (22) - @<X>D } S exp {Kl +—Ka+ - ( —v* 1) K3}.
€ S [l € € el

Now we recall an elementary result.
Lemma 3.1 ([14]). Let 0 <A < 1and f € €™ (RY). For any x,u,v € RY, it holds that
1

1+A

(3.3)

‘f(x+u)—f(x+v)—(u—v)-Vf(x)’ < [V u—v' .

Weletr = Y ﬁ/ efﬁl that will be chosen for B,. We have (see [14, Lemma 5.3], where the following
stochastic integral term, is determined via the characteristics of semi-martingales) for all ¢ € C**8 (T4):

tex ! € e 1
- [HJ 0] <z+cr<z,y)>—cp <z+0(z,yy>>
e85 JB,\{0} b € Y
. S 1 .
_ (50-1 (Z, 7y) — 70—1 <z,yy>> ai(p(Z)]
d¢ € Y

eoc—] t

5. [ oF

gJ ©Q%® (z4)ds
0

€

N

v¥(dy)

—i—t;;i ch @ <z+ 6—10(2, ?y)) —@ (z—i— iG(Z,yg))] v¥(dy)
- té(xi (15(2) +15(2)).

It follows from Lemma 3.1 that:
[ ]

x+p3

I£(z) = H(pH‘HﬁJ' v*(dy)
B \{0}

x+f3

€ [ 1
fO'(Z, f}j) — *O'(Z,yy)
O¢ € Y

20+ 2a+p 5%
< — “+5J a+p | d g Sd—l o+ e
g @llasp (0(2)) Br\{o}lyl v*(dy) MB} [l llarp (@) =

S¢ 1 2 B 5
IE(Z) =2 ”@HOJ icr(z, —y) — *G(z,yy) yfx(dy) < — ‘Sd 1| H(PHO ”d)(Z)H —
B:«ﬁ“ B € Y 1-o €
Thus
a—1
de E"’?t _ 20c+(3 5
sup {J Q%% (2s) dS} — ty[847 ( lollor g ()P +——1loll Hd)(z)||0>. (3.4)
zeTd L £ J0 a+p 1—x

On the other hand, using a similar estimate once again, for all ¢ € €*™P (T4) we have:

1(2) = j

t
J {ef’;HE"P(zS,yJ _1_§H81<P <Zs,y)13(y)}v‘x(dy)ds
0 R4\ {0} ‘

t 5.\ 1P
< Oe £, £,@
o (0) D@,

with
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o+3
e =], felr oo t) e vy
Nl @EDTP [ v dy) <[5 ol (9020 P 25
B\ {0} €
* o+
5’("(2)=J ) cp(Z+ Bid(z,%y))—cp(Z) v¥(dy) < ISd Y elly —2 =t
Then
sup {1220} — tI5 v (20 [0l (0127 + 27 547 ol ). 65
zeTd

Now, let us set

J(0) = sup ian
peP(Td) €T JRA\{0}

From (3.2)-(3.5), we observe that

<e<6,y> —1+(0,Z, —le>> Vu(dy).

lim g¢,.(8) = (8, x) +13(8).

Let J denote the Fenchel-Legendre transform of J. Then we have

_ 0—(Zy—yl
J6):= sup inf J 0 0—(Zo —yls) Vu(dy),
wep(Td) @ET JRA\{0} [yl

where p(r) :=rlogr—r+1,7r € R%.
We now have all the tools we need to state our main results (see [4, Corollary 1.12]).

Theorem 3.2. Fix T > 0 and assume (H.1)-(H.4) hold true. Then for every x € RY, the family {X¢®¢ : e > 0} of
R%-valued random variables has a large deviations principle with good rate function

Ity (2) = TE(Z;X).

Next, let us consider
Sor (@ fo ds, if ¢ € D ([0, T, RY) and ¢(0) =x,
—i—oo, else.
Since the function J is convex we can show that
T —_
it | dlo(s) s =13 ("' ") .

eeD([0,TLRY) Jo
@ (0)=x, @(T)=z

So we express the path space-LDP

Corollary 3.3. Assume (H.1)-(H.4) hold true. Then the family {X5'5€}£>0 of D ([0, T];R%)-valued random
variables has a large deviations principle with good rate function So (@) for all @ € D (0, TI; RY).

