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Abstract
This paper deals with the effects of an amplitude modulated (AM) excitation on the nonlinear dynamics of reactions

between four molecules. The computation of the fixed points of the autonomous nonlinear chemical system has been made in
detail using Cardan’s method. Routes to chaos have been investigated through bifurcations structures, Lyapunov exponent and
phase portraits. The effects of the control force on chaotic motions have been strongly analyzed and the control efficiency is
found in the cases g = 0 (unmodulated case), g 6= 0 with Ω = nω; n a natural number and Ω

ω 6=
p
q ; p and q are simple positive

integers. Vibrational Resonance (VR), hysteresis and coexistence of several attractors have been studied in details based on the
relationship between the frequencies of the AM force. Results of analytical investigations are validated and complemented by
numerical simulations.
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1. Introduction

Several natural phenomena observed in fields such as mathematics, chemistry, biology, physics, en-
gineering are non-linear[28]. The dynamics of nonlinear systems can be very complicated and often
counter-intuitive, and generally are controlled by fairly simple deterministic or stochastic laws. Nonlin-
earity, inherent in most systems, can appear in many forms, such as physical, structural, frictional or
geometric forces and external forces in many contexts [24]. This nonlinearity is the basis of the complex
situations or phenomena traversed by systems, thus making their operation more profitable or not. For
example, the intense study of nonlinear dynamics in oscillating chemical reactions under the influence
of external disturbances various results revealed that these chemical reactions are the seat of interesting
phenomena such as roads to chaos, the coexistence of attractors, hysteresis, vibrational resonance, etc
[1–5, 7, 8, 10, 13–15, 22, 24–26, 29]. Indeed, the oscillating chemical reactions in a continuous stirred tank
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reactor (CSTR) are one of the first biochemical oscillations discovered. Thus, the known chemical oscil-
lators were either from biological origin, such as the glycolytic and oxidase-peroxidase systems; either
discovered accidentally, such as the reactions of Bray and Belousov-Zhabotinsky (BZ); or variants of these
reactions [1, 2, 4, 5, 8, 10, 15, 22, 24–26]. In most studies performed on chemical oscillations, one of the
main challenges is to predict and control nonlinear dynamics for potential applications [3, 7, 13, 14, 29].

From the analysis of the research cited above, it follows that the study of these oscillations is more
advantageous for systems with AME (amplitude modulation excitation) because some new dynamic phe-
nomena, including controllable frequency, may also be exhibited [13]. For example, Blekhman and Landa
[2] studied for a Duffing oscillator the resonances caused by a biharmonic external force with two differ-
ent frequencies (called vibrational resonances). They showed that when the oscillator is weakly damped,
these resonances are conjugate and occur when the amplitude of the high frequency excitation varies
for appropriate low and high frequency conditions. Furthermore, Roy-Layinde et al. [24] have identi-
fied the origin of Vibrational Resonance (VR) in the plasma model under the influence of a biharmonic
force taking into account the effective potential of the plasma and also contributions from the effective
nonlinear dissipation. From the numerical simulations, they found several dynamical changes including
symmetry-breaking bifurcations, attractor leaks and period-reversed bifurcations; also they found single
and double resonances induced by symmetry-breaking bifurcations. Landa and McClintock [10] have
investigated the effect of a high frequency force on the response of a bistable system to a low frequency
signal for overdamped and weakly damped cases. They showed that the response can be optimized by
an appropriate choice of vibration amplitude. Other equally important works have proven the conditions
for obtaining VR as well as its applications [8, 19, 27].

Finally, another complex phenomenon encountered in nonlinear systems and which makes them dif-
ficult to contain is multistability. Indeed, for the same value of a parameter of the system for which
multistability appears, the system is in several states or at several vibration amplitudes, thus making it
difficult to control the system. On the other hand, megastability designates the coexistence of an infinite
number of attractors while bistability translates the coexistence of two attractors for the same system
[9, 11, 12, 16, 20, 21, 23, 30]. Therefore, due to the complexity of multistable systems many researchers
work hard to predict and control multistability. This is one of the proofs of the many recent works stud-
ied during this decade on this rather interesting subject [9, 11, 12, 16, 20, 21, 23, 30]. In these different
works, several techniques are used to research, analyze and control the coexistence of attractors and very
conclusive results are obtained. Most of these works one can notice that a great flexibility in the perfor-
mance of the system is made possible by the coexistence of various stable states without major changes
of parameters.

In the present paper, it is question to seek hysteresis, vibrational resonance and chaos in the system
of reactions between four molecules when it is subjected to an external amplitude modulation excitation.
More precisely, after an in-depth analysis of the fixed points for the autonomous system, the effects of
the modulated amplitude force on the dynamics of the chemical reaction considered have been studied
in detail and the efficiency of the control force analyzed. By assuming that the model is influenced by
an external sinusoidal excitation (f+ 2g cosΩt) sinωt, Eq. (1.1) becomes a nonlinear single second order
differential equation on the form

ẍ+ µ
(
1 − x2) ẋ+αx+ γx3 +β = (f+ 2g cosΩt) sinωt. (1.1)

Eq. (1.1) is a forced modified Van der Pol-Duffing oscillator equation. For the particular case where
the constraint parameter term β = 0, Eq. (1.1) is reduced to the Van der Pol-Duffing equation treated
extensively by many researchers. Also, Eq. (1.1) is used to model the nonlinear dynamics of chemical
reactions without amplitude modulated excitation (see [15, 22]).

The paper is structured as follows. Section 2 analyses the fixed points and their stability. In Section 3,
the vibrational resonance, bifurcation, route to chaos, bistability, coexistence of attractors and hysteresis
are analyzed in a depth detail. The effect of AM excitation is studied when Ω = ω, Ω � ω and Ω

ω 6=
p
q ,

where p and q are simple positive integers. Finally the conclusion of the research is given in Section 4.
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2. Equilibrium points and its stability

In this section, we determine the fixed points of the autonomous Van der Pol-Duffing oscillator and
we analyze their stability. In this order, we write the equation of autonomous system as follow

ẋ = y, ẏ = −µ(1 − x2)y−αx− γx3 −β.

All equilibrium points E∗(x∗,y∗) of the autonomous system verify:

y∗ = 0 and γx3
∗ +αx∗ +β = 0. (2.1)

Using the Cardan method [17, 22] to solve Eq. (2.1), we rewrite this equation in the form:

x3
∗ + ax∗ + b = 0,

where a = α
γ and b = β

γ . The associate characteristic equation is

T 2 + bT −
a3

27
= 0. (2.2)

The equilibrium points of system depend on the parameters of the system and therefore the sign of η,
with

η = 27∆ = 4a3 + 27b2,

where ∆ represents the determinant of Eq. (2.2). The values of α and γ seriously influence the sign of η
because the parameter γ > 0 for the system in consideration.

Theorem 2.1. The autonomous system has one fixed point E∗(x∗, 0) with

x∗ = (−
b

2
− (
b2

4
+
a3

27
)

1
2 )1/3 + (−

b

2
+ (
b2

4
+
a3

27
)

1
2 )1/3.

This equilibrium point E∗(x∗, 0) is semi-stable if β > α+ γ while it is stable if β < α+ γ.

Proof. The real system modeled by the Van der Pol Duffing equation studied here is a chemical system
and the parameters α and γ are strictly positive (see [15, 22]). Thus, in this case, the parameter η > 0 and
the autonomous system has one equilibrium point E∗(x∗, 0) with

x∗ = (−
b

2
− (
b2

4
+
a3

27
)

1
2 )1/3 + (−

b

2
+ (
b2

4
+
a3

27
)

1
2 )1/3.

The eigenvalues of the corresponding Jacobian matrix at the equilibrium point E∗(x∗, 0) are deter-
mined by solving

λ2 + λσ1 + σ2 = 0,

with
σ1 = µ− µx2

∗, σ2 = α+ 3γx2
∗.

According to the Routh-Hurwitz criterion, E∗(x∗, 0) is stable if and only if σ1 > 0 and σ2 > 0. However,
for µ > 0,α > 0, and γ > 0, σ2 > 0 and the stability of the fixed point depends on the sign of σ1 > 0.
Indeed, let’s study the sign of σ1. It is easy to show that if β < α+ γ, σ1 > 0, and E∗(x∗, 0) is stable and if
β > α+ γ, σ1 < 0, and E∗(x∗, 0) is semi-stable.