Therefore, we can establish the analogue of the Varadhan’s Lemma (see [9]).
Remark 3.4. Let D be a Borel subset on D ([0, t];R?) and ¢ be an element of €¢*™P (RY). Then we have

t £,0¢ o
liminf e log E [113 (X“’E)exp{lj c< u )dsH > Ct— info Soqt(d),

el0 0 Se beD

t £,0¢ o
limsup e log E [ID (XE""’E)exp{lJ c< u >dsH < Ct— inf Soqt(d).

€0 0 de ¢eD
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4. Convergence
Let us consider the progressive measurable process (Y¢%¢, U& ) solution of the BSDE:

1 Xgoe
it =uo(XT) + - [f < - ,Y:Me) dr— [LUSPdLY, 0< s < t,

\/]E f: fRd\{o} U (y)2ve(dy)dr < oo.
By [3, 18], we have for all (t,x) € [0, +ool x RY, the solution u&: (t,x) of the PDE (1) is of the form

Ygxﬁ/és — uS/EE (t, X),

and the Feynman-Kac formula implies that the solution of PDE (1) obeys

£,0¢ _ £,0¢ 1 t 5/68 £,0¢
u®%(t,x) =Equg ( X{°° ) exp c Y ds | p.
e Jo o¢

Remark 4.1.
o If iy <1,then Ve >0, 0 < Y§'5€ <1,
¢ On the other and, if c(x,y) < k(y) <0, (x,y) € R4 x]1,4+00[, where k is Lipschitz continuous, then

limsup, ., Y& <1 uniformly in any compact set of 0, +oo[ x R4,

dP x ds a.s..

To prove this, we will use similar results proved in [19].
Before continuing, let us introduce vede(tx) — ¢ log ué®(t,x), and let us set

[e{%va,sa (txtea(30))} 14 (E,y> divEOe (t,x) 1 (y)

j_cs,o,vfxvg,ég (t,x) = J
RAN{0}

- {v’z'f’ﬂ (t,x+ €0 (g,y)) — V& (t,x)} ] v¥(dy).

Then, we observe that v&®¢(t,x) is a viscosity solution of:

(t,x) = Lg‘léavs'éﬁ (t,x) + HEOVIVEDe (¢, x) + c<5%,exp {Ivede(t,x)} ), x € R4, t >0,
4.1)

dvede
ot
ve2e(0,x) = elog (ug(x)), x € Uy,
X € le\uo.

hmt—)O v£,55 (t/ X) = —00,
Let us define a distance in R, x R4, for (t,x),(s,y) € R, x R<:

a{(t,%), (s,y)} = max {|t—s|, x—yl },

and let us set
u*(t,x) =limsup {ve"si(s,y) ce<n, (s,y) € Bn(t,x)},
n—o0

v*(t,x) =liminf {vs'ée(s,y) ce<n, (s,y) € Bn(t,x)}.
n—0

Theorem 4.2. u* and v* are sub and super viscosity solutions of:
maxy, (32 (t,x) — H14W Y ' Vw(t,x) — L. - Vw(t,x) = C) =0, x € R%,t>0,
w(0,x) =0, x € Uy,
limi_ow(t,x) = —oo, x € RM\Up,
where
{et) —1— (w,y) 1(y) }ya(dy).