3. Effect of AM force on the system

3.1. Vibrational resonance and amplitude response
In a nonlinear dynamical system driven by a biharmonic force consisting of a low and high-frequencies

ω andΩwithΩ� ω, when the amplitude g of the high frequency force is varied, the amplitude response
at the low frequencyω exhibits a resonance so-called vibrational resonance [2, 5, 8, 10, 24]. In other words,
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vibrational resonance (VR) is a phenomenon wherein the response of a nonlinear oscillator driven by
biharmonic forces with two different frequencies, and, such that Ω � ω, is enhanced by optimizing the
parameters of high-frequency driving force. To determine the VR, we use the amplitude of the response
at the frequency ω of the signal. Indeed, using the fourth order Runge-Kutta algorithm, with time step
size T

1000 , we numerically integrate the system (1.1) of the chemical reaction studied. Thus, the numerical
solution x(τ) allows to calculate the amplitude response Q through the following formula

Q =

√
Q2
s +Q

2
c

f
,

where

Qs =
2
nπ

∫nT
0
x(τ) sinωτdτ, Qc =

2
nπ

∫nT
0
x(τ) cosωτdτ,

with T = 2π
ω the response period and n = 500. We compute Q first in the case of a low frequency force

only, then in the case of a high frequency force only and finally in the case of the two forces. For f = 0, Q is
determined as Q =

√
Q2
s +Q

2
c, Qs and Qc representing the Fourier coefficients of the output signal at the

frequency 2π
T and Q the amplitude of the response to this same frequency. In general vibration resonance

is observed by tuning the fast forcing g, so that the effective modified natural frequency, which should
be a function of α,g,γ,β, resonates to the slow frequency ω. It is therefore for reason that the effects of
each of these parameters are analyzed numerically. Thus, the results obtained represented on the Figures
1 and 2, respectively, in the planes (Q,g) and (Q, f), show the effects of the parameters of the systems
on the vibrational resonance. From the analysis of these figures, it appears that the parameters β,γ as
well as the parameters of the modulated amplitude force strongly influence the resonance amplitude and
the values of the resonance parameters. We also note that the parameters β and ω influence the multiple
resonance obtained.

Figure 1: Vibrational resonance in (Q,g) for α = 1,µ = 0.0001;ω = 1.0;Ω = 50 ∗w. (a): effect of constraint parameter β with
γ = 1.8 and f = 0.08; (b): effect of γ with β = 0.1 and f = 0.08; (c): effect of f with γ = 0.9 and β = 0.1; (d): effect of ω with
f = 0.08,γ = 0.9, and β = 0.1.
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Figure 2: Vibrational resonance in (Q, f) for α = 1,µ = 0.0001;ω = 1.0;Ω = 50 ∗w. (a): effect of g with γ = 0.9 and β = 0.2; (b):
effect of constraint parameter β with γ = 0.9 and g = 5; (c): effect of γ with β = 1.5 and g = 5 (d): effect of ω with g = 5,γ = 0.8,
and β = 1.5.

3.2. Hysteresis, coexistence of attractors, and multistability

The modified Van der Pol-Duffing oscillator which modeled the a the nonlinear chemical reaction [15,
22] can exhibit the complex behaviors and that’s why this section is dedicated to effects of an amplitude
modulated excitation on the route to chaos and coexistence of attractors. Indeed, using the fourth order
Runge-Kutta integration algorithm, we solve numerically Eq. (1.1) of a modified Van der Pol-Duffing
oscillator and bifurcation diagrams, Lyapunov exponents and phase portraits are plotted. To search for
the coexistence of attractors, we have studied the dynamics of the oscillator by varying the bifurcation
parameter in the same interval in the increasing direction (blue curve) and in the decreasing direction (red
curve) for fixed values of the others system parameters but with two different initial conditions. Thus, by
superimposing the two curves (blue and red) in the same graph, if the system has the same dynamics with
the same amplitude for a given value of the bifurcation parameter, then the oscillator does not present
the phenomenon of coexistence of attractors. But if the dynamics of the oscillator have the same nature or
have the same nature with different amplitudes, then there is coexistence of attractors. We say that there
is coexistence of attractors of the same nature if the system has the same dynamics but with different
amplitudes otherwise we say that attractors of different natures coexist. It is necessary to note that the
Lyapunov exponent of stable periodic solution is less than zero while the Lyapunov exponent of chaos is
greater than zero and Lyapunov exponent equal to zero means that bifurcation occurs, corresponding to
a quasi-periodic dynamic [31].

Figure 3 represents the bifurcation diagram and its corresponding Lyapunov exponents versus the
parameter f for γ = 3.6,µ = 0.1,α = 1,β = 0.6,g = 0,ω = 1. This figure shows the dynamics and the
coexistence of the attractors of the modified Van der Pol oscillator studied in the absence of modulation
of the external excitation. It is noted that this oscillator presents a varied dynamics and of coexistence
of attractors of varied natures. Indeed, for 0 6 f 6 3.5, the studied oscillator can have a mono-periodic,
double-periodic, multi-periodic, and chaotic dynamics. We observe precisely that for 0.602317 6 f <

0.723126, attractors of period 1T and 3T coexist; for 1.53427 6 f < 1.7802, attractors of period 2T coexist;
for 3.03143 6 f < 3.29462, chaotic attractors coexist, and when 3.29462 6 f 6 3.5, chaotic attractors and
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period attractors 1T coexist. These different results are confirmed by the phase portraits of Figure 4.
Now we are looking for the effect of amplitude modulation on the different dynamics and the coexistence
of attractors. Indeed, for the degree of modulation g = 5 and Ω = 80ω the bifurcation diagram and
its corresponding Lyapunov exponents (Figure 5) reveal that the domains of the coexistence attractors,
of period 1T and 3T , of period 2T have become domains of coexistence of attractors, of period 2T and
4T ; the domains of coexistence of chaotic attractors and attractors of period 1T are preserved. Figure
6 represents for γ = 3.6,µ = 0.1α = 1,β = 0.6, f = 3.4,ω = 1,Ω = 80, the domain of the degree of
modulation g, where attractors coexist and shows that for 0 6 g 6 10, chaotic attractors and attractors
of period 1T coexist. To verify the predictions of Figure 6, the phase portraits of appropriate values of
g are plotted in Figure 7. This confirmes the coexistence of chaotic attractors and attractors of period
1T . For γ = 3.6,µ = 0.1,α = 1,β = 0.2, we study the effect of amplitude modulated excitation on the
dynamics and the coexistence of the attractors of the modified Van der Pol oscillator. Indeed, Figure
8 shows the influence of excitation frequencies on these complex phenomena when Ω = nω with n

a natural integer. Thus, for f = 3.4, we note that the domain of coexistence of chaotic attractors with
periodic or multi-periodic attractors is greater for n > 1, than when n = 1, i.e., for Ω > ω only for Ω = ω.
Figure 9 also shows the effect of excitation frequencies on these complex phenomena when Ω

ω 6=
p
q ; p

and q are simple positive integers. We observe through this figure that the domain of the coexistence of
chaotic and periodic attractors are considerably reduced and we also note the coexistence of quasiperiodic
and chaotic attractors. Finally, Figure 10 represents the amplitude effect f of the periodic excitation for
γ = 3.6,µ = 0.1,α = 1,β = 0.2, ω = Ω = 1. It is noted that the chaotic dynamic is considerably eliminated
and the multiperiod dynamic is more abundant. Thus, the domain of the coexistence of quasi-periodic
attractors is larger than the domain of the coexistence of other attractors.

From all these important results obtained, it can be concluded that the amplitude modulated excita-
tion greatly influences the dynamics of the modified Van der Pol oscillator as well as the coexistence of
attractors and their nature.

Figure 3: Bifurcation diagram and its corresponding Lyapunov exponents versus the parameter f for γ = 3.6,µ = 0.1,α = 1,β =
0.6,g = 0,ω = 1. Bifurcation diagrams are obtained by scanning the parameter f upwards (blue) and downwards (red).
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Figure 4: Phase portrait of coexistence of attractors with (a) f = 0.64; (b) f = 1.65; (c) f = 3.1; (d) f = 3.4; and other parameters
of Figure 3. Blues curves correspond to initial condition (x0 = 1,y0 = 0.8) and red curves correspond to initial condition
(x0 = −0.2,y0 = 0.5)

Figure 5: Bifurcation diagram and its corresponding Lyapunov exponents versus the parameter f for γ = 3.6,µ = 0.1,α = 1,β =
0.6,g = 5,ω = 1,Ω = 80. Bifurcation diagrams are obtained by scanning the parameter f upwards (blue) and downwards (red).
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Figure 6: Bifurcation diagram and its corresponding Lyapunov exponents versus the parameter g for γ = 3.6,µ = 0.1,α = 1,β =
0.6, f = 3.4,ω = 1,Ω = 80. Bifurcation diagrams are obtained by scanning the parameter g upwards (blue) and downwards
(red).