Y= inf T, HY W= sup J
d
@€eT pneP(Td) JRN{0}
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Proof. We use similar techniques as in Evans [10, 11]. Let us prove that u* is a viscosity subsolution. The
function v&-%< (t,x) is viscosity solution of

QvEde
ot
We notice that

g,

(t, X) _ Locéevs,ég (t, X) _ g_cs,c,v“vs,sa (t, X) —c <i’ exp {lve,éa (t, X)} ) =0. (4,2)
de I3

. (29 o
hrr(l) HEOY " w =FHY Vw.
£E—r

Now, let ® be a smooth function, (tg, o) be a strict local maximum of v¢®¢ — ®, and } € CP (Td) be a
periodic function solution of the following Poisson equation,

L5P(z) + (I+ V@) by (2)DD(tg, xo) + H“"Y @ (to, x0) + c(2)
+ Eoc—]

oa—1
53

(I+ V)b +AEIV"‘¢>} (2)D®(to, xo) = HEALYud(ty, %) + Z¢ - VDD (g, x0) — C.

We consider now the perturbed test function

D (t,x) = D(t,x) +5.¢ (;) DO(t,x) + iill) (;) . (4.3)
£ £ £
Then we have

00°(t,x) 0D(t,x) x\ O

ot ot %@ . ath)(t’X)’

s X X 2 51 X
DO (t,x) =(I+ Vo) - DO(t,x)+ 5.9 o D°®(t,x) — -Dy )

€ € [ €

There exists a sequence (t,, x¢) local maximum of vEde _ ¢ converging towards (tg, xo). If we set z, = ’g—z,
getting ¢ small enough and putting everything together in (4.2), we have

2D .

¢ (torX0) = £57b(z) = HETT 0 (to, X0) — (1+ V@) ba(2)DO(to, x0) — (2]
— o« oa—1 v a—1 o 6?—1

FATY (2 + AT (2D (10, x0) — (v"‘ 1 ) Vb1 (2)DO(tg, )

a—1

[(I+ V@) bo(z) + AV (z)] DD(tg,x0) +0(1) < 0.

5x1
So, from (4.3) we remark

g1 €

_ « _ oa—1
AT P(z) = == AT p(2)DD(t,x0) + ATV [D°(t,x) — Dt x)].

51

One can observe that

ax—1
sup {E AV [d)s(t,x)—(D(t,x)]} —0 ase—0.
x€R4 6%

€

Hence, we deduce

oD - _ _
T(to,xo) — H ' YuD®D(tg, xg) — I - DD(to,%0) — C < 0.

Let us now consider v*. Let (tg, xg) be such that ¥(tg, xg) < 0. Let ® < v* be a smooth function such that
D(to, x0) = V(to, x0) and (tg, Xo) is a strict local maximum of ® —v*. Consider the same perturbed function
test ¢ as above. Hence, there exists a sequence (t.,x.) that locally maximizes ®¢ —v¢-®¢ and converges
towards (tg, xo). By analogy,

oDO

Tt(tolxo) — H YD D (tg, x9) — L - DO(tg, x0) — C > 0. O
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Let us now introduce some notations

p%(t,x,y) == inf{So,t(@): @(0) =x, @(t)zy}, p%(t,x, Ug) := inf p*(t,x,y).
yelp

From this, we have following.

Remark 4.3 ([19]). Let u* and v* be respectively the sub- and supper-viscosity solutions of PDE (4.1).
Assume that for all (t,x) €]0,00[ x R4,

—p2(t,x, Up) < v*(t,x) < u*(t,x) < min (Et — 02, %, uo);O).

Then we have v* > u*.

Now, let O be an open subset in R x R4, define the function T on R x D ([O, o] X IRd) values into
[0, 0],
T=19(t,d) =inf{s: (t—s, d(s)) € O}.

Take O the set of Markov functions T. Let V*(t,x), t > 0,x € RY be the function:
V*(t,x) = inf sup {E’t— So,x () }
TEO (peD (10,1 R%), b (0)=x,d (t) €U}

Hence, we have the uniform convergence as follows.
Remark 4.4 ([19]). For (t,x) € R* x RY,

lim ¢ log us(t,x) = V*(t,x).
el0

Consider the partitions M and € of Ry x R
M :{(t,x) e R, x RE V*(t,x) = 0}, e :{(t,x) e R, x RYV*(t,x) < 0}.

We have following.

Theorem 4.5. By our assumptions,

limu® e (t,x) =

{ 0 uniformly from any compact X of &,
el0

1 uniformly from any compact X' of M.
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