Figure 7: Phase portrait of coexistence of attractors with (a) g = 0.1; (b) g = 5, and other parameters of Figure 6. Blues curves
correspond to initial condition (x0 = 1,y0 = 0.8) and red curves correspond to initial condition (x0 = −0.2,y0 = 0.5).
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Figure 8: Effect of amplitude modulated excitation on dynamics of the system for γ = 3.6,µ = 0.1,α = 1,β = 0.2, f = 3.4,ω = 1.
(a) Ω = ω; (b) Ω = 10ω; (c) Ω = 20ω; and (d) Ω = 80ω. Bifurcation diagrams are obtained by scanning the parameter g
upwards (blue) and downwards (red).

Figure 9: Effect of amplitude modulated excitation on dynamics of the system for γ = 3.6,µ = 0.1,α = 1,β = 0.2, f = 3.4,ω = 1.
(a) Ω/ω =

√
2/2; (b) Ω/ω =

√
2; and (c) Ω/ω =

√
5. Bifurcation diagrams are obtained by scanning the parameter g upwards

(blue) and downwards (red).
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Figure 10: Effect of amplitude modulated excitation on dynamics of the system for γ = 3.6,µ = 0.1,α = 1,β = 0.2,ω = Ω = 1.
(a) f = 0.4; (b) f = 1; (c) f = 2; and (d) f = 3. Bifurcation diagrams are obtained by scanning the parameter g upwards (blue) and
downwards (red).

4. Conclusions

In this work, we studied the influence of an amplitude modulated excitation on the complex dynamics
of a modified Van der Pol oscillator which models the complex oscillations of certain chemical reactions.
Emphasis was placed on Hopf bifurcation, vibrational resonance, chaos, and the coexistence of attractors.
After having sought the fixed points of the autonomous system by the method of Cardan, the stability of
these points is analyzed by the use of the criterion of Routh-Hurwitz. Then, the vibrational resonance,
which is also a very complex phenomenon for dynamical systems is searched numerically using the
Runge-Kutta algorithm of order 4. It is obtained the amplitudes and the resonance frequencies showing
the contribution of the force to modulated amplitude when the frequency of the modulated part is very
high compared to the periodic excitation frequency. It appears from these results that the parameters
β,γ as well as the parameters of the modulated amplitude force strongly affect the resonance amplitude
and the values of the resonance parameters. We have also noticed that the parameters β and ω influence
the multiple resonance obtained. To study in this work the effects of the amplitude modulated force
on the routes to chaos and the coexistence of attractors, we used the Runge-Kutta algorithm of order
4 to numerically solve the equation of the modified oscillator by Van der Pol-Duffing. It follows that
through the bifurcation diagrams, the Lyapunov exponents and the phase portraits obtained that the
amplitude modulated excitation strongly influences the dynamics and the coexistence of the attractors.
Indeed, it is obtained that the presence of the modulated amplitude force promotes chaotic dynamics
and the coexistence of attractors of the same nature or of different nature for well-defined values of the
excitation frequencies, the degree of amplitude modulation and the amplitude of the periodic excitation.
The different results prove the importance of this study because it situates the researchers on the domains
of values of each parameter of the system that must be considered to have a given behavior or a precise
phenomenon. For example, in chemistry or biochemistry where the nonlinear dynamics of chemical
reactions can be modeled by the modified Van der Pol-Duffing oscillator studied, a good choice of the
values of the parameters of the chemical reaction and of the external excitation could make it possible
to control the concentrations of the chemical species in reaction and to predict the yield of the reaction.
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Precisely, in a chemical or biochemical reaction for which one wishes to know the yield, it will be necessary
to choose precisely the values of the parameters in a domain where the dynamics are not chaotic and
where attractors do not coexist. It will also be necessary to choose the values of the parameters at
resonance if the aim is to have a high concentration of chemical species in reaction.
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